Special Relativity \rightarrow Quantum Mechanics

 The SRQM Interpretation of Quantum MechanicsUsing Special Relativity (SR) as a starting point, then noting a few empirical 4-Vector facts,
i.e. classically measurable physical constants, one can instead *derive* the Principles that are normally considered to be the Axioms of Quantum Mechanics (QM).

Hence, [SR \rightarrow QM] or [SRQM]
Since many of the QM Axioms are rather obscure, this approach is a far more logical and understandable paradigm than QM as a separate theory from SR, and sheds light on the physical origin, structure, and meaning of the QM Principles.

For instance, the properties of SR <Events>, encoded as components of 4-Vectors, ex. (time,position), (energy,momentum), etc., the things we measure, can be "quantized by the Metric", [time,energy], [position,momentum] while 4D SpaceTime \& the GR Metric are not themselves "quantized", in agreement with all known experiments and observations to-date.

The SRQM or [SR \rightarrow QM] Interpretation of Quantum Mechanics
A Tensor Study of Physical 4-Vectors
or: Why General Relativity (GR) is *NOT* wrong
or: Don't bet against Einstein ;)
or: QM, the easy way...
—

$$
\text { SRQM: A treatise of SR } \rightarrow \text { QM by John B. Wilson (SciRealm@aol.com) }
$$

Tensors, especially \{4-Vectors $=4 \mathrm{D}(1,0)$-Tensors $\}$, are a fantastic language/tool for describing the physics of both relativistic and quantum phenomena.
They easily show many interesting properties and relations of our Universe, and do so in a simple and concise mathematical way. Due to their tensorial nature, 4 -Vectors are automatically 4D SpaceTime coordinate-frame invariant, their components obey relativistic covariance, and these 4-Vectors can be used to generate *ALL* of the physical Lorentz Scalar 4D (0,0)-Tensors and higher-rank Tensors of Special Relativity (SR). Let me repeat: You can mathematically build *ALL* of the SR Lorentz Scalars and "larger" SR Tensors from empirically discovered SR 4-Vectors.

4D (Time-Space) SR 4-Vectors are likewise easily shown to be related to the standard physics 3D vectors \{3-vectors =3D (1,0)-tensors \} that are used in Newtonian Classical Mechanics (CM), Maxwellian Classical ElectroMagnetism (EM), and standard Quantum Mechanics (QM). In addition, each and every physical SR 4-Vector also fundamentally connects a special-relativistically-related temporal scalar to a spatial 3-vector:

Temporal time (t) \& Spatial 3-position $(r) \rightarrow\left(r^{x}, r^{y}, r^{z}\right)=(x, y, z)$ as SR 4-Position $R=R^{\mu}=(c t, r)$
Temporal energy (E) \& Spatial 3-momentum (p) $\rightarrow\left(p^{x}, p^{y}, p^{2}\right)$ as SR 4-Momentum $\mathbf{P}=P^{\mu}=(E / c, p)$ Temporal charge-density (ρ) \& Spatial 3-current-density (j$) \rightarrow\left(\mathrm{j}^{\mathrm{x}}, \mathrm{j}^{\mathrm{y}}, \mathrm{j}^{\mathrm{z}}\right)$ as SR 4-CurrentDensity $\mathrm{J}=\mathrm{J} \boldsymbol{J}=(\mathrm{\rho c}, \mathrm{j})$

Why 4-Vectors and Tensors as opposed to some of the more abstract mathematical approaches to Quantum Mechanics? Experiment is the ultimate arbiter of which theories actually correspond to reality:nature. If quantum-logics and string-theories give no testable/measurable predictions, and if invented/hypothetical/wished-for particles can't be detected, then they are basically useless for real, actual, empirical physics. The components of 4-Vectors *ARE* the physical properties of real particles that ${ }^{*} \mathrm{CAN}^{*}$ actually be empirically detected/measured/tested, and Tensors are the well-known and well-established mathematical/physical objects which describe these concepts in an invariant, coordinate-independent way.

In this treatise, I will first extensively demonstrate how 4-Vectors are used in the context of Special Relativity (SR),
and then show that their use in Relativistic Quantum Mechanics (RQM) and Quantum Mechanics (QM) is really not fundamentally different. Quantum Principles, without need of QM Axioms, then emerge in a natural and elegant way.

SR is a theory of Measurement, even in QM.
I also introduce the SRQM (Physical/Scientific) Diagramming Method: a highly instructive, graphical charting/diagrammming-method, which visually shows how the SRQM 4-Vectors, Lorentz 4-Scalars, and higher rank 4-Tensors are all related to each other.

This symbolic representation clarifies a lot of physics and is a great tool for teaching and understanding.

SRQM: A treatise of SR \rightarrow QM by John B. Wilson (SciRealm@aol.com)
Many concepts herein inspired by works of SR/GR Expert Physicist Woligang Rindler

Mostly SR
4-Vectors
4-Tensors
Basis of Classical SR
Lorentz Transforms

Mostly QM
QM Connection
Canonical QM Commutation
Heisenberg Uncertainty
QM \rightarrow CM Correspondence
SR \rightarrow QM RoadMap

```
Credits
```


Some Physics:Mathematics Abbreviations \& Notation

GR $=$ General Relativity $4 \mathrm{D}=4$-Dimensional $=\{0,1,2,3\} \rightarrow\{t, x, y, z\}$ SR = Special Relativity SR Metric-Convention $\rightarrow(+,-,-,-)$ SR Metric \rightarrow Diag[+1,-1,-1,-1] \{Cartesian Frame\}
CM = Classical Mechanics
QM = Quantum Mechanics
$\mathrm{t}_{\mathrm{o}}=\tau=$ Proper Time (Invariant Rest Time) $=\mathrm{t} / \gamma \quad \mathrm{t}=\gamma \mathrm{t}_{\mathrm{o}}$
$\leftarrow \mid$ Time Dilation $\mid \rightarrow$
$L_{0}=$ Proper Length (Invariant Rest Length) $=\gamma \mathrm{L}: \mathrm{L}=\mathrm{L}_{d} \gamma \rightarrow \mid$ Length Contraction $\boldsymbol{\beta}=$ Relativistic Beta $=\mathbf{v} / \mathbf{c}=\mathbf{u} / \mathbf{c}=\{0 . .1\} \hat{n} ; \mathbf{v}=\mathbf{u}=c \boldsymbol{\beta}=3$-velocity $=\{0 . . \mathrm{c}\} \hat{n} ; \mathbf{v}=\mathbf{u}=|\mathbf{v}|$ $\gamma=$ Relativistic Gamma $=\gamma_{u}=\gamma_{\beta}=1 / \sqrt{ }[1-\beta \cdot \beta]=1 / \sqrt{ }\left[1-|\beta|^{2}\right]=1 / \sqrt{ }\left[1-|\mathbf{u} / \mathrm{c}|^{2}\right]=\mathrm{dt} / \mathrm{d} \tau=\{1 . . \infty\}$ $\mathrm{D}=$ Relativistic Doppler $=1 /[\gamma(1-|\beta| \cos [\theta])]$; can also be (D)imension, i.e. 4D,3D,1D $\Lambda{ }^{\prime}{ }_{v}=$ Lorentz (SpaceTime) Transform: prime ($($) speciifes allemate reference frame RF, \{boosts, rotations, refiections, idenitit\}\} $\mathrm{I}_{(3)}=3 \mathrm{D}$ Identity Matrix = Diag[1,1,1] : $\mathrm{I}_{(4)}=4 \mathrm{D}$ Identity Matrix = Diag[1,1,1,1] $\delta^{\mathrm{i}}=\delta_{\mathrm{j}}^{\mathrm{i}}=\delta_{\mathrm{ij}}=\mathrm{I}_{(3)}=\{1$ if $\mathrm{i}=\mathrm{j}$, else 0$\}=\operatorname{Diag}[1,1,1]$ 3D Kronecker delta $\delta^{\mathrm{nv}}=\delta_{v}^{\mathrm{u}}=\delta_{\mu v}=\mathrm{I}_{(4)}=\{1$ if $\mu=v$, else 0$\}=$ Diag $\left.1,1,1,1\right] \quad 4 \mathrm{D}$ Kronecker Delta (unique rank-2 isotropic tensor) $\varepsilon^{\mathrm{j}}{ }_{k}=\{$ even:+1, odd:-1, else:0\} 3D Levi-Civita anti-symmetric permutation (unique rank-3 isotropic) $\varepsilon^{l v /}{ }_{p o}=\{$ even:+1, odd:-1, else:0\} 4D Levi-Civita Anti-symmetric Permutation (one of a few..) \{other upperilower index combinations possible for Levi-Civita symbol, but always anti-symmetric\}
$\eta^{\text {lv }} \rightarrow \eta_{\mathrm{Iv}} \rightarrow$ Diag $\left[1,-\mathrm{I}_{(3)}\right]_{\text {rect }} \leftarrow \mathrm{V}^{\mathrm{iv}}+H^{\text {wv }}=\eta^{\text {IV }}$ Minkowski:SR:"Flat" SpaceTime (,,,+---$)$ Metric $\eta_{v}^{\mu}=\delta_{v}^{\mu}=\operatorname{Diag}\left[1, I_{(3)}\right]_{\text {any }}=\mathrm{I}_{(4)}=\mathrm{g}_{v}^{\mu}$, \{also true in GR\} $(1,1)$-Tensor Identity Mixed-Metric
 $H^{\mu \mathrm{vN}}=\perp^{\mu \mathrm{Nv}}=\eta^{\mu \mathrm{vv}}-\mathrm{T}^{\mu \mathrm{T}} \mathrm{V}^{v}=$ Spatial "(H)orizontal" Projection Tensor, also $H^{\mu v}$ and $H_{\mu v}$ $\bar{T}^{\mu}=\gamma(1, \beta)=4$-UnitTemporal $=\mathrm{U}^{\mu} / \mathrm{c}$

Tensor-Index Notation \& 4-Vector Notation:
$a^{j}=\mathbf{a}=\left(a^{\prime}\right)=\left(a^{1}, a^{2}, a^{3}\right)=(a): 3$-vector [Latin Index $\{1,2,3\}$ space-only] $A^{\mu}=\mathbf{A}=\left(a^{\mu}\right)=\left(a^{0}, a^{1}, a^{2}, a^{3}\right)=\left(a^{0}, a\right): 4$-Vector [Greek Index $\{0,1,2,3\}$ Time-Space] $A^{\mu} B_{\mu}=A_{v} B^{v}=A \cdot B=A^{\mu} \eta_{\mu v} B^{v}$: Einstein Sum : Dot Product : Inner Product
$A^{\wedge} B^{\vee}=A \otimes B$: Tensor Product: Outer Product
$A^{4} B^{\vee}-A^{\vee} B^{\mu}=A^{[4} B^{\sqrt{v}}=A^{\wedge} B$: Wedge Product : Exterior Product : Anti-Symmetric Product
$A^{v} B^{v}-A^{v} B^{v}=0^{\mu v}:(2,0)-Z e r o$ Tensor
$A^{\mu} B^{v}-B^{v} A^{\mu}=\left[A^{\mu}, B^{V}\right]=[A, B]:$ Commutation
$A^{u} B^{v}-B^{v} A^{v}=? ? ?$

SRQM $=$ The $[S R \rightarrow Q M]$ Interpretation of Quantum Mechanics, by John B. Wilson
In full, with each a "validity-range" subset of the former: [$\mathrm{GR} \rightarrow \mathrm{SR} \rightarrow \mathrm{RQM} \rightarrow \mathrm{QM} \rightarrow(\mathrm{EM} \& \mathrm{CM})$]

Temporal object(+): blue, Spatial object(-): red Mixed Time-Space object (<event>): purple The mnemonic being blue and red mixed make purple Null:Photonic:Light-like object(0): white 4D SpaceTime: I often write it as "Time-Space" just to match this ordering convention of 4-Vector (temporal, spatial) components

Some Physics:Mathematics Conventions \& Notation

4-Tensor $\mathrm{T}^{\text {prv }}$:	4-Vector V^{μ} : 4-Scalar S	Conventions \& Notation

Time-Space 4-Vector Name matches its spatial 3-vector component name SR 4-Vector = (temporal 3-scalar, spatial 3-vector) 4-Vectors (4D) in bold UPPERCASE: ex. A
3-vectors (3D) in bold lowercase: ex. a : sometimes with vec=over-arrow $\overline{\mathbf{a}}$ Temporal scalars (1D) non-bold, usually lowercase, $0^{\text {th }}$ component: ex. a^{0}, a_{0} Individual non-vec scalar components non-bold: ex. $\mathbf{A}=\left(\mathrm{a}^{0}, \mathrm{a}^{1}, \mathrm{a}^{2}, \mathrm{a}^{3}\right)=\left(\mathrm{a}^{0}, \mathrm{a}\right)$ Rest-scalars (invariants) normal non-bold, denoted with naught (o): ex. a_{0} Tensor-index-notation normal non-bold: ex. $A^{\mu}=\left(a^{\mu}\right)=\left(a^{0}, a^{k}\right)=\left(a^{0}, a^{1}, a^{2}, a^{3}\right)$ 4D Tensors use Greek indices: ex. $\{\mu, v, \sigma, \rho, \ldots\}$: ex. 4-Position $R^{\mu}=\left(r^{\mu}\right)$ 3D tensors use Latin indices: ex. \{ i, j, k, ...\}: ex. 3-position $r^{k}=\left(r^{k}\right)=\left(r^{1}, r^{2}, r^{3}\right)$ Upper indices $A^{\mu}=\left(a^{\mu}\right)=\left(a^{0}, a^{j}\right)$: Lower indices $B_{\mu}=\left(b_{\mu}\right)=\left(b_{0}, b_{j}\right)$ LightSpeed Factor (c) in temporal component to match dimensional units 4-Vector: $\mathbf{A}=\overline{\mathbf{A}}=A^{\mu}$: ex. 4-Momentum $\mathbf{P}=P^{\mu}=(E / c, p)=(\mathrm{mc}, \mathrm{mu})$ 4-CoVector $=$ OneForm: $\boldsymbol{A}=A_{\mu}:$ ex. 4D GradientOneForm $\underline{\partial}=\partial_{\mu}=\left(\partial_{t} / c, \nabla\right)$ Null 4-Vector $\mathbf{N} \sim(|a|, a)=a(1, n ̂)$, with Lorentz Scalar Invariant $\mathbf{N} \cdot \mathbf{N}=N^{\mu} \mathbf{N}_{\mu}=0$

SR:Metric Convention: Particle-Physics, Temporal-0h-Positive (+,-,-,-)
that is used herein: West-Coast, Time-Like, Mostly-Minuses

RQM \& QM are derivable from principles of SR
Let that sink in...
Quantum Mechanics is derivable from Special Relativity
GR $\rightarrow \mathrm{SR} \rightarrow \mathrm{RQM} \rightarrow \mathrm{QM} \rightarrow\{\mathrm{CM}$ \& EM\}

Existing SR Rules
Quantum
Principles

4-Position $\mathbf{R}=(c t, r)=\left(c^{*}\right.$ when, where $) \in<$ What Event $>$ 4-Position $\mathbf{R}=(c t, r)=\left(c^{*}\right.$ then, there $) \in<$ That Event> 4-Origin $\mathbf{R}_{\mathbf{o}}=(0,0)=\left(c^{*}\right.$ now,here $) \in<$ This Event $>$

Good, but limited-case, warning, etc.: yellow-orange
(NormalMatter AntiMatter) (Black Holes \leftrightarrow White Holes)

$($

3oth are the SpaceTime-reversed situations of the other equivalent under CPT Symmetry

Old, outdated, wrong: red
Old
Wrong
Idea

SRQM Tensor Symbolic Representation 4-Scalar S (0 index): Ellipse

4-Vector V^{μ} (1 index): Rectangle

4-Tensor Thv $^{\mu v}$ (2 index): Octagon
4

Temporal object (+): blue, Spatial object (-): red Mixed Time-Space object (generic <event>): purple The mnemonic being blue and red mixed \rightarrow make purple

Null:Photonic:Light-like object (0): white SpaceTime: I often write it as "Time-Space" just to match this ordering convention of 4-Vector (temporal, spatial) components

SR 4-Tensor (2,0)-Tensor T ${ }^{\mu v}$ (1,1)-Tensor $\mathrm{T}^{\mu}{ }^{\prime}$ or $\mathrm{T}_{\mu}{ }^{\text {s }}$
$(0,2)$-Tensor $\mathrm{T}_{\mu v}$

SR 4-Vector (1,0)-Tensor $\mathrm{V}^{\mu}=\mathbf{V}=\left(\mathrm{v}^{0}, \mathbf{v}\right)$ SR 4-CoVector:OneForm

 $(0,1)$-Tensor $\mathrm{V}_{\mu}=\left(\mathrm{V}_{0},-\mathrm{v}\right)$

Trace $\left[T^{\mu \nu}\right]=\eta_{\mu v} T^{\mu v}=T_{\mu}=T$ $\mathbf{V} \cdot \mathbf{V}=V^{\mu} \eta_{\mu v} V^{v}=\left[\left(v^{0}\right)^{2}-\mathbf{V} \cdot \mathbf{v}\right]=\left(v^{0}{ }_{0}\right)^{2}$ = Lorentz Scalar Invariant

Special Relativity \rightarrow Quantum Mechanics

 The SRQM Interpretation: Links
See also:
 http://scirealm.org/SRQM.html (alt discussion)
 http://scirealm.org/SRQM-RoadMap.html (main SRQM website)
 http://scirealm.org/SRQM-Summary.pdf (SRQM Summary .pdi)
 http://scirealm.org/SRQM-FundamentalConstants. pdf (SRQM Constants .pdi)
 http://scirealm.org/4Vectors.html (4-vector study)
 http://scirealm.org/SRQM-Tensors.html (Tensor \& 4-Vector Calculator)
 http://scirealm.org/SciCalculator.html (Complex-capable RPN Calculator)

or Google "SRQM"
http://scirealm.org/SRQM.pdf (this .pdf document: most current version at SciRealm.org)
$(1,0)$-Tensor $\mathrm{V}^{\mu}=\mathbf{V}=\left(\mathrm{v}^{0}, \mathbf{v}\right)$
SR 4-CoVector:OneForm SR 4-CoVector:OneForm

SR 4-Scalar
$(0,0)$-Tensor S or S
SRQM: A treatise of SR \rightarrow QM by John B. Wilson (SciRealm@aol.com)

SRQM Study: Physical / Mathematical Tensors 4D Tensor Types: 4-Scalar, 4-Vector, 4-Tensor Component Types: Temporal, Spatial, Mixed

Matrix Format				SRQM Diagram Form
SR 4-Scalar S a "number": magnitude only				
S	or			(0,0)-Tensor $\mathrm{S}_{\text {often }}$ Lorentz Scalar
SR 4-Vector V^{μ} an "arrow": magnitude and 1 direction				SR 4-Vector 4D (1,0)-Tensor $\mathbf{V}=\overline{\mathbf{V}}$ uses a single upper index:bar, contravariant $\begin{aligned} & v^{\mu}=\left(v^{\mu}\right)=\left(v^{0}, v^{\prime}\right)=\left(v^{0}, v\right) \\ = & \left(v^{0}, v^{1}, v^{2}, v^{3}\right) \rightarrow\left(v^{t}, v^{v}, v^{v}, v^{2}\right) \end{aligned}$
Vo	V1	V2	V^{3}	

Each 4D index $=\{0,1 . .3\} \leftrightarrow$ Tensor Dimension $=4$

SRQM Diagram: Ellipse 4-Scalars, 0 index = rank 0
$4^{*} 0=0$ corners in diagram $4^{0}=(1)=1$ component

	SR 4-CoVector = 4D One-Form 4D (0,1)-Tensor $\underline{\mathbf{C}}=$ "Dual" 4-Vector uses a single lower index:bar, covariant
	$\begin{array}{r} \mathrm{C}_{\mu}=\eta_{\mu \sigma} \mathrm{C}^{\sigma}=\left(\mathrm{c}_{\mu}\right)=\left(\mathrm{c}_{0}, \mathrm{c}_{\mathrm{i}}\right) \rightarrow\left(\mathrm{c}_{t}, \mathrm{c}_{x}, \mathrm{c}_{y}, \mathrm{c}_{z}\right) \\ =\left(\mathrm{c}^{0},-\mathrm{c}\right)=\left(\mathrm{c}^{0},-\mathrm{c}^{\prime}\right) \rightarrow\left(\mathrm{c}^{\mathrm{t}},-\mathrm{c}^{\mathrm{x}},-\mathrm{c}^{\mathrm{y}},-\mathrm{c}^{2}\right) \end{array}$

SR:Minkowski Metric

$\partial[R]=\partial^{\mu}\left[R^{v}\right]=\eta^{\mu v}=V^{\mu v}+H^{\mu v} \rightarrow$
$\operatorname{Diag}[+1,-1,-1,-1]=\operatorname{Diag}\left[1,-I_{(3)}\right]=\operatorname{Diag}\left[1,-\delta^{j}\right]$ \{in Cartesian form\} "Particle Physics" Convention $\left\{\eta_{\mu \mu}\right\}=1 /\left\{\eta^{\mu \mu}\right\}: \eta_{\mu}{ }^{v}=\delta_{\mu}^{v} \quad \operatorname{Tr}\left[\eta^{\mu \nu}\right]=4$

4-Gradient $\partial=\partial_{R}$ $\partial^{\mu}=\partial / \partial R_{\mu}=\left(\partial_{t} / c,-\nabla\right)$

4-Position \mathbf{R}

 $R^{\mu}=(c t, r) \in<$ Event $>$
SpaceTime

$\partial \cdot \mathbf{R}=\partial_{\mu} R^{\mu}=4$

SRQM Diagram: Rectangle 4-Vectors, 1 index = rank 1 4-CoVectors,
$4^{* 1}=4$ corners in diagram
$4^{1}=(1+3)=4$ components

SR 4-Tensor $T^{\mu \mathrm{V}}=\mathrm{T}^{\text {row:column }}$ a "matrix" or "dyadic": magnitude and 2 directions

T^{00}	$\mathrm{~T}^{01}$	$\mathrm{~T}^{02}$	$\mathrm{~T}^{03}$
$\mathrm{~T}^{10}$	$\mathrm{~T}^{11}$	$\mathrm{~T}^{12}$	$\mathrm{~T}^{13}$
$\mathrm{~T}^{20}$	$\mathrm{~T}^{21}$	$\mathrm{~T}^{22}$	$\mathrm{~T}^{23}$
$\mathrm{~T}^{30}$	$\mathrm{~T}^{31}$	$\mathrm{~T}^{32}$	$\mathrm{~T}^{33}$

Temporal region: blue Spatial region: red Mixed Time•Space region: purple $\left[T^{z t}, T^{z x}, T^{z y}, T^{z z}\right]$ The mnemonic being red and blue mixed \rightarrow make purple

SRQM Diagram: Octagon
4-Tensors, 2 index = rank 2 $4^{*} 2=8$ corners in diagram $4^{2}=(1+6+9)=16$ components
[$\mathrm{T}^{\mathrm{jo}}, \mathrm{T}^{\mathrm{jk}}$]

$$
\left[T^{\mathrm{tt}}, T^{\mathrm{tx}}, T^{\mathrm{ty}}, T^{\mathrm{tz}}\right]
$$

Dimension

$$
\left[T^{x t}, T^{x x}, T^{x y}, T^{x z}\right]
$$

$$
\left[T^{y t}, T^{y x}, T^{y y}, T^{y z}\right]
$$

SR 4-Tensor (2,0)-Tensor T ${ }^{\mu \nu}$ (1,1)-Tensor $T^{\mu}{ }_{v}$ or T_{μ} $(0,2)$-Tensor $T_{\mu v}$

Technically, all these objects are "SR 4-Tensors", but usually reserve the name "4-Tensor" for 4D objects with 2 (or more) indices, and use the "\#D (m, n)-Tensor" notation to specify all the objects more precisely

Galilean Transformations G $\nabla_{j}\left[r^{r}\right]=\partial r^{r^{\prime}} / \partial r^{r}=G_{j}^{i}=\Lambda_{j}^{r}$ Det $\left[\Lambda_{j}^{r}\right]= \pm 1$ [$G_{j}^{i}=\Lambda_{j}^{i}$] spatial components only, 3×3 matrix $\Lambda_{k}^{i}\left(\Lambda^{-1}\right)^{k}=\Lambda^{i k}\left(\Lambda^{-1}\right)_{k j}=E_{j}^{i}=\delta_{j}^{i}=\operatorname{Diag}[1,1,1] \quad \Lambda_{i j} \Lambda^{i j}=3=\Lambda_{i}^{j} \Lambda^{i}$ spatial-velocity-shifts, spatial-rotations, (P)arity, (T)ime-reversal

3D Classical:Euclidean Metric E
$\nabla[\mathrm{r}]=\nabla^{\mathrm{j}}\left[\mathrm{r}^{\mathrm{k}}\right]=\mathrm{E}^{\mathrm{jk}}=-\mathrm{H}^{\mathrm{jk}} \rightarrow$ Kronecker delta δ^{jk}
$=\operatorname{Diag}[+1,+1,+1]=\operatorname{Diag}\left[\mathrm{I}_{(3)}\right]=\left[\delta^{\mathrm{j}}\right]$
\{in Cartesian form\}
$\left\{\delta_{\mathrm{kk}}\right\}=1 /\left\{\delta^{\mathrm{kk}}\right\} \quad \operatorname{Tr}\left[\delta^{\mathrm{jk}}\right]=\delta_{1}{ }^{1}+\delta_{2}{ }^{2}+\delta_{3}{ }^{3}=1+1+1=3$

3D Space

Lorentz Transformations $\boldsymbol{\Lambda} \quad \partial_{v}\left[R^{\mu^{\prime}}\right]=\partial R^{\mu^{\prime}} / \partial R^{v}=\Lambda^{\mu^{\prime}}{ }_{v}$
[$\Lambda^{0^{\circ}}{ }_{0}, \Lambda^{0_{j}^{\prime}}$] temporal:spatial:mixed
[$\wedge^{\prime \prime} 0, \Lambda_{j}^{j}$] components, 4×4 matrix

Time-Space-Boosts, Spatial-Rotations, (CPT)

4D SR:Minkowski Metric \boldsymbol{n}
$\partial[R]=\partial^{\mu}\left[R^{v}\right]=\eta^{\mu \mathrm{V}}=\eta_{\mu \mathrm{v}}=\mathrm{V}^{\mu \mathrm{V}}+\mathrm{H}^{\mu \mathrm{V}} \rightarrow$

$$
\operatorname{Diag}[+1,-1,-1,-1]=\operatorname{Diag}\left[1,-I_{(3)}\right]=\operatorname{Diag}\left[1,-\delta^{\mathrm{j}}\right]
$$

\{in Cartesian form\} "Particle Physics" Convention

$$
\left\{\eta_{\mu \mu}\right\}=1 /\left\{\eta^{\mu \mu}\right\} \quad \eta_{\mu}{ }^{\nu}=\delta_{\mu}{ }^{\nu}=\operatorname{Diag}[1,1,1,1]
$$

others are zero

$$
\operatorname{Tr}\left[\eta^{\mu v}\right]=\eta_{v}{ }^{v}=\eta_{0}{ }^{0}+\eta_{1}{ }^{1}+\eta_{2}{ }^{2}+\eta_{3}{ }^{3}=1+1+1+1=4
$$

Lorentz 4D Invariant

$$
\mathbf{R} \cdot \mathbf{R}=\mathbf{R}^{\mu} \eta_{\mu \nu} R^{v}=(c t)^{2}-\mathbf{r} \cdot \mathbf{r}=(c \tau)^{2}
$$

(0)

3D \& 4D vector internal components labeled with superscript index, not an exponent Only scalars outside of a vector will have exponents, such as in the Lorentz Scalar Product $A \cdot A=\left(a_{0}\right)^{*}\left(a_{0}\right)=\left(a_{0}\right)^{2} \leftarrow$ exponent
$A=A^{\mu}=\left(a^{0}, a^{1}, a^{2}, a^{3}\right) \leftarrow$ indices

4D SpaceTime

$\partial \cdot R=\partial^{\dagger} \eta_{\nu v} R^{v}=\partial_{V} R^{v}=4$

$$
\begin{aligned}
& =(\% / \partial c t[c t]--\% / \partial x[x]--\partial / \partial y[y]--\partial / \partial z[z]) \\
& =(\partial / \partial c t[c t]+\partial / \partial x[x]+\partial / \partial y[y]+\partial / \partial z[z]) \\
& =(1+1+1+1)
\end{aligned}
$$

3-Tensor 3D (2,0)-Tensor T^{jk} (1,1)-Tensor T_{k} or $\mathrm{T}_{\mathrm{j}}{ }^{k}$

 $(0,2)$-Tensor T_{ik}

 Invariant

3D Classical:Euclidean Metric E

In Classical Mechanics (CM), an ex. of the magnitude of a 3-vector is the length $|\Delta r|$ of a 3-displacement $\Delta r=\left(r_{1}-r_{0}\right)$ Examine 3-position \mathbf{r}, which is a 3-displacement $\Delta \mathbf{r} \rightarrow \mathbf{r}$, with the base at the origin $\mathbf{r}_{0} \rightarrow \mathbf{0}=(0,0,0) \& \mathbf{r}_{1} \rightarrow \mathbf{r}=(x, y, z)$ The 3D Dot Product: $\left\{r^{\prime} \cdot r^{\prime}=r \cdot r=r^{j} \delta_{j k} r^{k}=r_{k} r^{k}=r^{j} r_{j}=\left(r^{1} r_{1}+r^{2} r_{2}+r^{3} r_{3}\right)=\left[(x)^{2}+(y)^{2}+(z)^{2}\right]=(r)^{2}\right\}$ is the Pythagorean Theorem It uses the Euclidean Metric E_{jk} which in Cartesian form is equivalent to the 3 D Kronecker delta $\delta_{j \mathrm{k}}=$ Diag $[1,1,1]=$ Identity $\mathrm{I}_{(3}$ The 3D magnitude ${ }^{2}$ is $r \cdot r$. The \mid magnitude \mid is $\sqrt{ }[r \cdot r]=\sqrt{ }\left[r^{2}\right]=|r|=r$. 3D magnitudes are always positive(+) spatial. 3D invariants are not invariant in 4D, ex. 3D ||Length|| but 4D | \rightarrow Length Contraction $\leftarrow|\& \leftarrow|$ Time Dilation|
$=\nabla^{\mathrm{j}}\left[\mathrm{r}^{\mathrm{k}}\right]=\mathrm{E}^{\mathrm{jk}}=-\mathrm{H}^{\mathrm{jk}} \rightarrow$ Kronecker delta δ^{jk}
$=\operatorname{Diag}[+1,+1,+1]=\operatorname{Diag}\left[\mathrm{I}_{(3)}\right]=\left[\delta^{\mathrm{j}}\right]$
\{in Cartesian form\}
$\left.\delta_{\mathrm{kk}}\right\}=1 /\left\{\delta^{\text {in }}\right\} \quad \operatorname{Tr}\left[\delta^{\mathrm{jk}}\right]=\delta_{1}{ }^{1}+\delta_{2}{ }^{2}+\delta_{3}{ }^{3}=1+1+1=3$ The magnitude of an SR 4-Vector is very similar to the magnitude of a 3 -vector, but there are some interesting differences.
One uses the Lorentz Scalar Product, a 4D Dot Product, which includes time \& space components, and is based on the One uses the Lorentz Scalar Product, a 4D Dot Product, which includes time \& space components, and is based on the SR:Minkowski Metric Tensor. "Particle Physics" sign-convention \{temporal, $\left.0^{\text {th }},+\right\} \rightarrow(+,-,-,-)$ of the Minkowski Metric gives $\eta_{\mathrm{pv}} \rightarrow$ Diag[$\left.+1,-1,-1,-1\right]_{\{\text {Cartesian fom\} }}$, with the other entries zero. Note the 3D \{spatial, $\left.1^{\text {sit }} 2^{\text {nd }} 3^{\text {rd }},-\right\}$ part is 4D negative($(-)$ Only the mixed (1,1)-Tensor form of Minkowski Metric $\eta_{\mu}{ }^{v}$ is fully equivalent to the 4D Kronecker Delta $\left.\delta_{\mu}{ }^{v}=\operatorname{Diag}[1,1,1,1]=\mathbf{I}_{(4)}\right)$. $A^{\prime} \cdot A^{\prime}=\mathbf{A} \cdot \mathbf{A}=A^{\mu} \eta_{\operatorname{Lv}} A^{v}=\left(a^{0} a^{0}-a \cdot a\right)=\left(a^{0}{ }_{0}\right)^{2}=\left(a^{0} a^{0}-a^{1} a^{1}-a^{2} a^{2}-a^{3} a^{3}\right)=$ the rest-frame $\left(a^{0}{ }_{0}\right)^{2}$

$$
\begin{aligned}
& =A^{u} A_{\mu}=\sum_{u=0.3}\left[a^{u} a_{u}\right]=\left(a^{0} a_{0}+a^{1} a_{1}+a^{2} a_{2}+a^{3} a_{3}\right) \\
& =A_{v} A^{v}=\sum_{v=0.3}\left[a_{v} a^{v}\right]=\left(a_{0} a^{0}+a_{1} a^{1}+a_{2} a^{2}+a_{3} a^{3}\right)
\end{aligned}
$$

Lorentz 4D Invariant
paired-indices summed over. $\mathbf{R} \cdot \mathbf{R}=R^{\mu} \eta_{\mu v} R^{v}=(c t)^{2}-\mathbf{r} \cdot \mathbf{r}=(c \tau)^{2}$

4-Vector 4-Position $\mathbf{R} \quad$ Interval $c \tau=$ ct $_{0}=|\mathbf{R}|$

$$
\begin{gathered}
=R^{\mu}=\left(r^{\mu}\right)=\left(r^{0}, r^{j}\right)=(c t, r) \\
=\left(r^{0}, r^{1}, r^{2}, r^{3}\right) \rightarrow(c t, x, y, z) \\
\in<\text { Event }>\ni<\text { time } \&<\text { location> }
\end{gathered}
$$

Time (t) \& length $|\mathrm{r}|$ are NOT 4D SR invariants, they are 4-Vector components ProperTime (τ), Proper Length (L_{o}) \& Interval Mag.
using Einstein Summation Convention which has upper-1
$\mathbf{R} \cdot \mathbf{R}=\mathbf{R} \cdot \mathbf{R}=(c t)^{2}-\mathbf{r} \cdot \mathbf{r}=(\mathrm{ct})^{2}-\left(\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}\right)=(\mathrm{ct})^{2}=($
for 4-Position $\mathbf{R}=(\mathrm{ct}, \mathrm{r}) \& L T^{\prime} d$ 4-Position $\left.\mathbf{R}^{\prime}=(\mathrm{ct})^{\prime}, \mathbf{r}^{\prime}\right)$ 4D magnitude ${ }^{2}$ can be: positive(+), zero:null(0), negative(-) temporal, photonic , spatial

4D SR:Minkowski Metric n

$\partial[R]=\partial^{H}\left[R^{v}\right]=\eta^{\mu \mathrm{V}}=\eta_{\mathrm{uv}}=\mathrm{V}^{\mathrm{Hv}}+\mathrm{H}^{\mathrm{Hv}} \rightarrow$
$\operatorname{Diag}[+1,-1,-1,-1]=\operatorname{Diag}\left[1,-I_{(3)}\right]=\operatorname{Diag}\left[1,-\delta^{j k}\right]$
\{in Cartesian form) Particle Physiss Convention

$$
\left\{n_{y p}\right\}=1 /\left\{\eta^{\mu \mu}\right\} \quad \eta_{\mu}^{\nu}=\delta_{\mu}^{\nu}=\operatorname{Diag}[1,1,1,1]
$$

$\operatorname{Tr}\left[\eta^{\nu v v}\right]=\eta_{v}{ }^{v}=\eta_{0}{ }^{0}+\eta_{1}{ }^{1}+\eta_{2}{ }^{2}+\eta_{3}{ }^{3}=1+1+1+1=4$
re 4D SR Lorentz Scalar Invariants.

The 4-Vector version has the Pythagorean elements in the spatial components, the temporal component is of opposite sign. This gives a "causality condition", with SpaceTime intervals (in the [+,,-,,-] SR:Minkowski Metric) that can be:

4D SpaceTime
$\partial \cdot R=\partial^{\mu} \eta_{\mu v} R^{v}=\partial_{v} R^{v}=4$

SR 4-Tensor
(2,0)-Tensor T ${ }^{\text {pv }}$ (1,1)-Tensor $T^{\mu}{ }_{v}$ or T_{μ}
$(0,2)$-Tensor $T_{\mu v}$

(1,0)-Tensor $\mathrm{V}^{\mu}=\mathbf{V}=\left(\mathrm{v}^{0}, \mathrm{v}\right)$ SR 4-CoVector:OneForm

 $(0,1)$-Tensor $\mathrm{V}_{\mu}=\left(\mathrm{v}_{0},-\mathrm{v}\right)$

3-Tensor 3D
(2,0)-Tensor T^{jk}
1,1)-Tensor T_{k} or $\mathrm{T}_{\mathrm{j}}{ }^{\mathrm{k}}$
$(0,2)$-Tensor T_{jk}

3-vector) not Lorentz not Lorentz Invariant

Trace $\left[T^{\mu v}\right]=\eta_{\mu v} T^{\mu v}=T_{\mu}=T$ $\mathbf{V} \cdot \mathbf{V}=V^{\mu} \eta_{\mu v} V^{v}=\left[\left(v^{0}\right)^{2}-\mathbf{v} \cdot \mathbf{v}\right]=\left(v^{0}{ }_{0}\right)^{2}$ $=$ Lorentz Scalar Invariant
$n_{u} n^{n} n^{n}$ SRQM Study: SR Minkowski SpaceTime SR:Minkowski Metric [n l Operations Invariant Lorentz Scalar Product Tensor Index \{Raising, Lowering, Gymnastics\}

Index Raising \& Lowering with SR:Minkowski Metric Tensor $\eta^{\mu v}$ or $\eta_{\mu v}$ (both $\rightarrow \operatorname{Diag}\left[1,-I_{(3)}\right]$) This Metric is also used with other SR 4-Tensors to create raised, lowered, and mixed tens
ex. $T_{\mu v}=\eta_{\mu \alpha} T^{\alpha}{ }_{v}=\eta_{\mu a} \eta_{v \beta} T^{\alpha \beta}$
$\eta_{\mu v} \eta^{\mu v}=\eta_{\mu}^{\mu}=\delta^{\mu}{ }_{\mu}=4$
$=\operatorname{Trace}\left[\eta^{\mu \mathrm{N}}\right]=\operatorname{Tr}\left[\eta^{\mathrm{Lv}}\right]$

Both GR and SR use a metric tensor (g^{jv}) to describe measurements in 4D SpaceTime (Time-Space).
SR uses the "flat" Minkowski Metric $\mathrm{g}^{\mu v} \rightarrow \eta^{\mu v} \rightarrow \eta_{\mu v} \rightarrow \operatorname{Diag}\left[1,-I_{(3)}\right]=\operatorname{Diag}\left[1,-\delta^{j k}\right]=\operatorname{Diag}[1,-1,-1,-1]$ (cartesian fomp, which is the \{curvature~0 limit = low-mass limit\} of the GR metric g ${ }^{\mathrm{Lv}}$. SR is valid everywhere except extreme gravity, ex. near BH's.

4-Vectors are tensorial entities of Minkowski SpaceTime which maintain covariance for inertial observers, meaning that they may have different relativistic components for different observers, but describe the same physical object (like viewing a sculpture from different angles - snapshot pictures "look" different, but it's actually the same object) There are also \{4-CoVectors = One-Forms = 4D (0,1)-Tensors $\}$ which are dual to the $\{4$-Vectors $=4 \mathrm{D}(1,0)$-Tensors $\}$.

4-Vectors $=4 \mathrm{D}(1,0)$-Tensors
$\mathbf{A}=\overline{\mathbf{A}}=A^{\mu}=\eta^{\mu v} A_{v}=\overline{\left(a^{\mu}\right)=\left(a^{0}, a^{i}\right)=\left(a^{0}, a\right)=\left(a^{0}, a^{1}, a^{2}, a^{3}\right) \rightarrow\left(a^{t}, a^{x}, a^{y}, a^{z}\right) .}$
$\mathbf{B}=\overline{\mathbf{B}}=B^{\mu}=\eta^{\mu v} B_{v}=\left(b^{\mu}\right)=\left(b^{0}, b^{i}\right)=\left(b^{0}, b\right)=\left(b^{0}, b^{1}, b^{2}, b^{3}\right) \rightarrow\left(b^{t}, b^{x}, b^{y}, b^{2}\right)$
4-CoVectors $=4 \mathrm{D}(0,1)$-Tensors $=4 \mathrm{D}$ DualVectors $=4 \mathrm{D}$ OneForms $\boldsymbol{A}=A_{\mu}=\eta_{\mu v} A^{v}=\left(a_{\mu}\right)=\left(a_{0}, a_{i}\right)=\left(a_{0},-a\right)=\left(a_{0}, a_{1}, a_{2}, a_{3}\right) \rightarrow\left(a_{t}, a_{x}, a_{y}, a_{z}\right)$ $=\left(a_{0}, a_{i}\right)=\left(a^{0},-a\right)=\left(a^{0},-a^{1},-a^{2},-a^{3}\right) \rightarrow\left(a^{t},-a^{x},-a^{y},-a^{2}\right)$ $=\left(\mathrm{b}_{0}, \mathrm{~b}_{\mathrm{i}}\right)=\left(\mathrm{b}_{0},-\mathrm{b}\right)=\left(\mathrm{b}_{0}, \mathrm{~b}_{1}, \mathrm{~b}_{2}, \mathrm{~b}_{3}\right) \rightarrow\left(\mathrm{b}_{\mathrm{t}}, \mathrm{b}_{\mathrm{x}}, \mathrm{b}_{\mathrm{y}}, \mathrm{b}_{\mathrm{z}}\right)$ $=\left(b_{0}, b_{i}\right)=\left(b^{0},-b\right)=\left(b^{0},-b^{1},-b^{2},-b^{3}\right) \rightarrow\left(b^{\mathrm{t}},-b^{\mathrm{x}},-b^{\mathrm{y}},-\mathrm{b}^{\mathrm{z}}\right)$

$A^{\mu}=\eta^{\mu v} A_{v}=\eta^{\mu v} \eta_{a v} A^{\alpha}=\eta^{\mu}{ }_{a} A^{\alpha}=\delta^{\mu}{ }_{a} A^{\alpha}=A^{\mu}$
Index Gymnastics = Only Unique Upper-Lower Pairs Allowed
4-Vector
$A=A^{v}=\left(a^{0}, a\right)$

4-Vector $B=B^{\vee}=\left(b^{0}, b\right)$

Invariant Lorentz
Scalar Product (0,0)-Tensor
$A \cdot B=A_{v} B^{\vee}=A^{\mu} \eta_{\mu v} B^{\vee}=A^{\mu} B_{\mu}=A^{\prime} \cdot B^{\prime}$
$=\underline{A} \bar{B}=\bar{A} \cdot \bar{B}=\overline{\mathbf{A}} \underline{B}$
$=\left(a^{0} b^{0}-\mathbf{a} \cdot \mathbf{b}\right)=\left(a^{a^{0}} b^{0^{\prime}}-\mathbf{a}^{\prime} \cdot \mathbf{b}^{\prime}\right)$
$=\left(a_{0}^{0}{ }_{0}{ }^{0}{ }_{0}\right)$

4-Vector
4-Vector
$A^{\prime}=A^{\mu^{\prime}}=\Lambda^{\mu}{ }^{\prime} A^{v}=\left(a^{0^{\prime}}, a^{\prime}\right) \quad B^{\prime}=B^{\mu^{\prime}}=\Lambda^{\mu^{\prime}}{ }^{\prime} B^{v}=\left(b^{0}, b^{\prime}\right)$
Lorentz Transform ($\Lambda^{\mu}{ }_{v}$)

$\operatorname{Det}\left[\wedge \mu^{\prime}\right]= \pm 1$

SR 4-Tensor
(2,0)-Tensor $\mathrm{T}^{\mathrm{\mu v}}$ (1,1)-Tensor $T^{\mu}{ }_{v}$ or T_{ν}
(0,2)-Tensor T $(0,1)$-Tensor $V_{\mu}=\left(v_{0},-v\right)$

Einstein \& Lorentz "saw" the physics of SR,
Minkowski \& Poincaré "saw" the mathematics of SR.
We are indebted to all of them for the simplicity, beauty,
and power of how SR and 4-vectors work..

Trace $\left[T^{\mu v}\right]=\eta_{\mu v} T^{\mu v}=T_{\mu}^{\mu}=T$

Special Relativity \rightarrow Quantum Mechanics SRQM (Physics) Diagramming Method

The SRQM (Physics) Diagramming Method shows the properties \& relationships of various physical objects/tensors in a graphical way. This "flowchart" method aids understanding.

Representation: 4-Scalars byellipses, 4-Vectors by rectangles, 4-Tensors by octagons. Physical/mathematical equations and descriptions inside each shape/object. Sometimes there will be additional clarifying descriptions around a shape/object.

Relationships: Lorentz Scalar Products or tensor compositions of different 4-Vectors are on simple lines(-) between related 4-Vectors. Lorentz Scalar Products of a single 4-Vector, or Invariants of Tensors, are next to that object and often highlighted in a different color.

Flow: Objects that are some function of a Lorentz 4-Scalar with another 4-Vector or 4-Tensor are on lines with arrows (\rightarrow) indicating the direction of flow. (ex. multiplication by SR 4-Scalar, or 4-Scalar function of SR 4-Vector indicated by [..])

Properties: Some objects will also have a symbol representing its properties nearby, and sometimes there will be color highlighting within the object to emphasize temporal:spatial properties. I use blue=Temporal \otimes red=Spatial \rightarrow purple=mixed Time-Space.

Alternate ways of writing 4 -Vector expressions in physics:
(A•B) is a 4-Vector style, which uses vector-notation (ex. inner product "dot= ." or exterior product "wedge=^"), and is typically more compact, always using bold UPPERCASE to represent the 4-Vector, ex. $(\mathbf{A} \cdot \mathbf{B})=\left(A^{\mu} \eta_{\mathrm{Nv}} B^{v}\right)$, and bold lowercase to represent 3 -vectors, ex. $(\mathbf{a} \cdot \mathbf{b})=\left(\mathrm{a}^{\mathrm{j}} \delta_{\mathrm{jk}} \mathrm{b}^{\mathrm{k}}\right)$. Most 3 -vector rules have analogues in 4-Vector mathematics.

4-Tensor
4D (2,0)-Tensor

$\left(A^{\mu} \eta_{\mu v} B^{v}\right)$ is a Ricci Calculus style, which uses tensor-index-notation and is useful for more complicated expressions, especially to clarify those expressions involving tensors with more than one index, such as the Faraday EM Tensor $F^{\mathrm{pv}}=\left(\partial^{\mu} \mathrm{A}^{v}-\partial^{\mathrm{V}} \mathrm{A}^{\mu}\right)=\left(\partial^{\wedge} \mathrm{A}\right)$

SR 4-Tensor
(2,0)-Tensor T ${ }^{\mu v}$ (1,1)-Tensor $T^{\mu}{ }_{v}$ or T_{ν}
$(0,2)$-Tensor $T_{\mu v}$

SR 4-Scalar
$(0,0)$-Tensor S or S_{0}
Lorentz Scalar

Relativistic Gamma $\gamma=1 / \sqrt{ }[1-\beta \cdot \beta]: \beta=\mathbf{u} / \mathbf{c}$

Special Relativity \rightarrow Quantum Mechanics SRQM Tensor Invariants

 Inherent 4D SpaceTime PropertiesOne of the extremely important properties of Tensor Mathematics is the fact that there are numerous ways to generate Tensor Invariants. These Invariants lead to Physical Properties that are fundamenta in our Universe, and are totally independent of any coordinate-systems used to measure them. Thus, they represent symmetry properties that are inherent in the fabric of 4D SpaceTime (Time-Space). See the Cayley-Hamilton Theorem, esp. for the Anti-Symmetric Tensor Products.

Trace Tensor Invariant: $\operatorname{Tr}\left[T^{\mu v}\right]=\eta_{\mu v} T^{\mu v}=T_{\mu}^{\mu}=T_{v}^{v}=T_{T r}=\Sigma_{n}$ [EigenValues $\left.\lambda_{n}\right]$ for $T^{\mu}{ }_{v}$
Determinant Tensor Invariant: Det[$\left.T^{\mu v}\right]=\Pi_{n}$ [EigenValues $\left.\lambda_{n}\right]$ for $T^{\mu}{ }_{v} \rightarrow\left(\text { Pfaffian }\left[T^{\mu v}\right]\right)^{2}$ \qquad
Inner Product Tensor Invariant: IP[T $\left.{ }^{\mu}\right]=\operatorname{LSP}\left[T^{\mu}, T^{v}\right]=T^{\mu} \eta_{\mu v} T^{v}=T^{\mu} T_{\mu}=T \cdot T: I P\left[T^{\mu v}\right]=T^{\mu v} T_{\mu v}=T_{\mu P}$
4-Divergence Tensor Invariant: 4-Div[T $\left.{ }^{\mu}\right]=\partial_{\mu} T^{\mu}=\partial T^{\mu} / \partial X^{\mu}=\partial \cdot T: 4-\operatorname{Div}\left[T^{\mu v}\right]=\partial_{\mu} T^{\mu v}=\partial T^{\mu v} / \partial X^{\mu}=S^{v}$ Lorentz Scalar Product Tensor Invariant: LSP[T $\left.{ }^{\mu}, S^{v}\right]=T^{\mu} \eta_{\mu v} S^{v}=T^{\mu} S_{\mu}=T_{v} S^{v}=T \cdot S=t^{0} S^{0}-t^{\prime} \cdot \mathbf{s}=t^{0}{ }_{0} S^{0}{ }_{0}$

4D (1,0)-Tensor
 4D (2,0)-Tensor

4-Displacement $\Delta \mathbf{R}=(\mathrm{c} \Delta \mathrm{t}, \Delta \mathrm{r})$
$d R=(c d t . d r)$
4-Position R^{μ}
4-Scalar
4D (0,0)-Tensor

4	$\partial[R]=\partial[R]=\eta^{\mu \nu}$ [1,-1,-1,-1]=Diag[1, Minkowski Metric			
	$\begin{aligned} & \text { 4-Tensor } \\ & \text { 4D (2,0)-Tensor } \end{aligned}$	4-Displacement		
$\begin{gathered} \text { 4-Gradient } \partial^{\mu} \\ \partial=\left(\partial_{\mathrm{t}} / \mathrm{c},-\nabla\right) \end{gathered}$	4-Vector4D (1.0)-Te	$\begin{aligned} & \Delta \mathbf{R}=(\mathrm{c} \Delta \mathrm{t}, \Delta \mathrm{r}) \\ & \mathrm{dR}=(\mathrm{cdt}) \mathrm{dr}) \end{aligned}$		
$=\partial / \partial \mathrm{R}_{\mu}$		$\begin{gathered} \text { 4-Position R } R^{\mu} \\ \mathrm{Z}=(\mathrm{ctt} . \mathrm{r}) \in<\text { Event } \end{gathered}$		
	4-Scalar			

The Ratio of 4-Vector Magnitudes (Ratio of Rest Value 4-Scalars): T•V / S•V = ($t_{0}^{0} / \mathrm{s}_{\mathrm{o}}^{0}$)

Tensor EigenValues $\lambda_{n}=\left\{\lambda_{0}, \lambda_{1}, \lambda_{2}, \lambda_{3}\right\}$: indexed as $0 . .3$, counted as 1.4
The 4D Anti-Symmetric Tensor Products: index bracket [] notation indicates anti-symmetric indices: $\mathrm{T}^{\mathrm{a}}{ }_{\mathrm{a}}=$ Trace $=\Sigma_{\mathrm{n}}\left[\right.$ EigenValues $\left.\lambda_{\mathrm{n}}\right]$ for (1,1)-Tensors $\mathrm{Ta}_{[\mathrm{a}}{ }^{\mathrm{T}}{ }^{\beta}{ }_{\beta]}=$ AntiSymm Bi-Product \rightarrow Inner Product $\mathrm{T}_{[G \mathrm{a}}{ }_{[G]} \mathrm{P}_{\beta} \mathrm{NV}_{V]}=$ AntiSymm Tri-Product \rightarrow ? Name?

These invariants are not all always independent, some invariants are functions of other invariants.

$\Lambda_{\mu v} \wedge^{\mu \nu}=4=\Lambda_{\mu}{ }^{\nu} \Lambda_{\nu}^{\mu}$ Determinant Tensor Invariant \quad Inner Product Affine Transform (Anti-)Unitary from Tensor Invaria SpaceTime Det[.] of Lorentz Dimemsion from Det[..] of Lorentz IP[..] of Lorentz

4-Momentum P^{μ}

$\partial \cdot R=\partial_{\mu} R^{\mu}=4$ Dimension

Physical 4-Tensors: Objects of Reality which have Invariant 4D SpaceTime (Time-Space) properties

SR 4-Vector	4-Position
4D (1,0)-Tensors	$\mathbf{R}=\mathrm{R}^{\mu}=(\mathrm{ct}, \mathrm{r}) \in<$ Event>
$\mathbf{V}=\overline{\mathbf{V}}=\mathrm{V}^{\mu}=\left(\mathrm{v}^{\mu}\right)$	$\rightarrow(\mathrm{ct}, \mathrm{x}, \mathrm{y}, \mathrm{z})$

$$
\begin{gathered}
\text { 4-Velocity } \\
\mathbf{U}=\mathrm{U}^{=}=\gamma(\mathrm{c}, \mathrm{u}) \\
=\mathrm{dR} / \mathrm{d} \tau
\end{gathered}
$$

4-Momentum

$P=P^{u}=(m \mathrm{mc}, \mathrm{mu})=m_{0} \mathbf{U}$
$=(\mathrm{E} / \mathrm{c}, \mathrm{p})=\left(\mathrm{E}_{0} / \mathrm{c}^{2}\right) \mathbf{U}$

$=(E / c, p)=\left(E_{o} / c^{2}\right) U$
$=\left(v^{0}, v\right)=\left(v^{0}, v^{\prime}\right) \rightarrow\left(v^{t}, v^{x}, v^{v}, v^{z}\right)$

SR Mixed 4-Tensor 4D (1,1)-Tensors $T^{\mu}{ }_{v}=\eta_{\text {pv }} T^{\mu \rho}$

$=$	Lorentz
$\left[T^{0}, T^{0}{ }_{k}\right]$	$\partial_{v}\left[R^{\mu}\right]=\Lambda^{\mu_{v}}$
$\left[T_{0}{ }^{\circ}, T_{k}{ }^{\mathrm{j}}\right]$	Transform
	Tensors

$$
\begin{aligned}
& \text { SR 4-CoVector = "Dual" 4-Vector } \\
& \text { 4D (0,1)-Tensors = 4D One-Forms } \\
& \begin{array}{r}
\text { covariant } \\
\underline{C}=C_{\mu}=\eta_{\mu o} C^{\sigma}=\left(c_{\mu}\right)=\left(c_{0}, c_{i}\right) \rightarrow\left(c_{t}, c_{x}, c_{y}, c_{z}\right) \\
=\left(c^{0},-c\right)=\left(c^{0},-c^{\prime}\right) \rightarrow\left(c^{t},-c^{x},-c^{y},-c^{2}\right)
\end{array}
\end{aligned}
$$

Projection (Mixed) Tensors $\mathrm{P}_{v}{ }_{v}$
Temporal Projection $\mathrm{P}_{v} \rightarrow \mathrm{~V}_{v}{ }_{v}$

SR Lowered 4-Tensor

4D $(0,2)$-Tensors	Lowered Minkowski
$T_{\mu v}=\eta_{\mu \rho} \eta_{v \sigma} T^{\rho \sigma}$	$\partial_{\mu}\left[R_{v}\right]=\eta_{\mu v}=(\cdot)=$ Metric
$=$	
$\left[T_{00}, T_{0 k}\right]$	Projection Tensors $P_{\mu v}$
$\left[T_{j 0}, T_{j k}\right]$	Temporal Proj. $\mathrm{P}_{\mu v} \rightarrow \mathrm{~V}_{\mu v}$
	Spatial Proj. $\mathrm{P}_{\mu v} \rightarrow H_{\mu v}$

(>2) index-count Tensors:
SR \& GR 4-Tensors T.....

Riemann Curvature Tensor Ricci Tensor R ${ }_{\mu v}$ SchoutenTensor P $P_{\mu v}$ BachTensor B ${ }_{\mu v}$

Weyl (Conformal) Curvature Tensor $\mathrm{C}^{\rho}{ }_{\sigma \mu v}=$ Traceless part of Riemann $\left[\mathrm{R}^{\rho}{ }_{\mathrm{ouv}}\right]$

SR 4-Tensor
(2,0)-Tensor T ${ }^{\mu v}$ (1,1)-Tensor $T^{\mu}{ }_{v}$ or $T_{\nu}{ }^{v}$ $(0,2)$-Tensor $T_{\mu v}$

SR 4-Vector

(1,0)-Tensor $\mathrm{V}^{\mu}=\mathbf{V}=\left(\mathrm{v}^{0}, \mathbf{v}\right)$ SR 4-CoVector:OneForm $(0,1)$-Tensor $\mathrm{V}_{\mu}=\left(\mathrm{v}_{0},-\mathrm{v}\right)$

4-Vector = 4D (1,0)-Tensor

$\frac{4-\text { Position } R=R^{\mu}=(c t, r)=X}{}=X^{\mu}$ falt notation\}
4-Differential $\mathrm{dR}=\mathrm{dR}{ }^{\mu}=$ (cdt, dr)
4-Displacement $\Delta R=\Delta R^{\mu}=(c \Delta t, \Delta r)$
4-Velocity $\mathbf{U}=\mathrm{U}^{\mu}=\gamma(\mathrm{c}, \mathrm{u})=(\gamma \mathrm{c}, \gamma \mathrm{u})$
4-UnitTemporal $\mathbf{T}=\mathbf{T}^{\mu}=\gamma(1, \beta)=(\gamma, \gamma \beta)=\mathbf{U} / \mathbf{c}$
4-UnitSpatial $\overline{\mathbf{S}}=S^{\mu}=\gamma_{\beta \hat{\beta}}(\beta \cdot \hat{n}, \hat{n})=\left(\gamma_{\beta i} \beta \cdot \hat{n}, \gamma_{\beta \hat{i}} \hat{n}\right):(\overline{\mathbf{T}} \perp \overline{\mathbf{S}})$ 4-Null $\overline{\mathbf{N}}=\mathrm{N}^{\mu}=\mathrm{a}(1, \hat{n})=(\mathrm{a}, \mathrm{an})=(|\mathrm{a}|, \mathrm{a}):(\overline{\mathbf{N}} \perp \overline{\mathbf{N}})$ 4-Momentum $\mathbf{P}=\mathrm{P}^{\mu}=(\mathrm{E} / \mathrm{c}=\mathrm{mc}, \mathrm{p}=\mathrm{mu})$ 4-TotalMomentum $\mathrm{P}_{\mathrm{T}}=\mathrm{P}_{\mathrm{T}^{\mu}}=\left(\mathrm{E}_{\mathrm{T}} / \mathrm{C}=\mathrm{H} / \mathrm{c}, \mathrm{P}_{\mathrm{T}}\right)=\Sigma_{\mathrm{n}}\left[\mathrm{P}_{\mathrm{n}}\right]$ 4-MassFlux=4-MomentumDensity $\mathbf{G}=\left(\rho_{m} \mathrm{c}, \mathrm{g}\right)=\mathbf{Q} / \mathrm{c}^{2}=\mathrm{n}_{0} \mathbf{P}$ 4-HeatEnergyFlux $\mathbf{Q}=\left(\rho_{E} C=q \cdot \beta, q\right)=c^{2} \mathbf{G}$ 4-Acceleration $\mathbf{A}=\mathbf{A}^{\mu}=\gamma\left(\gamma^{\prime}, \gamma^{\prime} \mathbf{u}+\gamma \mathrm{a}\right):\left\{\gamma^{\prime}=\mathrm{d} \gamma / \mathrm{dt}\right\}$ 4-Force $\mathbf{F}=\mathrm{F}^{\mu}=\gamma(\dot{E} / \mathrm{c}, \mathrm{f}=\dot{\mathrm{p}})=(\gamma \dot{\mathrm{E}} / \mathrm{c}, \gamma \mathbf{f}=\gamma \dot{\mathrm{p}})$ 4-WaveVector $K=K^{\mu}=\left(\omega / c=1 / c \mp, k=\omega \hat{n} / v_{\text {phase }}\right)$ 4-TotalWaveVector $\mathbf{K}_{\mathrm{T}}=\mathrm{K}_{\mathrm{T}}{ }^{\mu}=\left(\omega_{T} / \mathrm{c}, \mathrm{k}_{\mathrm{T}}\right)=\Sigma_{\mathrm{n}}\left[\mathbf{K}_{\mathrm{n}}\right]$
4-(Particle:Dust)NumberFlux $\mathbf{N}=N^{\mu}=n(\mathrm{c}, \mathrm{u})=(\mathrm{nc}, \mathrm{n}=\mathrm{nu})$ 4-ChargeFlux=4-CurrentDensity $\mathbf{J}=\mathrm{J}^{\mu}=\mathrm{qN}=(\rho \mathrm{c}, \mathrm{j}=\rho \mathrm{u})$ 4-VectorPotential $\mathbf{A}=\mathrm{A}^{\mu}=(\varphi / \mathrm{c}, \mathrm{a}) \rightarrow \mathbf{A}_{\mathrm{Em}}$ 4-PotentialMomentum $\mathbf{Q}=\mathrm{Q}^{\mu}=\mathrm{q} \mathbf{A}=(\mathrm{V} / \mathrm{c}=\mathrm{q} \varphi / \mathrm{c}, \mathrm{qa})$ 4-Gradient $\partial_{R}=\partial_{x}=\partial=\partial^{\mu}=\partial / \partial R_{\mu}=\partial / \partial X_{\mu}=\left(\partial_{t} / c,-\nabla\right)$ 4-Spin S = $\mathrm{S}^{\mu}=\left(\mathrm{s}^{0}=\mathrm{s} \cdot \beta=\mathrm{s} \cdot \mathrm{u} / \mathrm{c}, \mathrm{s}\right)$
4-ThermalVector $\boldsymbol{\theta}=\theta^{\mu}=\left(\theta^{0}, \theta\right)=\left(\mathrm{c} / \mathrm{k}_{\mathrm{B}} T, \mathrm{u} / \mathrm{k}_{\mathrm{B}} \mathrm{T}\right)$
4-PureEntropyFlux $\mathrm{S}_{\text {ent }}=\left(\mathrm{S}_{\text {ent_pure }} \mathrm{C}, \mathrm{S}_{\text {ent_pure }}=\mathrm{S}_{\text {ent_pure }} \mathrm{U}\right)$
4-Jerk $\mathbf{J}=\mathrm{J}^{\mu}=\gamma\left(\mathrm{C}\left[\gamma \gamma^{\prime}\right]^{\prime},\left[\gamma \gamma^{\prime} \mathbf{u}+\gamma^{2} \mathbf{a}\right]^{\prime}\right)$
Notational Clash Warnings: 4-Vectors
4-Acceleration A vs. 4-VectorPotential A
4-HeatEnergyFlux \mathbf{Q} vs. 4-PotentialMomentum \mathbf{Q} 4-UnitSpatial \mathbf{S} vs. 4-Spin S
4-SurfaceNormal \mathbf{N} vs 4 -NumberFlux \mathbf{N} 4-Jerk J vs 4-CurrentDensity J

SI Dimensional Units [Temporal : Spatial] components
$\left\{\right.$ Relativistic Gamma $\left.\gamma=1 / \sqrt{ }\left[1-(u / c)^{2}\right]=1 / \sqrt{ }\left[1-\beta^{2}\right]\right\}$
[m] [Time (t): Space/length/extent (r)]
[m]

[m/s]

[dimensionless = 1]
[dimensionless = 1]
[a\} SI Units]
$[\mathrm{N} \cdot \mathrm{s}=\mathrm{kg} \cdot \mathrm{m} / \mathrm{s}$]
$[\mathrm{N} \cdot \mathrm{s}=\mathrm{kg} \cdot \mathrm{m} / \mathrm{s}]$
$\left[\mathrm{N} \cdot \mathrm{s} / \mathrm{m}^{3}=\mathrm{kg} / \mathrm{m}^{2} \cdot \mathrm{~s}\right]$
$\left[\mathrm{W} / \mathrm{m}^{2}=\mathrm{J} / \mathrm{m}^{2} \cdot \mathrm{~s}=\mathrm{kg} / \mathrm{s}^{3}\right]$
[$\mathrm{m} / \mathrm{s}^{2}$]
$\left.\mathrm{N}=\mathrm{kg} \cdot \mathrm{m} / \mathrm{s}^{2}\right]$
[rad/m]
[rad/m]
\# $\left./ \mathrm{m}^{2} \cdot \mathrm{~s}=\# \cdot \mathrm{~m} / \mathrm{s} \cdot 1 / \mathrm{m}^{3}\right]$
$\left[\mathrm{C} / \mathrm{m}^{2} \cdot \mathrm{~s}=\mathrm{C} \cdot \mathrm{m} / \mathrm{s} \cdot 1 / \mathrm{m}^{3}\right]$
$[\mathrm{T} \cdot \mathrm{m}=\mathrm{kg} \cdot \mathrm{m} / \mathrm{C} \cdot \mathrm{s}]$
$[\mathrm{N} \cdot \mathrm{s}=\mathrm{kg} \cdot \mathrm{m} / \mathrm{s}]$
[1/m]
$\left[\mathrm{J} \cdot \mathrm{s}=\mathrm{N} \cdot \mathrm{m} \cdot \mathrm{s}=\mathrm{kg} \cdot \mathrm{m}^{2} / \mathrm{s}\right]$
$[1 / \mathrm{N} \cdot \mathrm{s}=\mathrm{s} / \mathrm{kg} \cdot \mathrm{m}]$
$\left[\mathrm{J} /{ }^{\circ} \mathrm{K} \cdot \mathrm{m}^{2} \cdot \mathrm{~s}=\mathrm{kg} /{ }^{\circ} \mathrm{K} \cdot \mathrm{s}^{3}\right]$
$\left[\mathrm{m} / \mathrm{s}^{3}\right]$
$[\mathrm{m}] \quad[$ TimeDifferential (dt):SpaceDifferential (dr)] **Infinitesimal**
[TemporalDisplacement (Δt) : SpatialDisplacement (Δr)] **Finite**
[Temporal "velocity" factor (γ) : Spatial "velocity" factor ($\gamma \mathrm{u}$), Spatial 3-velocity (u)]
[Temporal "velocity" factor (γ) : Spatial normalized "velocity" factor $(\gamma \beta)$, Spatial 3-beta (β)]
[Temporal "velocity" factor ($\gamma_{\beta \text { pin }} \beta \cdot \hat{n}$) : Spatial normalized "velocity" factor $\left(\gamma_{\beta i n} \hat{n}\right)$, Spatial 3-beta ($\left.\left.\beta \cdot \hat{n}\right) \hat{n}\right]$ [Temporal factor (|a|) : Spatial factor (a)] with $\overline{\mathbf{N}} \cdot \overline{\mathbf{N}}=0$: ($\mathbf{n})=$ unit-direction 3-vector
[mass (m) : energy (E) : 3-momentum $(p=m u)$] with $\left\{E=m c^{2}=\gamma m_{0} c^{2}=\gamma E_{o}\right\} \&\left\{p=m u=\gamma m_{0} u\right\}$ [total-energy $\left(\mathrm{E}_{\mathrm{T}}\right)=$ Hamiltonian $(\mathrm{H}):$ 3-total-momentum $\left(\mathrm{p}_{\mathrm{T}}\right)$]
[mass density $\left(\rho_{m}\right): 3$-mass-flux $=3$-momentum-density (g)]
[energy density (ρ_{E}) : 3-energy-flux=PoyntingVector (q)]
[relativistic Temporal acceleration (γ^{\prime}) : relativistic 3-acceleration ($\gamma^{\prime} \mathbf{u}+\gamma \mathrm{a}$), 3-acceleration ($\mathrm{a}=\dot{\mathrm{u}}$)] [relativistic power ($\gamma \dot{E}$), power (E) : relativistic 3-force ($\gamma \mathrm{f}$), 3-force ($\mathrm{f}=\dot{\mathrm{p}}$)]
[angular-frequency $(\omega=2 \pi v=2 \pi / T): 3$-angular-wave-number $\left(\mathrm{k}=2 \pi \hat{n} / \lambda=2 \pi v \hat{n} / v_{\text {phase }}=\omega \hat{n} / v_{\text {phase }}\right)$] [total-angular-frequency $\left(\omega_{T}\right)$: 3-total-angular-wave-number $\left(\mathrm{k}_{\mathrm{T}}\right)$]
[Temporal number-density (n) : Spatial 3-number-flux $(n=n u)]$ with $\left\{n=\gamma n_{0}\right\} \&\left\{n=n u=\gamma n_{0} u\right\}$ [charge-density (ρ) : 3-charge-flux $=3$-current-density ($\mathrm{j}=\rho \mathrm{u}$)] with $\left\{\rho=\gamma \rho_{o}\right\} \&\left\{\mathrm{j}=\rho \mathbf{u}=\gamma \rho_{o} \mathbf{u}\right\}$ [scalar-potential = voltage $(\varphi): 3$-vector-potential (a)], typically the EM versions $\left(\varphi_{\text {ЕM }}\right):\left(a_{\text {ем }}\right)$ [potential-energy $(\mathrm{V}=\mathrm{q} \varphi)$: 3-potential-momentum $(\mathrm{q}=\mathrm{qa})$], EM ver $\left(\mathrm{V}_{\mathrm{EM}}=\mathrm{q} \varphi_{\mathrm{EM}}\right)$: $\left(\mathrm{q}_{\mathrm{EM}}=\mathrm{q} \mathrm{a}_{\mathrm{EM}}\right)$ [Temporal partial differential $\left(\partial_{\mathrm{t}}\right)$: Spatial 3-gradient=spatial partial differentials $\left(\nabla=\partial_{r} \rightarrow\left(\partial_{\mathrm{x}}, \partial_{\mathrm{y}}, \partial_{\mathrm{z}}\right)\right)$] $\left[\right.$ Temporal spin $\left(s^{0}=\mathbf{s} \cdot \boldsymbol{\beta}=\mathbf{s} \cdot \mathbf{u} / \mathrm{c}\right):$ Spatial 3-spin (s)] $\left\{\right.$ because $\left.\mathbf{S} \perp \overline{\mathbf{T}} \leftrightarrow\left[\mathbf{S} \cdot \overline{\mathbf{T}}=0=\gamma\left(\mathbf{s}^{0}-\mathbf{s} \cdot \boldsymbol{\beta}\right)\right]\right\}$ [ThermodynamicBeta $\left(\theta^{\circ} / \mathrm{c}=\beta=1 / \mathrm{k}_{\mathrm{B}} \mathrm{T}\right)$: ThermodynamicBeta 3-MotionVector (u/k k)] [pure-entropy-density (Sent_pure) : 3-pure-entropy-flux ($\mathrm{S}_{\text {ent_pure }}=\mathrm{Sent}_{\text {ent_pure }} \mathrm{U}$)] [Temporal 4-Jerk stuff... : Spatial 4-Jerk stuff...]

Notational Clash Warnings: Other
Relativistic Beta $\boldsymbol{\beta}=\mathrm{v} / \mathrm{c}=\{0.1\}$ n̂ [dimensionless]
Thermodynamic Beta $\beta=1 / \mathrm{k}_{\mathrm{B}} \mathrm{T}[1 / \mathrm{J}]$ with $\mathrm{k}_{\mathrm{B}}=$ Boltzmann's Const \& $\mathrm{T}=$ AbsoluteTemperature

SR 4-Tensor (2,0)-Tensor T ${ }^{\mu \nu}$ (1,1)-Tensor $T^{\mu}{ }_{v}$ or T_{ν} $(0,2)$-Tensor T_{μ} $(0,1)$-Tensor $\mathrm{V}_{\mu}=\left(\mathrm{V}_{0},-\mathrm{v}\right)$

4-Tensors can be constructed from the Tensor Products of 4-Vectors. Technically, 4-Tensors refer to all SR objects (4-Scalars, 4-Vectors, etc), but typically reserve the name 4-Tensor for SR Tensors of 2 or more indices. Use \#D (m, n)-Tensor notation to specify types more precisely

Relativistic-Fluid Stress-Energy(Density) $\left[\rho_{\mathrm{e}}\right.$, Symmetric Tensor T^{0} Symmetric Tensor $\mathrm{T}_{\text {relativisitictuluid }}{ }^{\text {VN }} \rightarrow \quad\left[+\mathrm{cq} \mathrm{q}^{\circ}\right.$,	
Perfect-Fluid Stress-Energy(Density) Symmetric Tensor $\mathrm{T}_{\text {perfectiluid }}{ }^{\text {NV }} \rightarrow$ Diag $\left[\rho_{e}, \mathrm{p}, \mathrm{p}, \mathrm{p}\right]_{\text {mCRF }}$	
Matter-Dust Stress-Energy(Density)	

Matter-Dust Stress-Energy(Density)


```
4-Tensor = 4D (2,0)-Tensor
Faraday EM Tensor Fiv = [ 0 ,--0/c] ]
Antisymmetric [+ei/c,- -ijk
4-Angular Momentum M M }\mp@subsup{}{}{[v}=[\begin{array}{ccc}{0}&{0}&{-c\mp@subsup{c}{}{0j}}\end{array}
```



```
Temporal Projection Tensor V Viv }->\mathrm{ Diag[1, 0, [\]mcorF
Spatial Projection Tensor }\mp@subsup{H}{}{[vV}->\mathrm{ Diag[0,-8
```

Any $\{$ index $>0\}$ SR Tensor can be decomposed into separate orthogonal parts: $T^{\mu \nu}=\left[\right.$ Temporal ${ }^{\mu}+$ Spatial $\left.{ }^{\mu}\right], T^{\mu v}=\left[\right.$ Temporal $^{\mu v}+$ Mixed $^{\mu v}+$ Spatial $\left.^{\mu v}\right]$ by using combinations of (V)ertical \& (H)orizontal Projection Tensors, with ($\eta^{\mu}{ }_{v}=V^{\mu_{v}}+H^{\mu}{ }_{v}$) and contraction orthogonality $\left(V^{\mu}{ }_{a} H_{v}{ }_{v}\right)=\left(V^{\mu}{ }_{a}\left(\eta_{v}{ }_{v}-V_{v}{ }_{v}\right)\right)=\left(V^{\mu}{ }_{a} \eta_{v}{ }_{v}-V^{\mu}{ }_{a} V_{v}{ }_{v}\right)=\left(V^{\mu}{ }_{v}-V^{\mu}{ }_{v}\right)=0^{\mu}{ }_{v}$

Temporal ${ }^{\mu}=V^{\mu}{ }_{a}\left(T^{\alpha}\right)$: IP $\left[\right.$ Temporal $\left.{ }^{\mu}\right]=\eta_{\mu v} V^{\mu}{ }_{a}\left(T^{\alpha}\right) V^{\nu}{ }_{\beta}\left(T^{\beta}\right)=\left\{T^{0}\right\}^{2}$

Temporal ${ }^{\text {VV }}=\mathrm{V}^{\mathrm{N}}{ }_{\mathrm{a}} \mathrm{V}^{\mathrm{V}}$ ($\left(\mathrm{T}^{\alpha \beta}\right)$	
Mixed ${ }^{\mu \nu}=V^{\nu_{a}} H^{\nu}{ }_{\beta}\left(\mathrm{T}^{\alpha \beta}\right)+\mathrm{H}^{\mu}{ }_{a} \mathrm{~V}^{\nu_{\beta}}\left(\mathrm{T}^{\alpha \beta}\right)$:	
Spatial ${ }^{\mu v}=H^{\mu}{ }_{a} H^{v}{ }_{\beta}\left(\mathrm{T}^{\alpha \beta}\right)$: $\operatorname{Tr}\left[\right.$ Spatial $\left.{ }^{\mu \nu}\right]=\eta_{p v} H^{\mu}{ }_{\alpha} H^{v}{ }_{\beta}\left(T^{\alpha \beta}\right)=H_{v a} H^{v}{ }_{\beta}\left(T^{\alpha \beta}\right)=H_{\alpha \beta}\left(T^{\alpha \beta}\right)=-\left\{T^{11}+T^{22}+T^{33}\right\}$

SR 4-Tensor
(2,0)-Tensor T ${ }^{\mathrm{wv}}$ (1,1)-Tensor $\mathrm{T}^{\mu}{ }_{v}$ or $\mathrm{T}_{\mu}{ }^{\nu}$
$(0,2)$-Tensor T

SR 4-Vector
(1,0)-Tensor $\mathrm{V}^{\mu}=\mathbf{V}=\left(\mathrm{v}^{0}, \mathbf{v}\right)$ SR 4-CoVector:OneForm $(0,1)$-Tensor $\mathrm{V}_{\mu}=\left(\mathrm{v}_{0},-\mathrm{v}\right)$

4-Tensors can be constructed from the Tensor Products of 4-Vectors. Technically, 4-Tensors refer to all SR objects (4-Scalars, 4-Vectors, etc), but typically reserve the name 4-Tensor for SR Tensors of 2 or more indices. Use \#D (m,n)-Tensor notation to specify types more precisely.

SI Dimensional Units

[s]

[s]
[1/s]
[dimensionless $=1$]
[m/s]
[kg]
$\left[\mathrm{J}=\mathrm{kg} \cdot \mathrm{m}^{2} / \mathrm{s}^{2}\right]$
$\left[1 / \mathrm{J}=\mathrm{s}^{2} / \mathrm{kg} \cdot \mathrm{m}^{2}\right]$
[rad/s]
[C/m ${ }^{3}$]
$\left[\mathrm{V}=\mathrm{J} / \mathrm{C}=\mathrm{kg} \cdot \mathrm{m}^{2} / \mathrm{C} \cdot \mathrm{s}^{2}\right]$
[\#/m³]
$[r a d]$ angle
$[\mathrm{J} \cdot \mathrm{S}]_{\text {action }}$
$\left[\mathrm{J} \cdot \mathrm{s}=\mathrm{N} \cdot \mathrm{m} \cdot \mathrm{s}=\mathrm{kg} \cdot \mathrm{m}^{2} / \mathrm{s}\right] / \mathrm{cyc}$
$\left[\mathrm{J} \cdot \mathrm{s}=\mathrm{N} \cdot \mathrm{m} \cdot \mathrm{s}=\mathrm{kg} \cdot \mathrm{m}^{2} / \mathrm{s}\right] / \mathrm{rad}$
[dimensionless $=1$]
$\left[\mathrm{F} / \mathrm{m}=\mathrm{C}^{2} \cdot \mathrm{~s}^{2} / \mathrm{kg} \cdot \mathrm{m}^{3}\right]$
$\left[\mathrm{H} / \mathrm{m}=\mathrm{kg} \cdot \mathrm{m} / \mathrm{C}^{2}\right]$
[$\mathrm{C}=\mathrm{A} \cdot \mathrm{s}$]
[C $=A \cdot s$]
[\#]
[m³]
$\left[\mathrm{Pa}=\mathrm{J} / \mathrm{m}^{3}=\mathrm{N} / \mathrm{m}^{2}=\mathrm{kg} / \mathrm{m} \cdot \mathrm{s}^{2}\right]$
$\left[\mathrm{Pa}=\mathrm{J} / \mathrm{m}^{3}=\mathrm{N} / \mathrm{m}^{2}=\mathrm{kg} / \mathrm{m} \cdot \mathrm{s}^{2}\right]$

> 4-Scalar $=4 \mathrm{D}(0,0)$-Tensor $\{$ generally composed of 4 -Vector combinations using LSP\} $(\tau)=[\mathbf{R} \cdot \mathbf{U}] / \mathbf{U} \cdot \mathbf{U}]=[\mathbf{R} \cdot \mathbf{R}] /[\mathbf{U} \cdot \mathbf{R}]=[\mathbf{R} \cdot \mathbf{K}] / \mathbf{U} \cdot \mathbf{K}]{ }^{* *}$ Time as measured in the at-rest frame**
> $(\mathrm{d} \tau)=[\mathrm{dR} \cdot \mathbf{U}] / \mathbf{U} \cdot \mathbf{U}] \quad{ }^{* *}$ Differential Time as measured in the at-rest frame**
> $(\mathrm{d} / \mathrm{d} \tau)=[\mathbf{U} \cdot \partial]=\gamma(\mathrm{d} / \mathrm{dt}) \quad{ }^{* *}$ Note that the 4-Gradient operator is to the right of 4-Velocity**
> (d[..]) $=[\mathrm{dR} \cdot \partial][. .]^{* *}$ Shows that the formal differential is an Invariant operation**
> (c) $=\sqrt{ }[\mathbf{U} \cdot \mathbf{U}]=[\mathbf{T} \cdot \mathbf{U}]$ with 4-UnitTemporal $\mathbf{T}=\gamma(1, \beta)=\mathbf{U} / \mathrm{c}$ \& $[\mathbf{T} \cdot \mathbf{T}]=+1=$ "Unit"
> $\left.\left(\mathrm{m}_{\mathrm{o}}\right)=[\mathrm{P} \cdot \mathrm{U}] /[\mathrm{U} \cdot \mathrm{U}]=[\mathrm{P} \cdot \mathrm{R}] / \mathrm{U} \cdot \mathrm{R}\right]$
> $\left(m_{0} \rightarrow m_{e}\right)$ as Electron RestMass
> $\left(\mathrm{E}_{\mathrm{o}}\right)=[\mathrm{P} \cdot \mathrm{U}]$
> $\left(\boldsymbol{\beta}_{\mathrm{o}}=1 / \mathrm{k}_{\mathrm{B}} \mathrm{T}_{\mathrm{o}}\right)=[\mathbf{O} \cdot \mathbf{U}][\mathrm{U} \cdot \mathbf{U}]$ with $\mathrm{k}_{\mathrm{B}}=$ Boltzmann's Const \& $\mathrm{T}_{\mathrm{o}}=$ RestTemperature
> $\left(\omega_{0}\right)=[K \cdot \mathbf{U}]$
> $\left(\rho_{0}\right)=[\mathrm{J} \cdot \mathrm{U}] /[\mathrm{U} \cdot \mathrm{U}]=(\mathrm{q})[\mathrm{N} \cdot \mathrm{U}][\mathbf{U} \cdot \mathbf{U}]=(\mathrm{q})\left(\mathrm{n}_{0}\right)$
> $\left(\varphi_{0}\right)=[\mathbf{A} \cdot \mathbf{U}] \quad\left(\varphi_{0} \rightarrow \varphi_{\mathrm{E} M^{0}}\right)$ as the EM version RestScalarPotential
> $\left(\mathrm{n}_{0}\right)=[\mathrm{N} \cdot \mathrm{U}][\mathrm{U} \cdot \mathrm{U}]=$ Particle\# N / RestVolume V_{0}
$(\mathrm{h})=[\mathrm{P} \cdot \mathbf{U}] /\left[\mathrm{K}_{\text {cy }} \cdot \mathbf{U}\right]=[\mathrm{P} \cdot \mathrm{R}] /\left[\mathrm{K}_{\text {cyc }} \cdot \mathbf{R}\right]: \mathbf{K}_{\text {cyc }}=\mathrm{K} /(2 \pi)$
$(\mathrm{h})=[\mathrm{P} \cdot \mathrm{U}] / \mathrm{K} \cdot \mathrm{U}]=[\mathrm{P} \cdot \mathrm{R}] /[\mathrm{K} \cdot \mathrm{R}] \quad: \mathrm{K}=(2 \mathrm{~T}) \mathrm{K}_{\text {cyc }}$
(4) $=[\partial \cdot R]=\operatorname{Tr}\left[\eta^{\sim \beta}\right]=\Lambda_{p v} \wedge^{\mu v} \quad$ SR Dim $=4$, InnerProduct[any Lorentz Transf\{cont., discrete\}] $=4$
$\partial \cdot F^{\alpha \beta}=\left(\mu_{o}\right) \mathrm{J}=\left(1 / \varepsilon_{0} c^{2}\right) \mathrm{J} \quad$ Maxwell EM Eqn. w/ source (no spin) $\mu_{0} \varepsilon_{0}=1 / \mathrm{c}^{2}$
$\partial \cdot F^{\mathrm{a} \beta}=\left(\mu_{0}\right) \mathbf{J}=\left(1 / \varepsilon_{0} c^{2}\right) \mathbf{J} \quad$ Maxwell EM Eqn. w/ source (no spin) $\quad \mu_{0} \varepsilon_{0}=1 / \mathrm{c}^{2}$
$\mathrm{U} \cdot \mathrm{F}^{\alpha \beta}=(1 / \mathrm{q}) \mathbf{F} \quad$ Lorentz Force Eqn. $\quad(\mathrm{q} \rightarrow-\mathrm{e})$ as Electron Charge
$(\mathrm{Q})=\int \rho(\mathrm{dxdydz})=\int \rho \mathrm{d}^{3} \mathbf{x}=\int \rho_{\mathrm{o}} \gamma \mathrm{d}^{3} \mathbf{x}=\int\left(\rho_{\mathrm{o}}\right)(\mathrm{dA})(\gamma \mathrm{dr}) \quad$ Integration of volume charge density
$(N)=\int n(d x d y d z)=\int n^{3} x=\int n_{0} \gamma d^{3} x=\int\left(n_{0}\right)(d A)(\gamma d r) \quad$ Integration of volume number density
$\left(V_{0}\right)=\int_{\gamma}(\mathrm{dxdydz})=\int_{\gamma} \mathrm{d}^{3} \mathrm{x}=\int(\mathrm{dA})(\gamma \mathrm{dr})$ Integration of volume elements (Riemannian Volume Form)
$\left(\rho_{\text {eo }}\right)=V_{\text {© }} T^{\text {T/ }}=$ Temporal "(V)ertical" Projection of (Rel:Perfect)Fluid Stress-Energy Tensor
$\left(p_{o}\right)=(-1 / 3) H_{\alpha \beta} T^{\alpha \beta}=$ Spatial "(H)orizontal" Projection of (Rel:Perfect)Fluid Stress-Energy Tensor

Faraday EM InnerProduct Invariant 2(b-b-e $\left.\cdot \mathrm{e} / \mathrm{c}^{2}\right) \quad\left[\mathrm{T}^{2}=\mathrm{kg}^{2} / \mathrm{C}^{2} \cdot \mathrm{~s}^{2}\right]$
$\left[\mathrm{T}^{4}=\mathrm{kg}^{4} / \mathrm{C}^{4} \cdot \mathrm{~s}^{4}\right]$
Faraday EM Determinant Invariant (e-b/c) ${ }^{2}$
$2\left(b \cdot b-e \cdot e / c^{2}\right)=I P\left[F^{\alpha \beta}\right]=F^{\alpha \beta} F_{\sigma \beta}$
$(\mathrm{e} \cdot \mathrm{b} / \mathrm{c})^{2}=\operatorname{Det}\left[\mathrm{F}^{\alpha \beta}\right] \rightarrow\left(\text { Pfaffian }\left[F^{\alpha \beta}\right]\right)^{2}$, since $\mathrm{F}^{\mathrm{\alpha} \mathrm{\beta}}$ is $(2 \mathrm{n} \times 2 \mathrm{n})$ square anti-symmetric

SR 4-Tensor (2,0)-Tensor T ${ }^{\mu v}$ (1,1)-Tensor $T^{\mu}{ }_{v}$ or T_{ν} $(0,2)$-Tensor $T^{u v}$

[^0]$(+,-,-) S, R \rightarrow Q N$
Physics
SRQM Study: Physical 4-Vectors Some SR 4-Vectors and Symbols

4-Displacement $\Delta \mathbf{R}=\Delta \mathbf{R}^{\mu}=(\mathrm{c} \Delta \mathrm{t}, \Delta \mathrm{r})=\mathbf{R}_{2}-\mathbf{R}_{1 \text { \{finite\} }}$ $\mathrm{dR}=\mathrm{dR} \mathrm{R}^{\mu}=(\mathrm{cdt}, \mathrm{dr})$ \{infintesimal\}

4-Position
$\mathrm{R}=\mathrm{R}^{\mu}=(\mathrm{ct}, \mathrm{r}) \in<$ Event $>$ $\rightarrow(\mathrm{ct}, \mathrm{x}, \mathrm{y}, \mathrm{z})_{\{\text {\{rect\} }}$
alt. notation $\mathrm{X}=\mathrm{X}^{\mu}$
[1] 4-UnitTemporal $\overline{\mathbf{T}}=\mathbf{T}^{\mu}=\gamma(1, \beta)$ $=\gamma(1, u / c)=\mathbf{U} / \mathrm{c}$
[1/m]
Gradient 4-Vector [operator]
$\partial=\bar{\partial}=\partial^{\mu}=(\partial / c,-\nabla)$

$$
\underline{\partial}=\partial_{\mu}=(\partial / c, \nabla)
$$

Gradient One-Form [operator]

Lorentz Invariant, but not Poincaré Invariant

4-Momentum

$\mathrm{kg} \cdot \mathrm{m} / \mathrm{s}=\mathrm{N} \cdot \mathrm{s}]$

(EM)VectorPotential $\mathbf{A}=A^{\mu}=(\varphi / c, a)=\left(\varphi_{0} / c^{2}\right) \mathbf{U}=\left(\varphi_{0} / c\right) \bar{\top}$

$$
A_{E M}=A_{E M}{ }^{H}=\left(\varphi_{E M} / \mathrm{c}, \mathrm{a}_{\mathrm{EM}}\right)
$$

4-ChargeFlux : 4-CurrentDensity
$\mathbf{J}=\mathrm{J}^{\mu}=(\rho \mathrm{c}, \mathrm{j})=\rho(\mathrm{c}, \mathbf{u})=\rho_{\mathrm{o}} \gamma(\mathrm{c}, \mathbf{u})=\rho_{\mathrm{o}} \mathbf{U}$ $=q n_{0} \mathbf{U}=q \mathbf{N}=\rho_{o} c \bar{T}$

4-(Particle:Dust:Number)Flux $\mathbf{N}=\mathrm{N}^{\mu}=(\mathrm{nc}, \mathrm{n})=\mathrm{n}(\mathrm{c}, \mathrm{u})=\mathrm{n}_{\mathrm{o}} \gamma(\mathrm{c}, \mathrm{u})$ $=n_{0} \mathbf{U}=n_{0} \mathrm{C} \bar{T}$

$\left[C / m^{2} \cdot s=A / m^{2}\right]$

$=c \overline{\mathbf{T}}=\mathrm{c}^{2} \partial[\tau]=\mathrm{d} \mathbf{R} / \mathrm{d} \tau$

4-MassFlux
4-MomentumDensity $\mathbf{G}=\mathbf{G}^{\mu}=\left(\rho_{\mathrm{m}} \mathbf{c}, \mathrm{g}\right)=\rho_{\mathrm{m}}(\mathrm{c}, \mathrm{u})$
$=m_{0} \mathbf{N}=n_{0} m_{0} \mathbf{U}=\rho_{m_{0}} \mathbf{U}=n_{0} \mathbf{P}=\mathbf{Q} / c^{2}$
4-HeatEnergyFlux
$\mathbf{Q}=Q^{\mu}=\left(\rho_{\mathrm{E}} \mathrm{C}, \mathrm{q}\right)=\rho_{\mathrm{E}}(\mathrm{c}, \mathbf{u})$
$=E_{0} N=n_{0} E_{0} U=\rho_{E_{0}} U=c^{2} \mathbf{G}$
$=(\beta \cdot \mathbf{q}, \mathbf{q})$ because $\mathrm{T}_{\mu} \mathrm{Q}^{\mu}=0\left[\mathrm{~W} / \mathrm{m}^{2}=\mathrm{J} / \mathrm{m}^{2} \cdot \mathrm{~s}=\mathrm{kg} / \mathrm{s}^{3}\right]$

$$
\begin{gathered}
\text { 4-PureEntropyFlux } \\
\mathbf{S}_{\text {ent_pure }}=\text { S }_{\text {ent_pure }}^{\mu} \\
=\left(\mathrm{S}_{\text {ent_pure }}{ }^{0}, \mathbf{S}_{\text {ent_pure }}\right) \\
=\mathrm{S}_{\text {ent }} \mathbf{N}=\mathrm{k}_{\mathrm{B}} \mathrm{Ln}[\Omega] \mathrm{N}=\mathrm{n}_{0} \mathrm{~S}_{\text {ent }} \mathbf{U} \\
{\left[\mathrm{W} /{ }^{\circ} \mathrm{K} \cdot \mathrm{~m}^{2}=\mathrm{J} /{ }^{\circ} \mathrm{K} \cdot \mathrm{~m}^{2} \cdot \mathrm{~s}=\mathrm{kg} / /^{\circ} \mathrm{K} \cdot \mathrm{~s}^{3}\right]}
\end{gathered}
$$

4-HeatEntropyFlux
$\mathbf{S}_{\text {ent_heat }}=$ S $_{\text {ent_heat }}{ }^{H}$
$=\left(S_{\text {ent_heat }}{ }^{0}, S_{\text {ent_heat }}\right)$
$=\mathrm{S}_{\text {ent }} \mathbf{N}+\mathbf{Q} / \mathrm{T}_{0}=\mathrm{S}_{\text {ent }} \mathbf{N}+\mathrm{E}_{0} \mathbf{N} / \mathrm{T}_{\text {。 }}$
$=n_{0}\left(S_{\text {ent }}+E_{0} / T_{0}\right) U$

4-Vector SRQM Interpretation of QM

4-Accelerat $\begin{aligned} & \mathbf{A}=\mathrm{A}^{\mu}=\gamma\left(\mathrm{c} \gamma^{\prime}, \gamma^{\prime} \mathbf{u}+\gamma \mathbf{a}\right)= \\ &=\mathrm{d} \mathbf{U} / \mathrm{d} \tau=\mathrm{d}^{2} \mathbf{R} / \mathrm{d} \tau^{2}: \end{aligned}$	
4-UnitSpatial \quad....... $\overline{\mathbf{S}}=\mathrm{S}^{\mu}=\gamma_{\mathrm{\beta n}}(\boldsymbol{\beta} \cdot \hat{\mathrm{n}}, \hat{\mathrm{n}})$ (depends on direction n̂)	$\begin{gathered} \quad 4-\mathrm{Spin}^{\left[\mathrm{J} \cdot \mathrm{~s}=\mathrm{kg} \cdot \mathrm{~m}^{2} / \mathrm{s}\right]} \\ \mathbf{S}_{\text {spin }}=\mathrm{S}_{\text {spin }}{ }^{\mu} \\ =\left(\mathrm{s}^{\mathrm{H}=\boldsymbol{\beta} \cdot \mathbf{s}, \mathrm{s})=\mathrm{s}_{\mathrm{o}} \overline{\mathbf{S}}} ;\right. \end{gathered}$

4-ThermalVector

4-InverseTemperatureMomentum
$\Theta=\Theta^{\mu}=\left(\theta^{0}, \theta\right)=\left(c / k_{B} T, u / k_{B} T\right)=\left(\theta_{0} / c\right) \mathbf{U}=\left(\theta_{0}\right) \mathbf{T}$
$=\left(1 / k_{B} T\right)(c, u)=\left(1 / k_{B} \gamma T\right) U=\left(1 / k_{B} T_{0}\right) U$
$(0,2)$-Tensor $T_{\mu v}$
$(0,1)$-Tensor $\mathrm{V}_{\mu}=\left(\mathrm{v}_{0},-\mathrm{v}\right)$

SR 4-Scalar
(0,0)-Tensor S or So
Lorentz Scalar

4-Vector $\mathbf{V}=\mathrm{V}^{\mu}=\left(\mathrm{v}^{\mu}\right)=\left(\mathrm{v}^{0}, \mathrm{v}^{\mathrm{i}}\right)=\left(\mathrm{v}^{0}, \mathrm{v}\right)$	$\dot{\mathbf{v}}=\mathrm{dv} / \mathrm{dt}$
SR 4-Vector $\mathbf{V}=\mathrm{V}^{\mu}=\left(\right.$ scalar * $\left.\mathrm{c}^{ \pm 1}, 3-\mathrm{vector}\right)$	$\ddot{\mathbf{v}}=\mathrm{d}^{2} \mathrm{v} / \mathrm{dt} t^{2}$

SRQM Study:

Primary/Primitive/Elemental 4-Vectors:
 S

 4-UnitTemporal T \& 4-UnitSpatial Swith $\beta_{\mathrm{n}}=(\beta \cdot \hat{n}) \hat{n}=$ component of vector $\boldsymbol{\beta}$ along the \hat{n}-direction, ($|\hat{n}|=1$)

In the RestFrame ($\boldsymbol{\beta}=\mathbf{0}$) of
a massive particle $\left(m_{0}>0\right)$:
4 -Velocity \mathbf{U} appears totally Temporal $\mathbf{U}_{\mathbf{o}}=\mathbf{c}(1,0)$ 4 -Spin \mathbf{S} appears totally Spatial $\quad \mathbf{S}_{\mathbf{o}}=\mathrm{s}_{\mathrm{o}}(0, \hat{n})$

In the Light:NullFrame $(\boldsymbol{\beta}=\hat{\mathbf{n}})$ of still have $\mathbf{U} \cdot \mathbf{U}=\mathrm{c}^{2}$ a massless particle ($\mathrm{m}_{0}=0$)
4-Null $\overline{\mathbf{N}}$: no RestFrame : 4-Velocity \mathbf{U} undetermined 4-Spin S loses 1 dim , helical about propagation dir.
\{ 4-UnitTemporal $\overline{\mathbf{T}}: 4$-UnitSpatial $\overline{\mathbf{S}}: 4$-"Unit"Null $\overline{\mathbf{N}}$ \} are dimensionless, which allows them to make dimensional 4 -Vectors via multiplication by dimensional 4-Scalars, as shown here.
"Magnitude" $=(\pm i)$ \mid Magnitude $=(1)=\sqrt{ }\left[\left(\right.\right.$ Mag $\left.^{*}\right)($ Mag $)$

SR 4-Tensor

$(2,0)$-Tensor $T^{\mu v}$ $(1,1)$-Tensor T_{ν}^{ν} or $T_{\nu}{ }^{\nu}$
$(0,2)$-Tensor T_{uv} $(0,1)$-Tensor $\mathrm{V}_{\mu}=\left(\mathrm{v}_{0},-\mathrm{v}\right)$

a "Temporal" 4-Vector, [m/s]
Magnitude $^{2}=+(\mathrm{c})^{2}$
"Magnitude" $=(\pm \mathrm{c})$
|Magnitude| = (c)

a "Spatial" 4-Vector, [J•s] $M_{2}{ }^{2}$
"Magnitude" $=\left(\pm \mathrm{s}_{\mathrm{c}}\right)$
|Magnitude| = (So
 "Magnitude" $=(0) \quad=\mathrm{a}(1, \mathrm{n})=\gamma_{\infty} \mathrm{a}_{\text {zero }}(1, \mathrm{n}) \quad=\mathrm{a} \mathrm{a}$ (1) $(\mathrm{N} \perp \mathrm{N})$ \mid Magnitude $=(0) \quad 3$ independent components $\quad=0 \leftrightarrow(N \perp \mathbf{N}$

3 independent components
4-UnitTemporal, [dimensionless=1
Magnitude $=(+1)$
"Magnitude" $=(\pm 1)$

$\left\lvert\,$| Magnitude \mid |
| :--- |$=(1)\right.$

\[\)| 4-UnitTemporal |
| :--- |
| $\mathrm{T}=\mathrm{T}^{\mu}=\gamma(1, \beta)$ |
| $=\gamma(1, \mathbf{u} / \mathrm{c})=\mathbf{U} / \mathrm{c}$ |

\]

4-UnitTemporal orthogonal-to (-) 4-UnitSpatial
[dimensionless=1
Magnitude $^{2}=(0)$
"Magnitude" = (0) |Magnitude $\mid=(0)$
$\overline{\mathbf{T}} \cdot \overline{\mathbf{S}}$
$=\gamma(1, \beta) \cdot \gamma_{\beta \hat{n}}(\boldsymbol{\beta} \cdot \hat{n}, \hat{n})$
$=\gamma^{*} \gamma_{\beta \hat{n}}(1 * \boldsymbol{\beta} \cdot \hat{\mathbf{n}}-\boldsymbol{\beta} \cdot \hat{n})$
$=\gamma^{*} \gamma_{\beta \hat{n}}(\boldsymbol{\beta} \cdot \hat{\mathbf{n}}-\boldsymbol{\beta} \cdot \hat{\mathbf{n}})$
$=0 \leftrightarrow(\overline{\mathbf{T}} \perp \overline{\mathbf{S}})$

3 independent components

4-UnitSpatial
 $$
\overline{\mathbf{S}}=\mathrm{S}^{\mu}=\gamma_{\beta \hat{\mathrm{n}}}(\beta \cdot \hat{\mathbf{n}}, \hat{\mathbf{n}})
$$
 (depends on direction n̂)

4-UnitSpatial, [dimensionless=1] $=\gamma \quad \mathbf{S} \cdot \overline{\mathbf{S}}=\gamma_{\beta \hat{n}}(\beta \cdot \hat{n}, \hat{n}) \cdot \gamma_{\beta \hat{n}}(\beta \cdot \hat{n}, \hat{n})$ Magnitude ${ }^{2}=(-1)$
$=\gamma_{\beta \hat{n}}{ }^{2}\left(\boldsymbol{\beta} \cdot \hat{\mathbf{n}}^{*} \boldsymbol{\beta} \cdot \hat{\mathbf{n}}-\hat{\mathbf{n}} \cdot \hat{\mathbf{n}}\right)=-\boldsymbol{\gamma}_{\beta \hat{n}}{ }^{2}\left(\hat{\mathbf{n}} \cdot \hat{\mathbf{n}}-(\boldsymbol{\beta} \cdot \hat{\mathbf{n}})^{2}\right)$
-"Unit"Null
[dimensionless=1] Magnitude ${ }^{2}=(0 / 0)$ $\begin{array}{ll}\text { 4-Scalar (a) } & \text { Magnitude }{ }^{2}=(0 / 0) \\ \text { Dirac- } \delta \text { Invariant }\end{array} \quad$ "Magnitude" $=(0 / 0)$ |Magnitude| $=(0 / 0)$

4-Spin $S_{\text {spin }}=S_{\text {spin }}{ }^{\mu}=S_{0} \overline{\mathbf{S}}$

$$
\left(s^{0}, \mathbf{s}\right)=(\beta \cdot \mathbf{s}, \mathrm{s})
$$

$S_{\text {spin }} \cdot \mathbf{S}_{\text {spin }}$
$=\left(s^{0}, \mathbf{s}\right) \cdot\left(s^{0}, \mathbf{s}\right)$
$=\left(\mathbf{s}^{0 *} \mathbf{s}^{0}-\mathbf{s} \cdot \mathbf{s}\right)$
$=-\left(\mathbf{s}_{0}\right)^{2}$

$$
=s_{o} \gamma_{\beta \hat{n}}(\beta \cdot \hat{n}, \hat{n})=s(\boldsymbol{\beta} \cdot \hat{n}, \hat{n}) \quad=-\left(s_{0}\right)^{2}
$$

Primary/Primitive/Elemental 4-Vectors:

 4-"Unit"Null \bar{N}
SRQM Study:

 of Physical 4-Vectors

3 independent

4-UnitTemporal
$\overline{\mathbf{T}}=\mathrm{T}^{\mu}=\gamma(1, \beta)$
$=\gamma(1, \mathrm{u} / \mathrm{c})=\mathbf{U} / \mathrm{c}$
$-\gamma(1, u / c)=\mathbf{U} / \mathrm{c}$

0 independent components - because universal constant [m/s]

LightSpeed Invariant (c)
4-UnitSpatial $\overline{\mathbf{S}}=\mathrm{S}^{\mu}=\gamma_{\beta \hat{n}}(\beta \cdot \hat{n}, \hat{n})$ (depends on direction n̂)
3 independent

SR 4-Tensor
(2,0)-Tensor T ${ }^{\mu v}$ (1,1)-Tensor $\mathrm{T}^{\mu}{ }_{v}$ or T^{\prime}
$(0,2)$-Tensor $\mathrm{T}_{\mu v}$

SR 4-Vector (1,0)-Tensor $\mathrm{V}^{\boldsymbol{\mu}}=\mathbf{V}=\left(\mathrm{v}^{0}, \mathrm{v}\right)$ SR 4-CoVector:OneForm $(0,1)$-Tensor $\mathrm{V}_{\mu}=\left(\mathrm{v}_{0},-\mathrm{v}\right)$

$$
\begin{aligned}
& \text { SR is one physical case } \\
& \text { which has }\left(\infty^{*} 0=\text { finite }\right) \\
& p=\gamma_{o} p_{\text {zero }} \\
& \text { see Dirac Delta Function }
\end{aligned}
$$

3 independent components $[\mathrm{kg} \cdot \mathrm{m} / \mathrm{s}=\mathrm{N} \cdot \mathrm{s}]$

Trace $\left[T^{\mu \mathrm{V}}\right]=\eta_{\mu \mathrm{v}} T^{\mu \mathrm{v}}=T_{\mu}^{\mu}=T$
$\mathbf{V} \cdot \mathbf{V}=V^{\mu} \eta_{\mu v} V^{v}=\left[\left(v^{0}\right)^{2}-\mathbf{v} \cdot \mathbf{v}\right]=\left(v^{0}{ }_{0}\right)^{2}$
$=$ Lorentz Scalar Invariant

(t) is

 The Lorentz Gamma Factor ($\gamma=1 / \sqrt{ }[1-\beta \cdot \beta]$) defines how relativistrelated to proper:rest time (τ). $\left\{t=\gamma \tau=\gamma t_{0}\right\}=\{\leftarrow$ Time Dilation $\rightarrow\}$

Many relativistic relations use $\gamma: \mathbf{P}=(E / c, p)=m_{0} \mathbf{U}=m_{0} \gamma(c, u)=m(c, u)$ Time-Space factors to Einstein's $\left\{E=\gamma E_{0}=\gamma m_{0} c^{2}=m c^{2}\right\} \&\left\{p=m u=\gamma m_{0} u\right\}$

Let generic 4-Vector $\mathbf{A}=\left(\mathrm{a}^{0}, \mathrm{a}\right)$
4-Velocity $\mathbf{U}=\gamma(\mathrm{c}, \mathrm{u}): \mathbf{U} \cdot \mathbf{U}=\mathrm{c}^{2}$
$\mathbf{A} \cdot \mathbf{U}=\left(\mathrm{a}^{0}, \mathrm{a}\right) \cdot \gamma(\mathrm{c}, \mathrm{u})=\gamma\left(\mathbf{a}^{0} \mathbf{c}-\mathbf{a} \cdot \mathbf{u}\right)=\mathbf{a}^{0}{ }_{\mathrm{o}} \mathbf{c}=\left(\mathbf{a}^{0}{ }_{0} / \mathbf{c}\right) \mathrm{c}^{2}=\left(\mathbf{a}^{0}{ }_{0} / \mathrm{c}\right) \mathbf{U} \cdot \mathbf{U}$
$\mathbf{A}=\left(a^{0}{ }_{0} / c\right) \mathbf{U}=\left(a^{0}, a\right)=\left(a^{0} / c\right) \gamma(c, u)=\left(\gamma a^{0} / c\right)(c, u)$
Temporal part: $a^{0}=\left(\gamma a^{0}{ }_{o}\right)$
Spatial part: $\quad \mathbf{a}=\left(\gamma \mathrm{a}^{0} / \mathrm{c}\right) \mathbf{u}=\left(\mathrm{a}^{0} / \mathrm{c}\right) \mathbf{u}$
$(\gamma \boldsymbol{\beta} \cdot \boldsymbol{\beta})(\mathbf{A} \cdot \mathbf{U})=(\gamma \boldsymbol{\beta} \cdot \boldsymbol{\beta})\left(\mathrm{a}^{0}{ }_{\mathrm{o}} \mathbf{c}\right)=(\gamma \mathbf{u} \cdot \mathbf{u})\left(\mathrm{a}^{0} / \mathrm{c}\right)=\left(\gamma \mathrm{a}^{0} / \mathrm{c} \mathbf{c}\right)(\mathbf{u} \cdot \mathbf{u})=\mathbf{a} \cdot \mathbf{u}$
$(\gamma \boldsymbol{\beta} \cdot \boldsymbol{\beta})(\mathbf{A} \cdot \mathbf{U})=(\mathbf{a} \cdot \mathbf{u})$
Important result used in Hamiltonian:Lagrangian connection
ex. $(\gamma \beta \cdot \beta)(P \cdot \mathbf{U})=(\gamma \beta \cdot \beta)\left(E_{o}\right)=(\gamma \mathbf{u} \cdot \mathbf{u})\left(\mathrm{E}_{0} / \mathrm{c}^{2}\right)=\left(\mathrm{Eu} / \mathrm{c}^{2}\right) \cdot \mathbf{u}=(\boldsymbol{p} \cdot \mathbf{u})$ since $\left(E u / c^{2}\right)=p$
$(\mathrm{d} \tau / \mathrm{dt})=(\partial \tau / \partial \mathrm{t})+\mathbf{u} \cdot \nabla[\tau]$
$(1 / \gamma)=(\gamma)+\left(-\gamma \beta^{2}\right)$

$$
\begin{aligned}
& \gamma^{\prime}=\mathrm{d} \gamma / \mathrm{dt} \\
& =(-1 / 2)[1-\beta \cdot \beta]^{-(3 / 2)}(-2 \boldsymbol{\beta}) \cdot \mathrm{d} \beta / \mathrm{dt} \\
& =\gamma^{3} \beta \cdot(\mathrm{du} / \mathrm{dt}) / \mathrm{c} \\
& =\gamma^{3} \beta \cdot \mathrm{a} / \mathrm{c}=\gamma^{3} \boldsymbol{\beta} \cdot \boldsymbol{\beta}^{\prime} \\
& =\gamma^{3} \mathbf{u} \cdot \mathrm{a} / \mathrm{c}^{2}
\end{aligned}
$$

Lorentz Factor (γ)
Relativistic Gamma
$\mathbf{U} \cdot \mathbf{U}=\mathrm{c}^{2}$
$\gamma(\mathrm{c}, \mathrm{u}) \cdot \gamma(\mathrm{c}, \mathrm{u})=\mathrm{c}^{2}$
$\gamma^{2}\left(\mathrm{c}^{2}-\mathbf{u} \cdot \mathbf{u}\right)=\mathrm{c}^{2}$
$\gamma^{2}(1-\boldsymbol{\beta} \cdot \boldsymbol{\beta})=1$
$\gamma^{2}=1 /(1-\boldsymbol{\beta} \cdot \boldsymbol{\beta})$
$\gamma=1 / \sqrt{ }[1-\boldsymbol{\beta} \cdot \boldsymbol{\beta}]$
$\boldsymbol{\beta}=\mathbf{u} / \mathrm{c}$

Lorentz Factor (γ) Relativistic Gamma
$\gamma=1 / \sqrt{[1-\beta \cdot \beta]}$
$\gamma^{2}=1 /(1-\beta \cdot \beta)$
$\gamma^{2}(1-\boldsymbol{\beta} \cdot \boldsymbol{\beta})=1$
$\gamma^{2}-\gamma^{2} \beta \cdot \beta=1$
$\gamma^{2}-1=\gamma^{2} \beta \cdot \beta$
$\gamma-1 / \gamma=\gamma \beta \cdot \beta$
$\beta=u / c$

4-Velocity $=\gamma(\mathrm{c}, \mathrm{u}):$ most known 4-Vector with γ exposed
4-Velocity
$\mathbf{U}=\mathbf{U}^{H}=\gamma(\mathrm{c}, \mathbf{u})$
$=\mathrm{dR} / \mathrm{d}=(\mathbf{U} \cdot \partial) \mathbf{R}$
$=\mathrm{c}^{2} \partial[\tau]=(\mathbf{U} \cdot \mathbf{U}) \partial[\tau]$

4-TotalMomentum
$P_{T}=\left(E_{T} / c=H / c, p_{T}\right)$
$=-\partial_{\mathrm{R}}\left[\mathrm{S}_{\text {acior }}\right]$
$=\left(-\partial_{t} /\left[\left[\mathrm{S}_{\text {action }}\right], V\left[\mathrm{~S}_{\text {action }}\right]\right)\right.$
$=-\partial_{u}\left[L_{0}\right]=\partial_{u}\left[H_{0}\right]$

SR 4-Tensor
(2,0)-Tensor T ${ }^{\mathrm{wv}}$ (1,1)-Tensor $\mathrm{T}^{\mu}{ }_{v}$ or T_{ν}
$(0,2)$-Tensor T^{\prime}

Lorentz Factor:
Relativistic Gamma $\gamma=1 / \sqrt{ }[1-\beta \cdot \beta]: \beta=\mathbf{u} / \mathbf{c}$
$\gamma^{\prime}=\mathrm{d} \gamma / \mathrm{dt}=\gamma^{3} \beta \cdot \mathrm{a} / \mathrm{c}=\gamma^{3} \mathbf{u} \cdot \mathrm{a} / \mathrm{c}^{2}$

The Lorentz Gamma Factor ($\gamma=1 / \sqrt{ }[1-\beta \cdot \beta]$) defines how relativist
related to proper:rest time (τ). $\left\{t=\gamma \tau=\gamma t_{0}\right\}=\{\leftarrow$ Time Dilation $\rightarrow\}$
Many relativistic relations use γ : $\mathbf{P}=(E / \mathrm{c}, \mathrm{p})=\mathrm{m}_{\mathrm{o}} \mathbf{U}=\mathrm{m}_{\mathrm{o}} \gamma(\mathrm{c}, \mathrm{u})=\mathrm{m}(\mathrm{c}, \mathrm{u})$ Time-Space factors to Einstein's $\left\{E=\gamma E_{0}=\gamma m_{0} c^{2}=m c^{2}\right\} \&\left\{p=m u=\gamma m_{0} u\right\}$

The SR Lorentz factor also plays a role in the total differential vs. the partial, and in defining the Hamiltonian (H) and Lagrangian (L) Energies.
$(\mathbf{U} \cdot \partial)=\gamma(\mathrm{c}, \mathrm{u}) \cdot\left(\partial_{\mathrm{t}} / \mathrm{c},-\nabla\right)=\gamma\left(\partial_{\mathrm{t}}+\mathbf{u} \cdot \nabla\right)=\gamma \mathrm{d} / \mathrm{dt}=\mathrm{d} / \mathrm{d} \tau$, giving $(\mathrm{dt} / \mathrm{d} \tau=\gamma):(\mathrm{d} \tau / \mathrm{dt}=1 / \gamma)$
$(\mathbf{U} \cdot \partial) \tau=\gamma(\mathrm{c}, \mathrm{u}) \cdot\left(\partial_{\mathrm{t}} / \mathrm{c},-\nabla\right) \tau=\gamma\left(\partial_{\mathrm{t}}+\mathbf{u} \cdot \nabla\right) \tau=\gamma \mathrm{d} \tau / \mathrm{dt}=\mathrm{d} \tau / \mathrm{d} \tau=1$
$\mathrm{c}^{2}(\mathbf{U} \cdot \partial) \tau=\mathrm{c}^{2} \gamma(\mathrm{c}, \mathrm{u}) \cdot\left(\partial_{\mathrm{t}} / \mathrm{c},-\nabla\right) \tau=\mathrm{c}^{2} \gamma\left(\partial_{\mathrm{t}}+\mathrm{u} \cdot \nabla\right) \tau=\mathrm{c}^{2} \gamma \mathrm{~d} \tau / \mathrm{dt}=\mathrm{c}^{2} \mathrm{~d} \tau / \mathrm{d} \tau=\mathrm{c}^{2}=(\mathbf{U} \cdot \mathbf{U})$
$\mathrm{c}^{2}(\mathbf{U} \cdot \partial) \tau=(\mathbf{U} \cdot \mathbf{U})$
$\mathrm{C}^{2}(\partial) \tau=(\mathbf{U})$
$\mathrm{c}^{2} \partial[\tau]=\mathrm{c}^{2}\left(\partial_{\mathrm{t}} / \mathrm{c},-\nabla\right)[\tau]=\gamma(\mathrm{c}, \mathrm{u})=\mathbf{U}$
$\partial \tau / \partial t=\gamma:-c^{2} \nabla[\tau]=\gamma \mathbf{u}$
$\mathbf{c}^{2}(-\mathbf{u} \cdot \nabla)[\tau]=\gamma(\mathbf{u} \cdot \mathbf{u})$
$(\mathbf{u} \cdot \nabla)[\tau]=-\gamma(\beta \cdot \beta)$
$\mathrm{d} \tau=(\partial \tau / \partial t) \mathrm{dt}+(\partial \tau / \partial \mathrm{x}) \mathrm{dx}+(\partial \tau / \partial \mathrm{y}) \mathrm{dy}+(\partial \tau / \partial \mathrm{z}) \mathrm{dz}=(\mathrm{dR} \cdot \partial)[\tau]$ $d \tau / d t=(\partial \tau / \partial t) d t / d t+(\partial \tau / \partial x) d x / d t+(\partial \tau / \partial y) d y / d t+(\partial \tau / \partial z) d z / d t$ $\mathrm{d} \tau / \mathrm{dt}=(\mathrm{dt} / \mathrm{dt})(\partial \tau / \partial t)+\{(\mathrm{dx} / \mathrm{dt})(\partial \tau / \partial \mathrm{x})+(\mathrm{dy} / \mathrm{dt})(\partial \tau / \partial \mathrm{y})+(\mathrm{dz} / \mathrm{dt})(\partial \tau / \partial \mathrm{z})\}$ $d \tau / d t=(\partial \tau / \partial t)+u \cdot \nabla[\tau]=1 / \gamma$

$$
(\mathrm{d} \tau / \mathrm{dt})=(\partial \tau / \partial \mathrm{t})+\mathrm{u} \cdot \nabla[\tau]
$$

	$\begin{aligned} & \gamma^{\prime}=\mathrm{d} \gamma / \mathrm{dt} \\ & =(-1 / 2)[1-\beta \cdot \beta]^{-(3 / 2)}(-2 \beta) \cdot \mathrm{d} \beta / \mathrm{dt} \\ & =\gamma^{3} \beta \cdot(\mathrm{du} / \mathrm{dt}) / \mathrm{c} \\ & =\gamma^{3} \cdot \mathrm{a}=\gamma^{3} \beta \cdot \beta^{\prime} \\ & =\gamma^{3} \mathrm{u} \cdot \mathrm{a} / \mathrm{c}^{2} \end{aligned}$
$(\mathrm{d} \tau / \mathrm{dt})=(\partial \tau / \partial \mathrm{t})+\mathbf{u} \cdot \nabla[\tau]$	
$(1 / \gamma)=(\gamma)+\left(-\gamma \beta^{2}\right)$	

4-Velocity $=\gamma(\mathrm{c}, \mathrm{u}):$ most known 4-Vector with γ exposed
Rest Hamiltonian $\mathbf{P}_{\mathbf{T}} \cdot \mathbf{U}=\left(\mathrm{H} / \mathrm{c}, \mathrm{p}_{\mathrm{T}}\right) \cdot \gamma(\mathrm{c}, \mathrm{u})$
$=\gamma\left(\mathrm{H}-\mathbf{p}_{\mathbf{T}} \cdot \mathbf{u}\right)=\mathrm{H}_{\mathrm{o}}$
$=-L_{0}$

4-TotalMomentum
$\boldsymbol{P}_{\mathrm{T}}=\left(\mathrm{E}_{\mathrm{T}} / \mathrm{c}=\mathrm{H} / \mathrm{c}, \mathrm{p}_{\mathrm{T}}\right)$
$=-\partial_{\mathrm{R}}\left[\mathrm{S}_{\text {action }}\right]$
$=\left(-\partial_{t} / c\left[\mathrm{~S}_{\text {action }}\right], \nabla\left[\mathrm{S}_{\text {action }}\right]\right)$
$=-\partial_{u}\left[L_{0}\right]=\partial_{u}\left[H_{0}\right]$

4-Velocity $\mathbf{U}=\mathrm{U}^{\mu}=\gamma(\mathrm{c}, \mathrm{u})$ $=\mathrm{dR} / \mathrm{d} \tau=(\mathbf{U} \cdot \partial) \mathbf{R}$ $=\mathrm{C}^{2} \partial[\tau]=(\mathbf{U} \cdot \mathbf{U}) \partial[\tau]$

Invariant ProperTime Derivative $\mathbf{U} \cdot \partial=\gamma(\mathrm{c}, \mathrm{u}) \cdot\left(\partial_{\mathrm{t}} / \mathrm{c},-\nabla\right)=\gamma\left(\partial_{\mathrm{t}}+\mathbf{u} \cdot \nabla\right)$ $=\gamma \mathrm{d} / \mathrm{dt}=\mathrm{d} / \mathrm{d} \tau$

Lorentz Factor (γ)
Relativistic Gamma
$\gamma=1 / \sqrt{ }[1-\beta \cdot \beta]$
$\left.\gamma^{2}=1 / 1-\beta \cdot \beta\right)$
$\gamma^{2}(1-\beta \cdot \beta)=1$
$\gamma^{2}-\gamma^{2} \beta \cdot \beta=1$
$\gamma^{2}-1=\gamma^{2} \cdot \beta \cdot \beta$
$\gamma-1 / \gamma=\gamma \beta \cdot \beta$
$\boldsymbol{\beta}=\mathrm{u} / \mathrm{c}$


```
\gamma=1/N[1-\beta\cdot\beta]
(\gamma-1/\gamma)=(\gamma\beta\cdot\beta)
(\gamma-1/\gamma)(\mp@subsup{P}{T}{}\cdot\mathbf{U})=(\gamma\boldsymbol{\beta}\cdot\boldsymbol{\beta})(\mp@subsup{\mathbf{P}}{\mathbf{T}}{}\cdot\mathbf{U})
\gamma(\mp@subsup{\mathbf{P}}{\textrm{T}}{}\cdot\mathbf{U})+-(\mp@subsup{\mathbf{P}}{\mathbf{T}}{}\cdot\mathbf{U})/\gamma=(\mp@subsup{\mathbf{p}}{\mathbf{T}}{}\cdot\mathbf{U})
    H }+{L } = (p}\mp@subsup{p}{\textrm{T}}{*}\cdot\mathbf{u}
The {Hamiltonian:Lagrangian} Connection
```

SR 4-Tensor
(2,0)-Tensor T ${ }^{\mathrm{wv}}$ $(1,1)$-Tensor $\mathrm{T}^{\mu}{ }_{\mathrm{v}}$ or $\mathrm{T}_{\mu}{ }^{4}$
$(0,2)$-Tensor $\mathrm{T}_{\mu \nu}$

Lorentz Factor:
Relativistic Gamma $\gamma=1 / \sqrt{ }[1-\beta \cdot \beta]: \beta=\mathbf{u} / \mathbf{c}$ $\gamma^{\prime}=\mathrm{d} \gamma / \mathrm{dt}=\gamma^{3} \boldsymbol{\beta} \cdot \mathrm{a} / \mathrm{c}=\gamma^{3} \mathbf{u} \cdot \mathrm{a} / \mathrm{c}^{2}$

Trace $\left[T^{\mu \nu}\right]=\eta_{\mu v} T^{\mu v}=T_{\mu}^{\mu}=T$
$\mathbf{V} \cdot \mathbf{V}=V^{\mu} \eta_{\mu v} V^{v}=\left[\left(v^{0}\right)^{2}-\mathbf{v} \cdot \mathbf{v}\right]=\left(v^{0}{ }_{0}\right)^{2}$
$=$ Lorentz Scalar Invariant

SRQM: Some Basic 4-Vectors

4-Position, 4-Velocity, 4-Differential, 4-Gradient SR SpaceTime Calculus \& Invariants

 of Physical 4-Vectors

SRQM: Some Basic 4-Vectors

 4-Position, 4-Velocity, \& their 4-Gradients SR SpaceTime Calculus \& Invariants $(0,1)$-Tensor $\mathrm{V}_{\mu}=\left(\mathrm{v}_{0},-\mathrm{v}\right)$

```
+,-,--) SR -> QM
```


SRQM: Some Basic 4-Vectors 4-Position, 4-Velocity, \& their 4-Gradients SR SpaceTime Calculus \& Invariants

Relativistic 4-Velocity Relation

$\partial_{U}[U]=\eta^{\alpha \beta} \rightarrow \operatorname{Diag}[1,-1,-1,-1]$ Minkowski Metric
$\left(\mathbf{R} \cdot \partial_{u}\right)[1]=[[1] \mathrm{d} \tau=\tau$ $\left(\mathbf{R} \cdot \partial_{\mathrm{y}}\right)[\gamma]=\int[\gamma](1 / \gamma) \mathrm{dt}=\mathrm{t}$

$$
\begin{aligned}
\left(R \cdot \partial_{0}\right)[\mathbf{U}] & =\mathbf{R} \\
\left(\mathbf{R} \cdot \partial_{0}\right)[\mathbf{A}] & =\mathbf{U} \\
\left(\mathbf{R} \cdot \partial_{0}\right)[\mathbf{F}] & =\mathbf{P} \\
\left(\mathbf{R} \cdot \partial_{0}\right)\left[R^{\wedge} \mathbf{F}\right] & =\mathbf{R}^{\wedge}
\end{aligned}
$$

$$
\begin{aligned}
& \left(R \cdot \partial_{0}\right)\left[L_{0}\right]=S_{\text {action }} \\
& \left(R \cdot \partial_{u}\right)\left[\omega_{0}\right]=\Phi_{\text {phase }}
\end{aligned}
$$

$$
\left(R \cdot \partial_{u}\right)\left[\partial_{R}\right]=\partial_{u}
$$

$\left(\mathbf{R} \cdot \partial_{U}\right)\left[\left(\mathbf{U} \cdot \partial_{\mathrm{R}}\right)[.].\right]=[.$.

SpaceTime Dimension
4-VelocityGradient

$$
\partial_{u}^{\beta}=\partial_{\mathrm{u}}=\partial / \partial \mathrm{U}_{\beta}=\left(\partial_{\mathrm{u}_{\mathrm{t}}} / \mathrm{c},-\nabla_{\mathrm{u}}\right)
$$

$$
\rightarrow\left(\partial / \partial \gamma \mathbf{c},-\partial / \partial \gamma \mathbf{u}_{x},-\partial / \partial \gamma \mathbf{u}_{\mathrm{y}},-\partial / \partial \gamma \mathbf{u}_{z}\right)
$$

[s/m]

Relativistic 4D Euler-Lagrange Relation

$$
\partial_{\mathrm{R}}=(\mathrm{d} / \mathrm{d} \tau) \partial_{\mathrm{u}}
$$

$$
\partial_{\mathrm{R}}[\mathrm{~L}]=(\mathrm{d} / \mathrm{d} \tau) \partial_{u}[\mathrm{~L}]
$$

Lorentz Factor:
Relativistic Gamma $\gamma=1 / \sqrt{ }[1-\beta \cdot \beta]: \beta=u / c$ $\gamma^{\prime}=\mathrm{d} \gamma / \mathrm{dt}=\gamma^{3} \beta \cdot \mathrm{a} / \mathrm{c}=\gamma^{3} \mathrm{u} \cdot \mathrm{a} / \mathrm{c}^{2}$
$(0,2)$-Tensor $T_{\mu v}$

SR 4-Scalar
$(0,0)$-Tensor S or S_{0}
Lorentz Scalar
$\left(\mathbf{U} \cdot \partial_{\mathrm{R}}\right)=\mathrm{d} / \mathrm{d} \tau=\gamma \mathrm{d} / \mathrm{dt}$
$\left(\mathrm{U} \cdot \boldsymbol{\partial}_{\mathrm{R}}\right)[\tau]=\mathrm{d} \tau / \mathrm{d} \tau=1$ $\left(\mathbf{U} \cdot \partial_{\mathrm{R}}\right)[\mathrm{t}]=\gamma \mathrm{dt} / \mathrm{dt}=\gamma$
$\left(\mathbf{U} \cdot \partial_{\mathrm{R}}\right)[\mathrm{R}]=\mathbf{U}$ $\left(\mathrm{U} \cdot \partial_{R}\right)[\mathbf{U}]=\mathrm{A}$ $\left(\mathbf{U} \cdot \partial_{R}\right)[\mathbf{P}]=\mathbf{F}$ $\left(\mathrm{U} \cdot \partial_{\mathrm{R}}\right)\left[\mathrm{R}^{\wedge} \mathrm{P}\right]=\mathrm{R}^{\wedge} \mathrm{F}$ $\left(\mathbf{U} \cdot \partial_{\mathrm{R}}\right)\left[\mathrm{S}_{\text {acionon }}\right]=\mathrm{L}_{0}$ $\left(U \cdot \partial_{\mathrm{R}}\right)\left[\Phi_{\text {phase }}\right]=\omega_{0}$
$\left(\mathbf{U} \cdot \partial_{\mathrm{R}}\right)\left[\partial_{\mathrm{U}}\right]=\partial_{\mathrm{R}}$
$\left(\mathrm{U} \cdot \boldsymbol{\partial}_{\mathrm{R}}\right)\left[\left(\mathrm{R} \cdot \partial_{\mathrm{O}}\right)[. . \mathrm{f}]=[.]\right.$.
Trace[TV] $=\eta_{T V} T^{\text {NV }}=T^{\mu_{\mu}}=T$
$\mathbf{V} \cdot \mathbf{V}=\mathrm{V}^{\mathrm{V}} \eta_{\mathrm{pv}} \mathrm{V}^{\mathrm{V}}=\left[\left(\mathrm{v}^{0}\right)^{2}-\mathbf{v} \cdot \mathbf{v}\right]=\left(\mathrm{v}_{0}^{0}\right)^{2}$
= Lorentz Scalar Invariant of Physical 4－Vectors

$\left(\mathbf{R} \cdot \partial_{\mathrm{s}}\right)[\mathbf{S}]=\mathbf{R}$	if $\left(\mathbf{R} \cdot \partial_{\mathrm{s}}\right)=\mathrm{d} / \mathrm{d} \tau$
$\left(\mathbf{S} \cdot \partial_{\mathrm{R}}\right)[\mathbf{R}]=\mathbf{S}$	then $\left(\mathbf{S} \cdot \partial_{\mathbf{R}}\right)=\int \mathrm{d} \tau$

```
```

\partialR}=\mp@subsup{\partial}{\mp@subsup{R}{}{\mu}}{\mu}=\partial/\partial\mp@subsup{R}{\mu}{}=(\partial/\partial\mp@subsup{r}{}{0},-\mp@subsup{\nabla}{r}{})\quad\mp@subsup{R}{\mu}{\prime}=\mp@subsup{\eta}{\muv}{}\mp@subsup{R}{}{\mu

```
```

\partialR}=\mp@subsup{\partial}{\mp@subsup{R}{}{\mu}}{\mu}=\partial/\partial\mp@subsup{R}{\mu}{}=(\partial/\partial\mp@subsup{r}{}{0},-\mp@subsup{\nabla}{r}{})\quad\mp@subsup{R}{\mu}{\prime}=\mp@subsup{\eta}{\muv}{}\mp@subsup{R}{}{\mu

```
```

\partialR}=\mp@subsup{\partial}{\mp@subsup{R}{}{\mu}}{\mu}=\partial/\partial\mp@subsup{R}{\mu}{}=(\partial/\partial\mp@subsup{r}{}{0},-\mp@subsup{\nabla}{r}{})\quad\mp@subsup{R}{\mu}{\prime}=\mp@subsup{\eta}{\muv}{}\mp@subsup{R}{}{\mu
(dR-2
(dR-2
(dR-2
= (d\mp@subsup{r}{}{0},d\mp@subsup{r}{}{1},d\mp@subsup{r}{}{2},d\mp@subsup{r}{}{3})\cdot(\partial/\partial\mp@subsup{r}{}{0},-\partial/\partial\mp@subsup{r}{}{1},-\partial/\partial\mp@subsup{r}{}{2},-\partial/\partial\mp@subsup{r}{}{3})
= (d\mp@subsup{r}{}{0},d\mp@subsup{r}{}{1},d\mp@subsup{r}{}{2},d\mp@subsup{r}{}{3})\cdot(\partial/\partial\mp@subsup{r}{}{0},-\partial/\partial\mp@subsup{r}{}{1},-\partial/\partial\mp@subsup{r}{}{2},-\partial/\partial\mp@subsup{r}{}{3})
= (d\mp@subsup{r}{}{0},d\mp@subsup{r}{}{1},d\mp@subsup{r}{}{2},d\mp@subsup{r}{}{3})\cdot(\partial/\partial\mp@subsup{r}{}{0},-\partial/\partial\mp@subsup{r}{}{1},-\partial/\partial\mp@subsup{r}{}{2},-\partial/\partial\mp@subsup{r}{}{3})
= (dror}\partial/\partial\mp@subsup{r}{}{0}+\mp@subsup{d}{}{2}\mp@subsup{r}{}{1}\partial/\partial\mp@subsup{r}{}{1}+\mp@subsup{d}{}{2}2/\partial\mp@subsup{r}{}{2}+d\mp@subsup{r}{}{3}\partial/\partial\mp@subsup{r}{}{3}
= (dror}\partial/\partial\mp@subsup{r}{}{0}+\mp@subsup{d}{}{2}\mp@subsup{r}{}{1}\partial/\partial\mp@subsup{r}{}{1}+\mp@subsup{d}{}{2}2/\partial\mp@subsup{r}{}{2}+d\mp@subsup{r}{}{3}\partial/\partial\mp@subsup{r}{}{3}
= (dror}\partial/\partial\mp@subsup{r}{}{0}+\mp@subsup{d}{}{2}\mp@subsup{r}{}{1}\partial/\partial\mp@subsup{r}{}{1}+\mp@subsup{d}{}{2}2/\partial\mp@subsup{r}{}{2}+d\mp@subsup{r}{}{3}\partial/\partial\mp@subsup{r}{}{3}
= d[f] = Derivative Chain Rule
= d[f] = Derivative Chain Rule
= d[f] = Derivative Chain Rule
for f=f[r r, r},\mp@subsup{r}{}{1},\mp@subsup{r}{}{2},\mp@subsup{r}{}{3}
for f=f[r r, r},\mp@subsup{r}{}{1},\mp@subsup{r}{}{2},\mp@subsup{r}{}{3}
for f=f[r r, r},\mp@subsup{r}{}{1},\mp@subsup{r}{}{2},\mp@subsup{r}{}{3}
(\partial
(\partial
(\partial
= (\partial/\partialr0},-\partial/\partial\mp@subsup{r}{}{1},-\partial/\partial\mp@subsup{r}{}{2},-\partial/\partial\mp@subsup{r}{}{3})\cdot(\mp@subsup{r}{}{0},\mp@subsup{r}{}{1},\mp@subsup{r}{}{2},\mp@subsup{r}{}{3}
= (\partial/\partialr0},-\partial/\partial\mp@subsup{r}{}{1},-\partial/\partial\mp@subsup{r}{}{2},-\partial/\partial\mp@subsup{r}{}{3})\cdot(\mp@subsup{r}{}{0},\mp@subsup{r}{}{1},\mp@subsup{r}{}{2},\mp@subsup{r}{}{3}
= (\partial/\partialr0},-\partial/\partial\mp@subsup{r}{}{1},-\partial/\partial\mp@subsup{r}{}{2},-\partial/\partial\mp@subsup{r}{}{3})\cdot(\mp@subsup{r}{}{0},\mp@subsup{r}{}{1},\mp@subsup{r}{}{2},\mp@subsup{r}{}{3}
= (\partialr}
= (\partialr}
= (\partialr}
= (1+1+1+1)
= (1+1+1+1)
= (1+1+1+1)
=4
=4
=4
==============================
==============================
==============================
The generic 4-Gradient Rules:

```
The generic 4-Gradient Rules:
```

The generic 4-Gradient Rules:

```
\begin{tabular}{ll}
\(\left(\mathbf{S} \cdot \partial_{\mathrm{R}}\right)\left[\mathbf{R} \cdot \partial_{\mathrm{s}}\right)[\mathbf{S}]=\mathbf{S}\) & Invariant \\
\(\left(\mathbf{S} \cdot \partial_{\mathrm{R}}\right)\left[\left(\mathbf{R} \cdot \partial_{\mathrm{s}}\right)[. .]=.[.]\right.\). & Lorentz Scalars \\
act generally
\end{tabular}
\(\left(\mathbf{R} \cdot \partial_{s}\right)[(\mathbf{S} \cdot \mathrm{T})]=\left(\mathbf{R} \cdot \partial_{s}\right)[(\mathrm{T} \cdot \mathbf{S})]=(\mathbf{R} \cdot \mathbf{T})=(\mathrm{T} \cdot \mathbf{R})\) \(\left(T \cdot \partial_{\mathrm{s}}\right)[(\mathrm{S} \cdot \mathbf{R})]=\left(\mathbf{T} \cdot \partial_{\mathrm{S}}\right)[(\mathbf{S} \cdot \mathbf{R})]=(\mathbf{R} \cdot \mathbf{T})=(\mathbf{T} \cdot \mathbf{R})\)
\(\left(\mathrm{dR} \cdot \partial_{\mathrm{R}}\right)[.]=.\mathrm{d}[.\).\(] Derivative Chain Rule\)
\(\left(\mathbf{R} \cdot \partial_{\mathrm{R}}\right)=4\)
```

= (\partial00}
partial\mp@subsup{0}{}{0}+\partial\mp@subsup{r}{}{1}/\partial\mp@subsup{r}{}{1}+\partial\mp@subsup{r}{}{2}/\partial\mp@subsup{r}{}{2}+\partial\mp@subsup{r}{}{3}/\partial\mp@subsup{r}{}{3}

```
= (\partial00}\\partial\mp@subsup{0}{}{0}+\partial\mp@subsup{r}{}{1}/\partial\mp@subsup{r}{}{1}+\partial\mp@subsup{r}{}{2}/\partial\mp@subsup{r}{}{2}+\partial\mp@subsup{r}{}{3}/\partial\mp@subsup{r}{}{3}
```

= (\partial00}
partial\mp@subsup{0}{}{0}+\partial\mp@subsup{r}{}{1}/\partial\mp@subsup{r}{}{1}+\partial\mp@subsup{r}{}{2}/\partial\mp@subsup{r}{}{2}+\partial\mp@subsup{r}{}{3}/\partial\mp@subsup{r}{}{3}
(R\cdot\mp@subsup{\partial}{S}{\prime}}[\mathbf{S}]=\mathbf{R
(R\cdot\mp@subsup{\partial}{S}{\prime}}[\mathbf{S}]=\mathbf{R
(R\cdot\mp@subsup{\partial}{S}{\prime}}[\mathbf{S}]=\mathbf{R
If}(\textrm{R}\cdot\mp@subsup{\partial}{\textrm{s}}{})=\textrm{d}/\textrm{d
If}(\textrm{R}\cdot\mp@subsup{\partial}{\textrm{s}}{})=\textrm{d}/\textrm{d
If}(\textrm{R}\cdot\mp@subsup{\partial}{\textrm{s}}{})=\textrm{d}/\textrm{d
S}\cdot\mp@subsup{\partial}{R}{})[R]=
S}\cdot\mp@subsup{\partial}{R}{})[R]=
S}\cdot\mp@subsup{\partial}{R}{})[R]=
Invariant
Invariant
(S}\cdot\mp@subsup{\partial}{\textrm{R}}{})[(R\cdot\mp@subsup{\boldsymbol{D}}{\textrm{S}}{\prime})[\mathbf{S}]]=\mathbf{S}\quad\mathrm{ Lorentz Scalars
(S}\cdot\mp@subsup{\partial}{\textrm{R}}{})[(R\cdot\mp@subsup{\boldsymbol{D}}{\textrm{S}}{\prime})[\mathbf{S}]]=\mathbf{S}\quad\mathrm{ Lorentz Scalars
(S}\cdot\mp@subsup{\partial}{R}{})[(R\cdot\mp@subsup{\partial}{S}{\prime})[..]]=[..] act generally

```
(S}\cdot\mp@subsup{\partial}{R}{})[(R\cdot\mp@subsup{\partial}{S}{\prime})[..]]=[..] act generally
```


$\mathbf{R}, \mathbf{S}, \mathbf{T}$ are generic 4－Vectors

```
R=R}\mp@subsup{R}{}{\mu}=(\mp@subsup{r}{}{0},\mp@subsup{r}{}{1},\mp@subsup{r}{}{2},\mp@subsup{r}{}{3})=(\mp@subsup{r}{}{0},r
S = S
T= T
```

$\partial_{\mathrm{R}}, \partial_{\mathrm{S}}, \partial_{\mathrm{T}}$ are their 4－Gradients

$$
\begin{aligned}
& \partial_{R}=\partial_{R^{\mu}}=\left(\partial / \partial r^{0},-\partial / \partial r^{1},-\partial / \partial r^{2},-\partial / \partial r^{3}\right)=\left(\partial / \partial r^{0},-\nabla_{r}\right) \\
& \partial_{\mathrm{s}}=\partial_{s^{\mu}}=\left(\partial / \partial s^{0},-\partial / \partial s^{1},-\partial / \partial s^{2},-\partial / \partial s^{3}\right)=\left(\partial / \partial s^{0},-\nabla_{s}\right) \\
& \text { The R,S,T here are gradient ID's, not indexes }
\end{aligned}
$$

（ $\mathrm{R} \cdot \boldsymbol{\partial}_{\mathrm{s}}$ ）

$=\left(r^{0}, r^{1}, r^{2}, r^{3}\right) \cdot\left(\partial / \partial s^{0},-\partial / \partial s^{1},-\partial / \partial s^{2},-\partial / \partial s^{3}\right)$
$=\left(r^{0} \partial / \partial s^{0}+r^{1} \partial / \partial s^{1}+r^{2} \partial / \partial s^{2}+r^{3} \partial / \partial s^{3}\right)$

$\left(\mathrm{R} \cdot \partial_{\mathrm{s}}\right)[\mathrm{S}]$

$=\left(r^{0} \partial \partial s^{0}+r^{1} \partial / \partial s^{1}+r^{2} \partial / \partial s^{2}+r^{3} \partial / \partial s^{3}\right)\left[\left(s^{0}, s^{1}, s^{2}, s^{3}\right)\right]$
$=\left(\left(r^{0} \partial / \partial s^{0}+r^{1} \partial / \partial s^{1}+r^{2} \partial / \partial s^{2}+r^{3} \partial / \partial s^{3}\right) s^{0}\right.$ ，
$\left(r^{0} \partial / \partial s^{0}+r^{1} \partial / \partial s^{1}+r^{2} \partial / \partial s^{2}+r^{3} \partial / \partial s^{3}\right) s^{1}$,
$\left(r^{0} \partial / \partial s^{0}+r^{1} \partial / \partial s^{1}+r^{2} \partial / \partial s^{2}+r^{3} \partial / \partial s^{3}\right) s^{2}$,
$\left.\left(r^{0} \partial / \partial s^{0}+r^{1} \partial / \partial s^{1}+r^{2} \partial / \partial s^{2}+r^{3} \partial / \partial s^{3}\right) s^{3}\right)$
$=\left(r^{0}, r^{1}, r^{2}, r^{3}\right)=\mathbf{R}$
$(S \cdot T)=\left(s^{0}, s^{1}, s^{2}, s^{3}\right) \cdot\left(t^{0}, t^{1}, t^{2}, t^{3}\right)=\left(s^{0} t^{0}-s^{1} t^{1}-s^{2} t^{2}-s^{3} t^{3}\right)$
$\left(\mathrm{R} \cdot \partial_{\mathrm{s}}\right)[(\mathrm{S} \cdot \mathrm{T})]$
$=\left(r^{0} \partial / \partial s^{0}+r^{1} \partial / \partial s^{1}+r^{2} \partial / \partial s^{2}+r^{3} \partial / \partial s^{3}\right)\left[\left(s^{00} t^{0}-s^{1} t^{1}-s^{2} t^{2}-s^{3} t^{3}\right)\right]$
$=\left(r^{0} t^{0} r^{1} t^{1}-r^{2} t^{2}-r^{3} t^{3}\right)$
$=(\mathbf{R} \cdot \mathbf{T})$

SR 4－Scalar
（ 0,0 ）－Tensor S or S_{0}
Lorentz Scalar
$A \cdot B=A^{\mu} \eta_{\mu v} B^{v}=\left[\left(a^{0}\right)\left(b^{0}\right)-a \cdot b\right]=\left(a^{0}\right)\left(b^{0}{ }_{0}\right)$
＝Lorentz Scalar Invariant
using Minkowski Metric $\eta_{\mu v}=(+1,-1,-1,-1)$

Now，apply to SR 4－Vector physics：
$\mathbf{R}=\mathbf{R}^{\mu}=(\mathrm{ct}, \mathrm{r}) \quad$ 4－Position
$\mathbf{U}=\mathbf{U}^{\mathbf{\mu}}=(\gamma \mathrm{c}, \gamma \mathbf{u})$ 4－Velocity
$\partial_{R}=\partial_{R^{\mu}}=\partial / \partial R_{\mu}=\left(\partial / \partial c t,--\nabla_{r}\right) \quad$ 4－PosGradient
$\partial_{u}=\partial_{u^{\mu}}=\partial / \partial U_{\mu}=\left(\partial / \partial \gamma_{c},-\nabla_{\mu u}\right)$ 4－VelGradient
$\left(\mathrm{U} \cdot \partial_{\mathrm{R}}\right)[\mathrm{R}]=\mathbf{U}$
$(\mathrm{d} / \mathrm{d} \tau)[\mathrm{R}]=\mathbf{U}$
ニニニニーニーニー＝
$\therefore\left(\mathrm{U} \cdot \partial_{\mathrm{R}}\right) \mathrm{d} / \mathrm{d} \tau$
ProperTime Derivative is Lorentz Scalar
$\left(\mathbf{R} \cdot \partial_{\mathrm{U}}\right)[\mathbf{U}]=\mathbf{R}$
$(\mathrm{J} \mathrm{d} \tau)[\mathbf{U}]=\mathbf{R}$
$\therefore========$
$\therefore\left(\mathbf{R} \cdot \partial_{\mathrm{J}}\right)=\mathrm{\int} \mathrm{~d} \tau$
ProperTime Integral is Lorentz Scalar
$\left(\mathbf{R} \cdot \partial_{\mathrm{U}}\right) \mathbf{U}=\int \mathrm{d} \tau \mathbf{U}=\int \mathrm{d} \tau \mathrm{d} \mathbf{R} / \mathrm{d} \tau=\int \mathrm{d} \mathbf{R}=\mathbf{R}$
$\left(\mathrm{R} \cdot \partial_{\mathrm{U}}\right)=\int \mathrm{d} \tau \quad\left(\mathrm{dR} \cdot \partial_{\mathrm{R}}\right)=\mathrm{d}[.$.
$\left(\mathrm{R} \cdot \partial_{\mathrm{u}}\right)\left[\left(\mathrm{U} \cdot \partial_{\mathrm{R}}\right)[. .].\right]=[.] \quad=.\left(\mathrm{R} \cdot \partial_{\mathrm{R}}\right)[.$.
$\left((\mathrm{d} \tau)[(\mathrm{d} / \mathrm{d} \tau)[. .]]=.[.]=.\left(\mathrm{J} R \cdot \partial_{\mathrm{R}}\right)[]\right.$.
$\mathrm{d} \tau[\mathrm{d} / \mathrm{d} \tau[.]=.[.] \quad=.\mathrm{d}[.]=.[.]$.
$\mathrm{dd}[.]=.[.$.
from ChainRule $f(\mathbf{R})$

Trace $\left[T^{\mu v}\right]=\eta_{\mu v} T^{\mu v}=T^{\mu_{\mu}}=T$
$\mathbf{V} \cdot \mathbf{V}=\mathrm{V}^{\mathrm{V}} \eta_{\mathrm{pv}} \mathrm{V}^{\mathrm{V}}=\left[\left(\mathrm{v}^{0}\right)^{2}-\mathbf{v} \cdot \mathbf{v}\right]=\left(\mathrm{v}_{0}^{0}\right)^{2}$
＝Lorentz Scalar Invariant

A Tensor Study of Physical 4-Vectors

Using 4-Position \& its 4-PositionGradient:

$\mathbf{R}=\mathrm{R}^{\mu}=(\mathrm{ct}, \mathrm{x}, \mathrm{y}, \mathrm{z})$
$\partial_{R}=\partial_{R}{ }^{\mu}=\partial / \partial R_{\mu}=(\partial / \partial c t,-\partial / \partial x,-\partial / \partial y,-\partial / \partial z) \quad R_{\mu}=\eta_{\mu v} R^{\mu}$
$f=f[t, x, y, z]=a$ math function of SpaceTime coords. R
$\mathrm{d}[f]=\mathrm{dt}(\partial f / \partial \mathrm{t})+\mathrm{dx}(\partial f / \partial \mathrm{x})+\mathrm{dy}(\partial f / \partial \mathrm{y})+\mathrm{dz}(\partial f / \partial z)=\left(\mathrm{dR} \cdot \partial_{\mathrm{R}}\right)[f]$

$\mathrm{df} / \mathrm{dt}=$

$=\mathrm{dt} / \mathrm{dt}(\partial \mathrm{f} / \partial \mathrm{t})+\mathrm{dx} / \mathrm{dt}(\partial \mathrm{f} / \partial \mathrm{x})+\mathrm{dy} / \mathrm{dt}(\partial \mathrm{f} / \partial \mathrm{y})+\mathrm{dz} / \mathrm{dt}(\partial \mathrm{f} / \partial \mathrm{z})$
$=(\partial f / \partial t)+u^{x}(\partial f / \partial \mathrm{x})+\mathrm{u}^{\mathrm{y}}(\partial \mathrm{f} / \partial \mathrm{y})+\mathrm{u}^{\mathrm{z}}(\partial \mathrm{f} / \partial \mathrm{z})$
$=(\partial / \partial t)[f]+\mathbf{u} \cdot \nabla[f]$
$\mathrm{d} / \mathrm{dt}=(\partial / \partial \mathrm{t})+\mathrm{u} \cdot \nabla=\left(\partial_{\mathrm{t}}+\mathbf{u} \cdot \nabla\right)$
$\gamma(\mathrm{d} / \mathrm{dt})=\gamma\left(\partial_{\mathrm{t}}+\mathbf{u} \cdot \nabla\right)=\mathrm{d} / \mathrm{d} \tau=\mathbf{U} \cdot \partial_{\mathbf{R}}=\mathrm{d} \mathbf{R} / \mathrm{d} \tau \cdot \partial=\mathrm{d} \mathbf{R} \cdot \partial / \mathrm{d} \tau$ $\left(\mathbf{U} \cdot \partial_{\mathbf{R}}\right)=\gamma(\mathrm{c}, \mathbf{u}) \cdot\left(\partial_{\mathrm{t}} / \mathrm{c},-\nabla\right)=\gamma\left(\partial_{\mathrm{t}}+\mathbf{u} \cdot \nabla\right)=\mathrm{d} / \mathrm{d} \tau$

Using Generic 4-Vector \& its associated 4-Gradient:

$\mathbf{A}=\mathrm{A}^{\mu}=\left(\mathrm{a}^{0}, \mathrm{a}^{1}, \mathrm{a}^{2}, \mathrm{a}^{3}\right)$
$\partial_{A}=\partial_{A^{\mu}}=\partial / \partial A_{\mu}=\left(\partial / \partial a^{0},-\partial / \partial a^{1},-\partial / \partial a^{2},-\partial / \partial a^{3}\right)$
$A_{\mu}=\eta_{\mu \nu} A^{\mu}$
$f=f\left[a^{0}, a^{1}, a^{2}, a^{3}\right]=a$ math function of components of 4-Vector \mathbf{A}
$d[f]=d a^{0}\left(\partial f / \partial a^{0}\right)+d a^{1}\left(\partial f / \partial a^{1}\right)+d a^{2}\left(\partial f / \partial a^{2}\right)+d a^{3}\left(\partial f / \partial a^{3}\right)=\left(d \mathbf{A} \cdot \partial_{A}\right)[f]$
$\mathrm{d}[.]=.\left(\mathrm{d} \mathbf{A} \cdot \partial_{\mathrm{A}}\right)[.$.
$\mathrm{d} / \mathrm{da}^{0}{ }_{\mathrm{O}}=\left(\mathrm{d} \mathbf{A} \cdot \partial_{\mathrm{A}}\right) / \mathrm{da}_{\mathrm{o}}{ }_{0}=\left(\mathrm{d} \mathbf{A} / \mathrm{da}^{0}{ }_{\mathrm{O}} \cdot \partial_{\mathrm{A}}\right)=\left(\mathbf{A}^{\prime} \cdot \partial_{\mathrm{A}}\right)$

$\left(\mathbf{A}^{\prime} \cdot \partial_{\mathrm{A}}\right)=\left(\mathrm{d} \mathbf{A} / \mathrm{da}^{0}{ }_{0} \cdot \partial_{\mathrm{A}}\right)=\left(\mathrm{d} \mathbf{A} \cdot \partial_{\mathrm{A}}\right) / \mathrm{da}^{0}{ }_{0}=\mathrm{d} / \mathrm{da}^{0}{ }_{0}$

Apply general rule to SR 4-Position
$\mathbf{R}=R^{\mu}=\left(r^{0}, r^{1}, r^{2}, r^{3}\right)=(c t, r)$
$\mathrm{r}_{\mathrm{o}}^{0}=\mathrm{ct} \mathrm{t}_{\mathrm{o}}=\mathrm{C} \tau$
$\left(\mathrm{dR} / \mathrm{dc} \tau \cdot \partial_{\mathrm{R}}\right)=\left(\mathrm{dR} \cdot \partial_{\mathrm{R}}\right) / \mathrm{dc} \tau=\mathrm{d} / \mathrm{dc} \tau$
$\left(\mathrm{dR} / \mathrm{d} \tau \cdot \partial_{\mathrm{R}}\right)=\left(\mathrm{dR} \cdot \partial_{\mathrm{R}}\right) / \mathrm{d} \tau=\mathrm{d} / \mathrm{d} \tau$
$\left(\mathrm{U} \cdot \partial_{\mathrm{R}}\right)=\left(\mathrm{dR} \cdot \partial_{\mathrm{R}}\right) / \mathrm{d} \tau=\mathrm{d} / \mathrm{d} \tau$
$\left(\mathbf{U} \cdot \partial_{R}\right)=d / d \tau$
$\mathrm{d}[f]=\left(\mathrm{d} \mathbf{A} \cdot \partial_{\mathrm{A}}\right)[f]$
$\mathrm{d}[.]=.\left(\mathrm{d} \mathbf{A} \cdot \partial_{\mathrm{A}}\right)[.$.
Apply the general rule to SR 4-Vectors
$\mathrm{d}[.]=.\left(\mathrm{dR} \cdot \partial_{\mathrm{R}}\right)[.$.
$\mathrm{d}\left[. . \mathrm{]}=\left(\mathrm{dU} \cdot \partial_{\mathrm{O}}\right)[. .]\right.$.
$\mathrm{d}[.]=.\left(\mathrm{dA} \cdot \partial_{\mathrm{A}}\right)[.$.
The differential operator can be applied to various functions with different sets of variables.

A Tensor Study of Physical 4-Vectors

```
(R\cdot\partialu)[..]
= ddR}\cdot\partialv[..
```



```
=|d\tau U U
=\intd\tau[.] if (U·\partialu)[..] = [..]
```

$\left(\mathbf{R} \cdot \partial_{u}\right)\left(\mathrm{U} \cdot \partial_{\mathrm{R}}\right)[.]=.[.$.	= (R $\left.\cdot \partial_{u}\right)(\mathrm{d} / \mathrm{d} \tau)[.]=.[.$.
$\left(\mathrm{R} \cdot \partial_{\mathrm{R}}\right)[. .]=.[.$.	= ($\mathrm{l} \mathrm{d} \tau)(\mathrm{d} / \mathrm{d} \tau)[]=.[.$.
$]\left(\mathrm{dR} \cdot \partial_{\mathrm{R}}\right)[.]=.[.$.	= $\mathrm{d} \mathrm{d}[. . \mathrm{]}=[.]$.
Jd[..] = [..]	[..] $=$ [..]

$\left(\mathbf{R} \cdot \partial_{\mathrm{J}}\right)[\mathbf{A}]=\left(\mathbf{R} \cdot \partial_{\mathrm{U}}\right)[\mathrm{d} \mathbf{U} / \mathrm{d} \tau]=\int \mathrm{d} \tau \mathrm{d} \mathbf{U} / \mathrm{d} \tau=\int \mathrm{d} \mathbf{U}=\mathbf{U}$
$\left(\mathrm{U} \cdot \partial_{\mathrm{R}}\right)[.]=.\left(\mathrm{U} \cdot \partial_{\mathrm{R}}\right)[.$.
$\left(\mathbf{U} \cdot \partial_{R}\right)\left(\mathbf{U} \cdot \partial_{U}\right)[.]=.\left(\mathbf{U} \cdot \partial_{R}\right)[.$.
$\mathrm{d} / \mathrm{d} \tau\left(\mathbf{U} \cdot \partial_{\mathrm{J}}\right)[.]=.\left(\mathbf{U} \cdot \partial_{\mathrm{R}}\right)[.$.
$\mathrm{d} / \mathrm{d} \tau\left(\partial_{u}\right)[.]=.\left(\partial_{\mathrm{R}}\right)[.$.

4-Velocity \mathbf{U} is a good common factor:
$\left(\mathbf{U} \cdot \partial_{\mathrm{R}}\right)=\mathrm{d} / \mathrm{d} \tau \quad$ ProperTime Derivative (PTD)
$\left(\mathrm{U} \cdot \mathrm{\partial}_{\mathrm{U}}\right)=1$
$\left(U \cdot \partial_{A}\right)=\int \mathrm{d} \tau$
ProperTime Integral (PTI)

4-Position
4-Velocity
4-Acceleration
4-Jerk
4-Momentum
4-Force
4-PositionGradient 4-VelocityGradient
4-AccelGradient
4-JerkGradient
4-MomentumGradient
4-ForceGradient

Cauchy's Integral Formula:
ProperTime Derivatives (PTD) from: Augustin-Louis Cauchy
$\left(U \cdot \partial_{R}\right)=d / d \tau$
$\left(\mathbf{A} \cdot \partial_{\mathrm{u}}\right)=\mathrm{d} / \mathrm{d} \tau$
$\left(\mathbf{J} \cdot \partial_{\mathrm{A}}\right)=\mathrm{d} / \mathrm{d} \tau$
$\left(F \cdot \partial_{\mathrm{P}}\right)=\mathrm{d} / \mathrm{d} \tau$
ProperTime Unit (PTU)
$\left(\mathbf{U} \cdot \partial_{\mathrm{u}}\right)=1$
ProperTime Integrals (PTI)
$\left(\mathbf{R} \cdot \partial_{\mathrm{u}}\right)=\int \mathrm{d} \tau$
$\left(\mathrm{U} \cdot \partial_{\mathrm{A}}\right)=\int \mathrm{d} \tau$
$\left(\mathbf{A} \cdot \partial_{J}\right)=\int d \tau$
$\left(\mathbf{P} \cdot \partial_{\mathrm{F}}\right)=\int \mathrm{d} \tau$
it is a central statement in complex analysis. It expresses the fact that a holomorphic function defined on a disk is completely determined by its values on the boundary of the disk, and it provides integral formulas for all derivatives of a holomorphic function.

Cauchy's formula shows that, in complex analysis,
"differentiation is equivalent to integration": complex differentiation, like integration, behaves well under uniform limits.
$(0,1)$-Tensor $\mathrm{V}_{\mu}=\left(\mathrm{v}_{0},-\mathrm{v}\right)$

ProperTime Derivative $\left(\mathbf{U} \cdot \partial_{\mathrm{R}}\right)[.]=.\mathrm{d}[..] / \mathrm{d} \tau=\gamma \mathrm{d}[.] /$.

(PTD) ProperTime Derivative $\left(\mathrm{U} \cdot \partial_{\mathrm{B}}\right)[.]=.\mathrm{d}[. . / \mathrm{d} \tau=\gamma \mathrm{d}[. . / \mathrm{dt}$
PTD of ProperTime $\tau:\left(\mathbf{U} \cdot \partial_{R}\right)[\tau]=(\mathrm{d} / \mathrm{d} \tau)[\tau]=\mathrm{d} \tau / \mathrm{d} \tau=1$
PTD of RelativisticTime $\mathrm{t}:\left(\mathrm{U} \cdot \partial_{\mathrm{R}}\right)[\mathrm{t}]=(\mathrm{d} / \mathrm{d} \tau)[\mathrm{t}]=\gamma \mathrm{dt} / \mathrm{dt}=\gamma$
PTD of 4-Position $\mathbf{R}:\left(\mathbf{U} \cdot \partial_{\mathbf{R}}\right)[\mathbf{R}]=(\mathrm{d} / \mathrm{d} \tau)[\mathbf{R}]=(\mathrm{d} \mathbf{R} / \mathrm{d} \tau)=\mathbf{U}$ PTD of 4-Velocity $\mathbf{U}:\left(\mathbf{A} \cdot \partial_{U}\right)[\mathbf{U}]=\left(\mathbf{U} \cdot \partial_{\mathbf{R}}\right)[\mathbf{U}]=(\mathrm{d} / \mathrm{d} \tau)[\mathbf{U}]=(\mathrm{d} \mathbf{U} / \mathrm{d} \tau)=\mathbf{A}$ PTD of 4-Momentum $\mathbf{P}:\left(\mathbf{F} \cdot \partial_{\mathrm{P}}\right)[\mathbf{P}]=\left(\mathbf{U} \cdot \partial_{\mathrm{R}}\right)[\mathrm{P}]=(\mathrm{d} / \mathrm{d} \tau)[\mathbf{P}]=(\mathrm{dP} / \mathrm{d} \tau)=\mathbf{F}$

PTD of 4-AngMomentum $\mathbf{R}^{\wedge} \mathbf{P}:\left(\mathbf{F} \cdot \partial_{P}\right)\left[\mathbf{R}^{\wedge} \mathbf{P}\right]=\left(\mathbf{U} \cdot \partial_{\mathrm{R}}\right)\left[\mathbf{R}^{\wedge} \mathbf{P}\right]=(\mathrm{d} / \mathrm{d} \tau)\left[\mathbf{R}^{\wedge} \mathrm{P}\right]=$ $\mathrm{d}\left(\mathbf{R}^{\wedge} \mathbf{P} / \mathrm{d} \tau\right)=\left(\mathrm{d} \mathbf{R} / \mathrm{d} \tau^{\wedge} \mathbf{P}+\mathbf{R}^{\wedge} \mathrm{dP} / \mathrm{d} \tau\right)=\left(\mathbf{U}^{\wedge} \mathrm{m}_{0} \mathbf{U}+\mathbf{R}^{\wedge} \mathbf{F}\right)=\left(0^{\mathrm{N}}+\mathbf{R}^{\wedge} \mathbf{F}\right)=\mathbf{R}^{\wedge} \mathbf{F}$

PTD of Actionlnvariant $\mathrm{S}_{\text {action }}:\left(\mathbf{U} \cdot \partial_{\mathrm{R}}\right)\left[\mathrm{S}_{\text {action }}\right]=\left(\mathbf{U} \cdot \partial_{\mathrm{R}}\right)\left[-\mathbf{P}_{\mathrm{T}} \cdot \mathbf{R}\right]=-\mathrm{P}_{\mathrm{T}} \cdot \mathbf{U}=\mathrm{L}_{\mathrm{o}}$ $L_{0}=(\mathrm{d} / \mathrm{d} \tau) S_{\text {action }}=(\gamma \mathrm{d} / \mathrm{dt}) \mathrm{S}_{\text {action }}: \mathrm{L}=\mathrm{L}_{\mathrm{o}} / \gamma=(\mathrm{d} / \mathrm{dt}) \mathrm{S}_{\text {action }}$

PTD of WavePhase $\Phi_{\text {phase }}:\left(\mathbf{U} \cdot \partial_{\mathrm{R}}\right)\left[\Phi_{\text {phase }}\right]=\left(\mathbf{U} \cdot \boldsymbol{\partial}_{\mathrm{R}}\right)[-\mathbf{K} \cdot \mathbf{R}]=-\mathbf{K} \cdot \mathbf{U}=\omega_{0}$ $\omega_{o}=(\mathrm{d} / \mathrm{d} \tau) \Phi_{\text {phase }}=(\gamma \mathrm{d} / \mathrm{dt}) \Phi_{\text {phase }}$

PTD of RestMass $m_{0}:\left(U \cdot \partial_{\mathrm{R}}\right)\left[\mathrm{m}_{\mathrm{o}}\right]=(\mathrm{d} / \mathrm{d} \tau)\left[\mathrm{m}_{\mathrm{o}}\right]=\mathrm{U} \cdot \mathrm{F} / \mathrm{c}^{2}$ $\left\{\right.$ from $\left.\mathbf{F}=\mathrm{dP} / \mathrm{d} \tau=\mathrm{d}\left[\mathrm{m}_{0} \mathbf{U}\right] / \mathrm{d} \tau=\mathrm{d}\left[\mathrm{m}_{0}\right] / \mathrm{d} \tau \mathbf{U}+\mathrm{m}_{0} \mathbf{A}: \mathbf{U} \cdot \mathbf{U}=\mathrm{c}^{2}: \mathbf{U} \cdot \mathbf{A}=0\right\}$

Relativistic 4D Euler-Lagrange Relation PTD of 4-"Velocity"Gradient $\partial_{u}:\left(\mathbf{U} \cdot \partial_{\mathrm{R}}\right)\left[\partial_{\mathrm{u}}\right]=(\mathrm{d} / \mathrm{d} \tau)\left[\partial_{\mathrm{u}}\right]=\partial_{\mathrm{R}}$

In theory, an integration constant can be added to any of these inputs.

(PTI) ProperTime Integral $\left.\left.\left(\mathbf{R} \cdot \partial_{u}\right)\right] ..\right]=\int\left[. . \mathrm{d} \tau=\int[. .(1 / \gamma) \mathrm{dt}\right.$

PTI of Unit $1:\left(\mathbf{R} \cdot \partial_{u}\right)[1]=\int[1] \mathrm{d} \tau=\tau$
PTI of LorentzFactor $\gamma:\left(\mathbf{R} \cdot \partial_{\mathrm{u}}\right)[\gamma]=\int[\gamma](1 / \gamma) \mathrm{dt}=\mathrm{t}$
 PTI of 4-Acceleration $\mathbf{A}:\left(\mathbf{U} \cdot \partial_{\mathrm{A}}\right)[\mathbf{A}]=\left(\mathbf{R} \cdot \partial_{\mathrm{O}}\right)[\mathbf{A}]=(\mathrm{d} \tau)[\mathbf{A}]=(\mathrm{Id} \tau)[\mathrm{d} \mathbf{U} / \mathrm{d} \tau]=[\mathrm{d} \mathbf{U}]=\mathbf{U}$ PTI of 4-Force F : $\left(\mathbf{P} \cdot \partial_{\mathrm{F}}\right)[\mathrm{F}]=\left(\mathbf{R} \cdot \partial_{\mathrm{u}}\right)[\mathrm{F}]=(\mathrm{J} d \tau)[\mathbf{F}]=(\mathrm{Jd} \tau)[\mathrm{dP} / \mathrm{d} \tau]=\int[\mathrm{dP}]=\mathbf{P}$

PTI of 4-Torque $R^{\wedge} F:\left(P \cdot \partial_{F}\right)\left[R^{\wedge} F\right]=\left(R \cdot \partial_{u}\right)\left[R^{\wedge} F\right]$

$$
=\left(\int \mathrm{d} \tau\right)\left[\mathbf{R}^{\wedge} \mathbf{F}\right]=(\mathrm{Jd} \tau)\left[\mathbf{R}^{\wedge} \mathrm{dP} / \mathrm{d} \tau\right]=\int\left[\mathbf{R}^{\wedge} \mathrm{dP}\right]=\mathbf{R}^{\wedge} \mathbf{P}
$$

PTI of RestLagrangian $L_{0}:\left(R \cdot \partial_{u}\right)\left[L_{0}\right]=\left(R \cdot \partial_{u}\right)\left[-P_{\mathrm{T}} \cdot \mathbf{U}\right]=\left[-P_{\mathrm{T}} \cdot \mathbf{R}\right]=\mathrm{S}_{\text {action }}$
$\mathrm{S}_{\text {action }}=(\mathrm{J} \mathrm{d} \tau) \mathrm{L}_{0}=(\mathrm{Jdt} / \gamma) \gamma \mathrm{L}=(\mathrm{Jdt}) \mathrm{L}=\int \mathrm{Ldt}$
PTI of RestAngFreq $\omega_{0}:\left(\mathbf{R} \cdot \partial_{\mathrm{u}}\right)\left[\omega_{0}\right]=\left(\mathbf{R} \cdot \partial_{\mathrm{J}}\right)[-\mathbf{K} \cdot \mathbf{U}]=[-\mathbf{K} \cdot \mathbf{R}]=\Phi_{\text {phase }}$ $\Phi_{\text {phase }}=(\mathrm{Id} \tau) \omega_{0}$

PTI of "ForceScalar" : (R•放)[U•F/c $\left.{ }^{2}\right]=\mathbf{R} \cdot \mathbf{F} / \mathrm{c}^{2}=\int \mathrm{Ud} \tau \cdot \mathrm{dP} / \mathrm{d} \tau / \mathrm{c}^{2}=\mathbf{U} \cdot \mathbf{P} / \mathrm{c}^{2}=\mathrm{E}_{\mathrm{o}} / \mathrm{c}^{2}=\mathrm{m}_{\mathrm{o}}$ $\left.(\mathrm{d} \tau \tau)\left[\mathrm{U} \cdot \mathrm{F} / \mathrm{c}^{2}\right]=(\mathrm{d} \tau \tau)[\mathrm{d} / \mathrm{d} \tau)\left[\mathrm{m}_{0}\right]\right]=\int \mathrm{d}\left[\mathrm{m}_{0}\right]=\mathrm{m}_{0}$
"Inverted" Relativistic 4D Euler-Lagrange Relation PTI of 4-"Position"Gradient $\partial_{R}:\left(R-\partial_{U}\right)\left[\partial_{R}\right]=\left(\int d \tau\right)\left[\partial_{R}\right]=\partial_{u}$

In theory, an integration constant can be added to any of these result outputs.

Writing the ProperTime Derivative $=\left(\mathbf{U} \cdot \partial_{\mathbf{R}}\right)=\mathrm{d}[..] / \mathrm{d} \tau$ and the ProperTime Integral $=\left(\mathbf{R} \cdot \partial_{\mathrm{U}}\right)=\int[.] .\mathrm{d} \tau$ in this format shows that these operations are Lorentz Invariant Scalars.

Lorentz Factor:
Relativistic Gamma $\gamma=1 / \sqrt{[1-\beta \cdot \beta]: ~} \boldsymbol{\beta}=\mathbf{u} / \mathbf{c}$ $\gamma^{\prime}=\mathrm{d} \gamma / \mathrm{dt}=\gamma^{3} \beta \cdot \mathrm{a} / \mathrm{c}=\gamma^{3} \mathrm{u} \cdot \mathrm{a} / \mathrm{c}^{2}$

Trace $\left[T^{\mu V}\right]=\eta_{T V} T^{\mu V}=T_{\mu}^{\mu_{\mu}}=T$
= Lorentz Scalar Invariant

Some 4-Position R^{μ} Relations

SR 4-Tensor
(2,0)-Tensor T ${ }^{\mu \nu}$ (1,1)-Tensor $\mathrm{T}^{\mu}{ }_{v}$ or T_{μ}
$(0,2)$-Tensor $\mathrm{T}_{\mu v}$ $(0,1)$-Tensor $\mathrm{V}_{\mu}=\left(\mathrm{v}_{0},-\mathrm{v}\right)$
= Lorentz Scalar Invariant

Some 4-Velocity Uי Relations

$\mathrm{f}=\mathrm{f}[\mathrm{t}, \mathrm{x}, \mathrm{y}, \mathrm{z}]=\mathrm{a}$ math function of SpaceTime coords.
$d f=d t(\partial f / \partial t)+d x(\partial f / \partial x)+d y(\partial f / \partial y)+d z(\partial / \partial z)=(d R \cdot \partial)[f]$
df/dt =
$=d t / d t(\partial f / \partial t)+d x / d t(\partial f / \partial x)+d y / d t(\partial r / \partial y)+d z / d t(\partial f / \partial z)$ $=(\partial / / \partial t)+u^{x}(\partial / / \partial x)+u^{y}(\partial f / \partial y)+u^{z}(\partial / \partial z)$
$=(\partial / \partial t)[f]+u \cdot \nabla[f]$
$\mathrm{d} / \mathrm{dt}=(\partial / \partial \mathrm{t})+\mathrm{u} \cdot \nabla=\left(\partial_{\mathrm{t}}+\mathrm{u} \cdot \nabla\right)$
Lorentz Scalar Invariant $\gamma(\mathrm{d} / \mathrm{dt})=\gamma\left(\partial_{\mathrm{t}}+\mathrm{u} \cdot \nabla\right)=(\mathrm{d} / \mathrm{d} \tau)=(\mathrm{U} \cdot \partial)=(\mathrm{dR} / \mathrm{d} \tau \cdot \partial)$

4-Position
$\mathbf{R}=\mathbf{R}^{\mu}=(\mathrm{ct}, \mathrm{r}) \in<$ Event $>$
$\rightarrow(c t, x, y, z)$
alt. notation $X=X^{\mu}$

4-Velocity
$\mathbf{U}=\mathbf{U}^{\mu}=\gamma(\mathrm{c}, \mathrm{u})$
$=c \bar{T}=c^{2} \partial[\tau]=d \mathbf{R} / d \tau$
$\mathrm{U} \cdot \mathrm{U}=\mathrm{c}^{2}$
invariant
LightSpeed
(c)
$\left[\mathrm{m} / \mathrm{s}^{2}\right]$
4-Acceleration
$\mathbf{A}=\mathrm{A}^{\mu}=\gamma\left(\mathrm{c} \gamma^{\prime}, \gamma^{\prime} \mathbf{u}+\gamma \mathrm{a}\right)$
$=\mathrm{d} \mathbf{U} / \mathrm{d} \tau=\mathrm{d}^{2} \mathbf{R} / \mathrm{d} \tau^{2}:\left\{\gamma^{\prime}=\mathrm{d} \gamma / \mathrm{dt}\right\}$

SR 4-Tensor (2,0)-Tensor T ${ }^{\mu v}$ (1,1)-Tensor $T^{\mu}{ }_{v}$ or T_{μ}
$(0,2)$-Tensor $T_{\mu v}$ $(0,1)$-Tensor $\mathrm{V}_{\mu}=\left(\mathrm{v}_{0},-\mathrm{v}\right)$


```
4-Vector V = V }\mp@subsup{}{}{\mu}=(\mp@subsup{v}{}{\mu})=(\mp@subsup{v}{}{0},\mp@subsup{v}{}{\prime})=(\mp@subsup{v}{}{0},v
SR 4-Vector V = V }\mp@subsup{}{}{\mu}=(\mathrm{ scalar * c }\mp@subsup{}{}{\pm1},3-vector
```

```
\((+,-,-,-) S R \rightarrow 0\)
```


The tedious algebra

SRQM Study: Physical 4-Vectors Some 4-Gradient ∂^{4} Relations

A Tensor Study of Physical 4-Vectors

The relations below are for the 4 -(Position)Gradient ∂_{R}, 4-Gradients wrt. other 4-Vector variables exist also... ex. 4-WaveGradient ∂_{K} http://scirealm.org/SRQM.pdf

$(0,2)$-Tensor $\mathrm{T}_{\mu v}$

1,0) SR 4-Vecto SR 4-CNor $=V=\left(v^{0}, v\right)$ Vector:OneForm

 $(0,1)$-Tensor $\mathrm{V}_{\mu}=\left(\mathrm{v}_{0},-\mathrm{v}\right)$4-Vector $V=V^{\mu}=\left(v^{\mu}\right)=\left(v^{0}, v^{\prime}\right)=\left(v^{0}, v\right)$
SR 4-Vector $\mathbf{V}=\mathrm{V}^{\mu}=\left(\right.$ scalar ${ }^{*} \mathrm{c}^{ \pm 1}, 3$-vector $)$

General Motion:

4-Position	$\mathbf{R}=\mathbf{R}^{\mu}=(c t, r)$
4-Velocity	$\mathbf{U}=\mathbf{U}^{\mu}=\gamma(c, u)$
4-Acceleration $\mathbf{A}=\mathbf{A}^{\mu}=\gamma\left(c \gamma^{\prime}, \gamma^{\prime} \mathbf{u}+\gamma \mathbf{a}\right)$	
4-Jerk	$\mathbf{J}=\mathbf{J}^{\mu}=\gamma\left(\mathrm{c}\left(\gamma^{\prime 2}+\gamma \gamma^{\prime \prime}\right),\left(\gamma^{\prime 2}+\gamma \gamma^{\prime \prime}\right) \mathbf{u}+\gamma\left(3 \gamma^{\prime} \mathbf{a}+\gamma j\right)\right)$

$$
\begin{array}{ll}
=\mathbf{R} & =\mathrm{d}^{0} R / \mathrm{d} \tau^{0} \\
=\mathrm{d} \mathbf{R} / \mathrm{d} \tau & =\mathrm{d}^{1} \mathrm{R} / \mathrm{d} \tau^{1} \\
=\mathrm{dU} / \mathrm{d} \tau & =\mathrm{d}^{2} \mathbf{R} / \mathrm{d} \tau^{2}
\end{array}
$$

$$
=\mathrm{d} \mathbf{A} / \mathrm{d} \tau \quad=\mathrm{d}^{3} \mathrm{R} / \mathrm{d} \tau^{3}
$$

All Lorentz Scalar Products are Invariants

$(\mathbf{R} \cdot \mathbf{R})=(\mathrm{ct})^{2}-\mathbf{r} \cdot \mathbf{r}=\left(\mathrm{ct}_{0}\right)^{2}=(\mathrm{c} \tau)^{2}=-\left(\mathbf{r}_{0} \cdot \mathbf{r}_{0}\right)$:either (\pm), variable $(\mathrm{U} \cdot \mathbf{U})=(\mathrm{c})^{2}$:temporal(+),fundamental constant $(\mathbf{A} \cdot \mathbf{A})=-\left(\mathrm{a}_{\mathrm{o}}\right)^{2}=-(\mathrm{\alpha})^{2}=(\mathrm{i} \mathrm{\alpha})^{2}$: spatial $(-)$, variable
$(\mathrm{J} \cdot \mathrm{J})=\left(\mathrm{J}_{0} \cdot \mathrm{~J}_{\mathrm{o}}\right)=\left(\mathrm{C} \gamma_{0}{ }^{\prime \prime}\right)^{2}-\left(\mathrm{j}_{\mathrm{o}}\right)^{2}$:either (\pm), variable

General Motion: (alt form \mathbf{A}, J)

4-Position $\quad \mathbf{R}=\mathbf{R}^{\mu}=(c t, r)$
 4-Velocity $\quad \mathbf{U}=\mathrm{U}^{\mu}=\gamma(\mathrm{c}, \mathrm{u})$

4-Acceleration $\mathbf{A}=\mathrm{A}^{\mu}=\left(\gamma^{4}(\mathbf{a} \cdot \mathbf{u}) / \mathrm{c}, \gamma^{4}(\mathbf{a} \cdot \mathbf{u}) \mathbf{u} / \mathrm{c}^{2}+\gamma^{2} \mathbf{a}\right)$
4-Jerk $\quad \mathbf{J}=\mathrm{J}^{\mathbf{u}}=\gamma\left(\mathrm{c}\left(\gamma^{6}(\mathbf{a} \cdot \mathbf{u})^{2} / \mathrm{c}^{4}+\gamma^{4}\left[3 \gamma^{2}(\mathbf{a} \cdot \mathbf{u})^{2}+(\mathrm{a} \cdot \mathbf{u})^{3}\right] / \mathrm{c}^{2}\right),\left(\gamma^{6}(\mathrm{a} \cdot \mathbf{u})^{2} / \mathrm{c}^{4}+\gamma^{4}\left[3 \gamma^{2}(\mathrm{a} \cdot \mathbf{u})^{2}+(\mathrm{a} \cdot \mathbf{u})^{3}\right] / \mathrm{c}^{2}\right) \mathbf{u}+\gamma\left(3 \gamma^{3}(\mathrm{a} \cdot \mathbf{u}) \mathrm{a} / \mathrm{c}^{2}+\gamma \mathbf{j}\right)\right)$
w/ Spatial Orthogonality(\perp) $=$ (ct,r)
$=\gamma(\mathrm{c}, \mathrm{u})$
$=\gamma^{2}(0, \mathrm{a}) \perp$ if $(\mathbf{a} \cdot \mathbf{u})=0$
$=\gamma^{3}(0, \mathrm{j}) \perp$ if $(\mathbf{a} \cdot \mathbf{u})=0$

Lorentz Trans. $\Lambda \rightarrow R$ (R) otation $=$ Spatial: $\{|\mathbf{r}|,|\mathbf{u}|,|\mathbf{a}|,|j|\}$ \& $\{R, \Omega, \mathrm{v}\}$ constant $\mathbf{a}=\left(-\Omega^{2}\right) \mathbf{r}, \mathbf{j}=\left(-\Omega^{2}\right) \mathbf{u}$ $(\mathrm{a} \cdot \mathbf{u})=0=\gamma$
$\mathrm{n}_{1}=\cos : \mathrm{n}_{2}=\sin$

Circular Motion: constants $\{\mathrm{R}, \Omega, \gamma\}$

4-Position $\quad R=R^{\mu}=(c t, r=R \hat{r})$
4-Velocity $\quad \mathrm{U}=\mathrm{U}^{\mu}=\gamma^{1}\left(\mathrm{c}, \mathrm{u}=\mathrm{R} \Omega \ominus^{\top}\right)$

4-Acceleration $\mathbf{A}=\mathrm{A}^{\mu}=\gamma^{2}\left(0, \mathrm{a}=-\mathrm{R} \Omega^{2} \mathrm{r}\right)$
4-Jerk $\quad \mathbf{J}=\mathrm{J}^{\mu}=\gamma^{3}\left(0, j=-R \Omega^{3}{ }^{\boldsymbol{\gamma}}\right)$

SR 4-Tensor
(2,0)-Tensor T ${ }^{\mu \nu}$ $(1,1)$-Tensor $\mathrm{T}^{\mu}{ }_{v}$ or T_{μ} $(0,2)$-Tensor $T_{\mu v}$

SR 4-Vector $(0,1)$-Tensor $\mathrm{V}_{\mu}=\left(\mathrm{v}_{0},-\mathrm{v}\right)$

SR 4-Scalar
(0,0)-Tensor S or So
Lorentz Scalar

Lorentz Trans. $\boldsymbol{\Lambda} \rightarrow \mathbf{B}$ (B)oost = Time Space: $\{|\mathbf{R}|,|\mathbf{U}|,|\mathbf{A}|,|\mathrm{J}|\}$ \&

Hyperbolic Case:

 $-(\mathbf{A} \cdot \mathbf{R})=(\mathrm{C})^{2}=(\mathbf{U} \cdot \mathbf{U})$$|\mathbf{A}|=|\mathbf{U}|^{2}| | \mathbf{R} \mid=\alpha$
\qquad 4-Position $\quad \mathbf{R}=\mathbf{R}^{\mu}=\left(c^{2} / \alpha\right)(\sinh [\alpha \tau / c], \cosh [\alpha \tau / c] \hat{n})$ 4-Velocity $\quad \mathbf{U}=\mathrm{U}^{\mu}=(\mathrm{c})(\cosh [\alpha \tau / \mathrm{c}], \sinh [\alpha \tau / \mathrm{c}] \hat{n})$ 4-Acceleration $\mathbf{A}=\mathrm{A}^{\mu}=(\mathrm{a})(\sinh [\alpha \tau / \mathrm{c}], \cosh [\alpha \tau / c] \hat{n})$ 4-Jerk $\quad J=J^{\mu}=\left(\alpha^{2} / c\right)(\cosh [\alpha \tau / c], \sinh [\alpha \tau / c] \hat{n})$

Special Cases still maintain: $\mathbf{R}^{n^{\prime}}=\mathrm{d} \mathbf{R}^{(n-1)} / \mathrm{d} \tau:(\mathbf{R} \cdot \mathbf{R})=(\mathrm{ct})^{2}-\mathbf{r} \cdot \mathbf{r}=-\left(\mathrm{r}_{0} \cdot \mathbf{r}_{0}\right)$ $(\mathbf{U} \cdot \mathbf{U})=\mathrm{c}^{2}:(\mathbf{A} \cdot \mathbf{U})=0:(\mathbf{J} \cdot \mathbf{U})=\alpha^{2}=-(\mathbf{A} \cdot \mathbf{A}):(\mathbf{J} \cdot \mathbf{J})=\left(\mathrm{c} \gamma_{\mathrm{o}}{ }^{\prime \prime}\right)^{2}-\left(\mathrm{j}_{\mathrm{o}}\right)^{2}$

SRQM Study:

 Fundamental Dimensional-Units Fundamental Physical Constants of Physical 4-Vectors

Dimension Type
$[T]=[$ time $]=$ extent in the temporal spacetime direction, temporal displacement Δt
$[\mathrm{L}]=[$ length $]=$ extent in one or more spatial spacetime directions, spatial displacement $|\Delta r|$
$[\mathrm{M}]=$ [mass $]=$ count of material stuff (m) using Gravitational force, Poincaré Casimir Invariant
$[\mathrm{Q}]=[\mathrm{EM}$ charge $]=$ count of material stuff (q) using ElectroMagnetic force, CPT Symmetry
$[\Theta]=$ [thermodynamic temperature] = statistical count of information
$[\mathrm{N}]=$ [amount of substance] = count of fermionic matter-particle stuff:
$[\mathrm{N}]=[$ amount of substance $]=$ count of fermionic matter-particle stuff: typically "atoms/molecules" $[\mathrm{J}]=[l u m i n o u s ~ i n t e n s i t y]=$ count of bosonic force-particle stuff : typically "photons"

4-Velocity
$\mathbf{U}=\mathbf{U}^{\mu}=\gamma(\mathrm{c}, \mathrm{u})$
$=c \mathbf{T}=c^{2} \partial[\tau]=d R / d \tau$

Depends on Particle Type:
Particle Charge $=(n / 3)^{*} e$
Particle Spin = (n/2)* \quad
$m_{0}: E_{0} \quad$ Rest Mass:Energy
$\Delta v_{0} \quad$ Rest Spectra Transition Frequency
Semi-Arbitrary:
$\mathrm{N}_{\mathrm{A}} \quad$ Avogadro \# = approx. \# nucleons in 1 gram matter
$\mathrm{K}_{\mathrm{CD}} \quad$ Luminous efficacy of 540 THz radiation

SI Units Symbol

Name
second
meter
kilogram
coulomb
kelvin
mole
candela
4-Gradient
$\partial=\partial_{R}=\partial_{x}=\partial^{\mu}=\left(\partial_{t} / c,-\nabla\right)$$[1 / \mathrm{m}]$

Universal:

G Gravitational

ks Bolzmann
${ }_{\mathrm{e}}^{\mathrm{k}} \quad$ Elementary Charge
$\varepsilon_{0}, \mu_{0} \quad$ Electric,Magnetic Constants

SR 4-Tensor (2,0)-Tensor T ${ }^{\mu v}$ $(1,1)$-Tensor $T_{\nu}{ }_{v}$ or $T_{\nu}{ }^{\nu}$
$(0,2)$-Tensor $T_{\mu v}$ $(0,1)$-Tensor $\mathrm{V}_{\mu}=\left(\mathrm{v}_{0},-\mathrm{v}\right)$

4-Vector $V=V^{\mu}=\left(v^{\mu}\right)=\left(v^{0}, v^{\prime}\right)=\left(v^{0}, v\right)$
SR 4-Vector $\mathbf{V}=\mathrm{V}^{\mu}=\left(\right.$ scalar ${ }^{*} \mathrm{c}^{ \pm 1}, 3$-vector $)$

SRQM Study: Physical 4-Tensors Some SR 4-Tensors and Symbols

$\operatorname{Tr}\left[\mathrm{V}^{\mu \nu}\right]=1$ Temporal "(V)ertical" Projection (2,0)-Tensor $\mathrm{P}^{\mathrm{NV}} \rightarrow \mathrm{~V}^{\mathrm{LV}}=\\|^{\mathrm{NV}}=\overline{\mathrm{T}^{\nu} \mathrm{T}^{\mathrm{V}}}$ \rightarrow Diag $[1,0]_{\text {\{MCRF }\}}$	Temporal "(V)ertical" Projection (1,1)-Tensor $\mathrm{P}^{\mu_{v}} \rightarrow \mathrm{~V}^{\mu}{ }_{v}=\\|^{\mu_{v}}=\overline{\mathrm{T}}^{\mu} \mathrm{T}_{v}$ \rightarrow Diag[1,0] ${ }_{\text {[MCRF\} }}$	$\operatorname{Tr}\left[\mathrm{V}_{\mu \mathrm{v}}\right]=1$ Temporal "(V)ertical" Projection (0,2)-Tensor $P_{\mu v} \rightarrow V_{\nu v}=\\|_{\mu v}^{\prime}=\bar{T}_{\mu} \bar{T}_{v}$ \rightarrow Diag[1,0] ${ }_{\text {[MCRF }]}$
4-Tensor Symmetric,Spatial Isotropic [Unit Dimensionless	4-Tensor Symmetric,Spatial Isotropic [Unit Dimensionless	4-Tensor Symmetric,Spatial Isotropic [Unit Dimensionless
	$\operatorname{Tr}\left[\mathrm{H}^{\mu}{ }_{v}\right]=3$ Spatial "(H)orizontal" Projection (1,1)-Tensor $\mathrm{P}^{\mu}{ }_{v} \rightarrow H^{\mu_{v}}=\perp^{\mu_{v}}=\eta^{\mu}{ }_{v}-\mathrm{T}^{{ }^{\mu} \mathrm{T}_{v}}$ $\left.\rightarrow \operatorname{Diag}\left[0, \mathrm{I}_{(3)}\right]=\operatorname{Diag}[0, \delta]\right]_{\text {(MCRF }}$	$\operatorname{Tr}\left[\mathrm{H}_{\mu \mathrm{u}}\right]=3$ Spatial "(H)orizontal" Projection (0,2)-Tensor $\mathrm{P}_{\mu v} \rightarrow \mathrm{H}_{\mu v}=\perp_{\mu v}=\eta_{\mu v}-\mathrm{T}_{\mu} \mathrm{T}_{v}$ $\rightarrow \operatorname{Diag}\left[0,-I_{(3)}\right]=\operatorname{Diag}\left[0,-\delta_{i}\right]\{$ MCRF $\}$
4-Tensor Symmetric,Spatial Isotropic [Unit Dimensionless]	4-Tensor Symmetric,Spatial Isotropic [Unit Dimensionless]	4-Tensor Symmetric,Spatial Isotropic [Unit Dimensionless

$P^{\mu}{ }_{v}=P^{u a} \eta_{a v}$
$P_{\mu v}=P^{a \beta} \eta_{q u} \eta_{\beta v}$
The projection tensors can work on 4 -Vectors to give a new 4 -Vector, or on 4-Tensors to give either a 4-Scalar component or a new 4-Tensor.

4-UnitTemporal $\mathrm{T}^{\mu}=\gamma(1, \beta)$ 4-Generic $A^{v}=\left(a^{0}, a\right)=\left(a^{0}, a^{1}, a^{2}, a^{3}\right)$	U	4-UnitSpatial $\overline{\mathbf{S}}=\mathrm{S}^{\mu}=\gamma_{\hat{\mathrm{n}}}(\boldsymbol{\beta} \cdot \hat{\mathrm{n}}, \hat{\mathrm{n}})$ fromT $\mathbf{S}=0$$\qquad$
	(1)	
	,u/c) $=\mathbf{U} / \mathrm{c}$	
$\mathrm{A}^{\mathrm{v}}=$	$\rightarrow(1,0)_{\text {\{Restrame\} }}$	
$0 \cdot a^{0}+0 \cdot a^{1}+0 \cdot a^{2}+0 \cdot$		

$H{ }_{v} A^{v}=\left(0 \cdot a^{0}+0 \cdot a^{1}+0 \cdot a^{2}+0 \cdot a^{3}\right.$
$0 \cdot a^{0}+1 \cdot a^{1}+0 \cdot a^{2}+0 \cdot a^{3}$,

Minkowski

$0 \cdot a^{0}+0 \cdot a^{1}+1 \cdot a^{2}+0 \cdot a^{3}$,

SR Perfect Fluid Stress-Energy 4-Tensor $\mathrm{T}_{\text {Derfectfluid }}{ }^{\mu \mathrm{V}}=\left(\rho_{\mathrm{eo}}\right) \mathrm{V}^{\mu \mathrm{VV}}+\left(-\mathrm{p}_{\mathrm{o}}\right) H^{\mathrm{\mu v}} \rightarrow_{\{\text {MCRF }\}}$
$\left.\begin{array}{cccc|c}\underline{t} & \underline{x} & \underline{y} & \underline{z} \\ \underline{t}\left[\rho_{e}=\rho_{m} C^{2}\right. & 0 & 0 & 0\end{array}\right] \quad \rho_{\mathrm{e}}=\rho_{m} c^{2} 0^{0 j}$
$\operatorname{EoS}\left[T^{\mu v}\right]=w=p_{0} / p_{\text {eo }}$
Units of
Symmetric

Tr[T
4-Unitemporal $\bar{T}^{\mu}=\gamma(1, \beta)$4-Generic $A^{v}=\left(a^{0}, a\right)=\left(a^{0}, a^{1}, a^{2}, a^{3}\right)$$\mathrm{T}=\mathrm{T}^{\mu}=\gamma(1, \beta)$$=\gamma(1, \mathbf{u} / \mathrm{c})=\mathbf{U} / \mathrm{c}$$\overline{\mathbf{S}}=\mathrm{S}^{\mu}=\gamma_{\hat{(}}(\boldsymbol{\beta} \cdot \hat{\mathbf{n}}, \hat{n})$fromT $\mathbf{S}=0$ $0 \cdot a^{0}+0 \cdot a^{1}+0 \cdot a^{2}+0 \cdot a^{3}$, $0 \cdot a^{0}+0 \cdot a^{1}+0 \cdot a^{2}+0 \cdot a^{3}$,
\qquad
\qquad
$\left.0 \cdot a^{0}+0 \cdot a^{1}+0 \cdot a^{2}+1 \cdot a^{3}\right)=\left(0, a^{1}, a^{2}, a^{3}\right)=(0, a)$: Spatial Projection

SR 4-Tensor
(2,0)-Tensor $\mathrm{T}^{\mathrm{\mu v}}$ (1,1)-Tensor $T^{\mu}{ }_{v}$ or T_{μ}
$(0,2)$-Tensor $\mathrm{T}_{\mu \nu}$ $(0,1)$-Tensor $\mathrm{V}_{\mu}=\left(\mathrm{v}_{0},-\mathrm{v}\right)$

Note that the Projection Tensors are [Unit Dimensionless = 1]:
the object projected retains its own dimensional measurement units Note that the $(2,0)-\&(0,2)-$ Spatial Projectors have opposite signs from the mixed $(1,1)-$ Spatial due to minuses in the Minkowski Metric.

Trace $\left[T^{\mu \nu}\right]=\eta_{\mu \nu} T^{\mu v}=T_{\mu}^{\mu}=T$
$\mathbf{V} \cdot \mathbf{V}=V^{\mu} \eta_{\mu v} V^{v}=\left[\left(v^{0}\right)^{2}-\mathbf{v} \cdot \mathbf{v}\right]=\left(v^{0}{ }_{0}\right)^{2}$
= Lorentz Scalar Invariant

SRQM Study: SR 4-Vector Properties General T ${ }^{\mu} \rightarrow$ Temporal:Spatial

A Tensor Study of Physical 4-Vectors

Any SR (1-index) Tensor $\left\{\mathrm{T}^{\mu}, \mathrm{T}_{\mu}\right\}$ can be decomposed into $=\{$ Temporal , Spatial $\}$ parts, by using combinations of (\backslash)ertical \& (H)orizontal Projection Tensors, with ($\eta^{\mu}=_{v} V_{v}+H^{\mu}$)


```
Temporal}\mp@subsup{|}{}{\mu}=\mp@subsup{V}{}{\mu}\mp@subsup{}{a}{}(\mp@subsup{T}{}{\alpha}
Spatial基品( ( Ta
FullSpaceTime }\mp@subsup{}{}{\mu}=\mp@subsup{\eta}{}{\mu}a(\mp@subsup{T}{}{\alpha})=\mp@subsup{T}{}{\mu
T 
T\mu}=\mp@subsup{V}{}{\mu}\mp@subsup{a}{a}{(
T\mu}=(\mp@subsup{V}{}{\mu}\mp@subsup{}{a}{}+\mp@subsup{H}{}{\mu}\mp@subsup{}{a}{\alpha})(\mp@subsup{T}{}{a}
T\mu}=[(\mp@subsup{\eta}{}{\mu}\mp@subsup{\alpha}{a}{\prime})](\mp@subsup{T}{}{\alpha})=[(\mp@subsup{\delta}{}{\mu}\mp@subsup{}{\alpha}{})](\mp@subsup{T}{}{\alpha}
```

: LSP[Temporal $\left.{ }^{\mu}\right]=\eta_{u v} V^{\nu}{ }_{a}\left(T^{\alpha}\right) V^{V}{ }_{\beta}\left(T^{\beta}\right)=\left(T^{0}\right)^{2}$
LSP[Spatial $\left.{ }^{\mu}\right]=\eta_{\text {wv }} H^{\mu}{ }_{(}\left(T^{\alpha}\right) H^{v}{ }_{s}\left(T^{\beta}\right)=-\left[\left(T^{1}\right)^{2}+\left(T^{2}\right)^{2}+\left(T^{3}\right)^{2}\right]$
LSP[FullSpaceTime $\left.{ }^{\mu}\right]=\eta_{\mu v} \eta^{\mu}{ }_{a}\left(T^{\alpha}\right) \eta_{\beta}^{v}\left(T^{\beta}\right)=\left(T^{0}\right)^{2}-\left[\left(T^{1}\right)^{2}+\left(T^{2}\right)^{2}+\left(T^{3}\right)^{2}\right]$
SR:Minkowski Met
$(1+3)$ Splitting
 Contraction Orthogonality $\left(V^{\mu_{\alpha}} H^{\alpha}{ }_{v}\right)=\left(V_{v_{v}} H^{\omega_{\alpha}}\right)=0{ }^{\mu}{ }_{v}$
$\left.\bar{T}_{a} H^{\alpha}\right)=0_{v}\left(\bar{T}^{\alpha} H^{\mu_{a}}\right)=0^{\mu}$

Symmetric,Spatial Isotropic [Unit Dimensionless]

Symmetric, Spatial Isotrop
[Unit Dimensionless

$\mathrm{T}^{\alpha}=\left(\mathrm{T}^{0}, \mathrm{~T}^{1}, \mathrm{~T}^{2}, \mathrm{~T}^{3}\right)$

$\max 4^{1}=4$
components

SR 4-Tensor
(2,0)-Tensor T ${ }^{\text {wv }}$ (1,1)-Tensor $T^{\mu}{ }_{v}$ or T_{ν}
$(0,2)$-Tensor $T_{\mu v}$
$(0,1)$-Tensor $\mathrm{V}_{\mu}=\left(\mathrm{v}_{0},-\mathrm{v}\right)$

$\mathbf{T}=\mathrm{T}^{\mu}=\gamma(1, \beta)$ is the 4-UnitTemporal
 $\mathrm{T}^{\mathrm{a}}=\left(\mathrm{T}^{0}, \mathrm{~T}^{1}, \mathrm{~T}^{2}, \mathrm{~T}^{3}\right)$ is a general 4 -Vector $=4 \mathrm{D}(1,0)$-Tensor T

It can be made into the 4-UnitTemporal via Temporal Projection, followed by a Lorentz Boost

SRQM Study: SR 4-Tensor Properties General $T^{\text {pv }} \rightarrow$ Temporal:Mixed:Spatial (1+3) Decomposition via Projection

Any SR (2-index) Tensor \{ $\left.T^{\mu v}, T^{\nu} v, T_{\mu v}\right\}$ can be decomposed into = \{ Temporal , Mixed, Spatial \} parts, by using combinations of (V)ertical \& (H)orizontal Projection Tensors, with ($\eta^{\mu}=_{v} V_{v}+H^{\mu}$)

Temporal ${ }^{\mu v}=V^{\mu}{ }_{a} V^{V_{\beta}}\left(T^{\alpha \beta}\right)$

```
Mixed }\mp@subsup{}{}{\muV}=\mp@subsup{V}{}{\mu}\mp@subsup{}{\alpha}{\prime}\mp@subsup{H}{}{v}\mp@subsup{}{\beta}{}(\mp@subsup{T}{}{\alpha\beta})+\mp@subsup{H}{}{\mu}\mp@subsup{}{a}{}\mp@subsup{V}{}{v}\mp@subsup{}{\beta}{}(\mp@subsup{T}{}{\alpha\beta}
```

Spatial ${ }^{\nu v}=H^{\mu}{ }_{\alpha} H^{v}{ }_{\beta}\left(T^{\alpha \beta}\right)$
 $\operatorname{Tr}\left[\right.$ Mixed $\left.{ }^{\mu V}\right]=\eta_{\mu v}\left(V^{\mu}{ }_{a} H^{V}\left(T^{\alpha \beta}\right)+H^{\mu}{ }_{a} V_{\beta}\left(T^{\alpha \beta}\right)\right)=\left(V_{\text {va }} H^{V}+H_{v a} V^{\omega}\right)\left(T^{\alpha \beta}\right)=\{0\}$ $\operatorname{Tr}\left[\right.$ Spatial $\left.\left.{ }^{\mu \nu}\right]=\eta_{\mu v} H^{\mu} H^{\nu} H^{(} T^{\alpha \beta}\right)=H_{v a} H^{\nu}\left(T^{\alpha \beta}\right)=H_{a \beta}\left(T^{\alpha \beta}\right)=\left\{T^{11}+T^{22}+T^{33}\right\}$
$T^{\mu \mathrm{VV}}=\left(\right.$ Temporal ${ }^{\mu \mathrm{VV}}+$ Mixed $^{[\mathrm{VV}}+$ Spatial $\left.{ }^{[\mathrm{VV}}\right)=\left(\right.$ FullSpaceTime $\left.{ }^{\mu \mathrm{VV}}\right)$
$T^{\mu v}=V^{\mu}{ }_{a} V^{\nu}{ }_{\beta}\left(T^{\alpha \beta}\right)+\left[V^{\mu}{ }_{a} H^{V_{\beta}}\left(T^{\alpha \beta}\right)+H^{\mu}{ }_{a} V^{V_{\beta}}\left(T^{\alpha \beta}\right)\right]+H^{\mu}{ }_{a} H^{\nu}{ }_{\beta}\left(T^{\alpha \beta}\right)$ $\left.T^{\mu v}=\left[V^{\mu}{ }_{a} V^{v_{\beta}}+V^{\mu}{ }_{a} H^{v}{ }^{v}+H^{\mu}{ }_{a} V^{v}+H^{\nu_{a}} H^{v^{v}}\right]^{2 v} T^{\alpha \beta}\right)$
$T^{\mu v}=\left[V^{\mu}{ }_{\alpha}\left(V^{V_{\beta}}+H^{v}{ }_{\beta}\right)+H^{\mu}{ }_{\alpha}\left(V^{V_{\beta}}+H^{V}{ }_{\beta}\right)\right]\left(T^{\alpha \beta}\right)$
$T^{\mu v}=\left[\left(V^{\mu_{\alpha}}+H^{\mu}{ }_{\alpha}\right)\left(V^{V_{\beta}}+H^{v}\right)\right]\left(T^{\alpha \beta}\right)$ $T^{\mu \nu}=\left[\left(\eta^{\mu}{ }_{\alpha}\right)\left(\eta^{\nu}{ }_{\beta}\right)\right]\left(T^{\alpha \beta}\right)=\left[\left(\delta_{\alpha}^{\mu}\right)\left(\delta^{\nu}{ }_{\beta}\right)\right]\left(T^{\alpha \beta}\right)$

nit Temporal

 $\gamma(1, \beta)=\mathrm{U} / \mathrm{C} \rightarrow(1,0)_{\{\text {Resty }}$ B oral "(V)ertical Projection (1,1)-Tensor $\mathrm{P}^{\mu}{ }_{v} \rightarrow \mathrm{~V}^{\mu}{ }_{v}=\| \mu_{v}=\bar{T}^{\mu} \bar{T}_{v}$ \rightarrow Diag[1,0] ${ }_{\text {iMCRF }}$

Symmetric,Spatial Isotropic Unit Dimensionless

SR:Minkowski Me $(1+3)$ Splitting $n^{\mu}=V^{\mu}+H^{\mu}$

 (1,1)-Tensor
Temporal:Spatial Contraction Orthogonality $\left(V^{\mu_{a}} H^{\alpha}\right)=\left(V_{v}^{a_{v}} H^{\nu_{\alpha}}\right)=0^{v_{v}}$

SR 4-Tensor
(2,0)-Tensor T ${ }^{\mu \nu}$ (1)-Tensor $T^{\mu}{ }_{v}$ or $T_{\mu}{ }^{v}$ (0,2)-Tensor T
$(0,1)$-Tensor $V_{\mu}=\left(v_{0},-v\right)$

SR 4-Scalar

SRQM Study: Physical 4-Tensors Relativisitic Fluid 4-Tensor

Stress-Energy(Density)-Tensor Thv (symmetric) Covariant Decomposition

Tensor Invariants: Symmetry, AntiSymmetry, Trace \rightarrow Isotropy, Anisotropy
$T^{\mu \mathrm{V}}=$ flux of \hat{e}_{μ}-component of 4-Momentum along \hat{e}_{V}
(temporal:mixed:spatial) splitting
1 Temporal:Temporal EnergyDensity $\left(\rho_{\mathrm{eo}}\right)=\mathrm{V}_{\mathrm{Lv}} T^{\mathrm{pv}}$
3 Temporal:Spatial HeatEnergy Flux $\left(Q^{\mu}\right)=c T_{v} T^{v v}$
1 Spatial:Spatial Isotropic Pressure $\left(p_{o}\right)=(-1 / 3) H_{\text {uv }} T^{\mu v}$ 5 Spatial:Spatial Anisotropic Stress $\left(\Pi^{\mu v}\right)=H^{\mu}{ }_{a} H^{\vee}{ }^{\wedge} T^{\alpha \beta}+\left(p_{0}\right) H$ 10 Total Independent components
$\left(\rho_{\text {eo }}\right)=($ Temporal $)$ EnergyDensity 4-Scalar
$\left(p_{0}\right)=($ Spatial) Isotropic Pressure 4-Scalar
($\left.{ }^{\mu}{ }^{\mu}\right)=$ UnitTemporal 4-Vector
$\left(Q^{\mu}\right)=$ HeatEnergyFlux 4-Vector $w / Q^{\mu} \bar{T}_{\mu}=0 \quad 3$ independent components aka MomentumDensity $\left(\Pi^{\mu \nu}\right)=$ ViscousShear 4-Tensor $\quad w / \Pi^{\mu} \bar{T}_{\mu}=0$ aka. Anisotropic Stress (traceless Tr[[1
(Temporal) (V)ertical Projection 4-Tensor $\left(\mathrm{V}^{\mu \mathrm{VV}}\right)=($ Temporal $)(\mathrm{V})$ ertical Projection 4-Tensor
$\left(H^{\mu \mathrm{V}}\right)=($ Spatial $)(\mathrm{H})$ orizontal Projection 4-Tensor

```
\(\rho_{\mathrm{e}}=\rho_{\mathrm{m}} \mathrm{C}^{2}\)
```


$\rightarrow_{\text {(MCRF) }} \quad Q^{i} / \mathrm{c} \quad \mathrm{p} \delta^{\mathrm{j}}+\Pi^{\mathrm{j}}$

1 independent component 1 independent component

5 independent components
$=0$ and $\Pi^{\mu \nu}=H^{\mu}{ }_{\rho} H^{\nu}{ }_{\sigma} \Pi^{\sigma \rho}$)

10 independent components Symmetric 4D-Tensor T ${ }^{\mu v}$
$\operatorname{Tr}\left[T^{\mu \nu}\right]=\rho_{e o}-3 p_{\circ}$

SR 4-Tensor
(2,0)-Tensor T ${ }^{\text {uv }}$ (1,1)-Tensor $T^{\mu}{ }_{v}$ or T_{μ}
$(0,2)$-Tensor $\mathrm{T}_{\mu \mathrm{v}}$
$(0,1)$-Tensor $\mathrm{V}_{\mu}=\left(\mathrm{v}_{0},-\mathrm{v}\right)$

SR 4-Scalar
(0,0)-Tensor S or So
Lorentz Scalar

Note that the Projection Tensors \&
the Minkowski Metric are [unit dimensionless=1]. EnergyDensity (temporal) \& Pressure (spatial) have the same dimensional measurement units. $\left[\mathrm{Pa}=\mathrm{J} / \mathrm{m}^{3}=\mathrm{N} / \mathrm{m}^{2}=\mathrm{kg} / \mathrm{m} \cdot \mathrm{s}^{2}\right]$

Trace $\left[T^{\mu \nu}\right]=\eta_{\mu v} T^{\mu v}=T_{\mu}^{\mu}=T$ $\cdot V=V^{\mu} \eta_{\mu v} V^{v}=\left[\left(V^{0}\right)^{2}-\mathbf{V} \cdot \mathrm{v}\right]=\left(\mathrm{V}^{0}{ }_{\mathrm{o}}\right)^{2}$ $=$ Lorentz Scalar Invariant

SRQM Study: Physical 4-Tensors Relativisitic Fluid 4-Tensor

Stress-Energy(Density)-Tensor T ${ }^{\mu \nu}$ (Symmetric)
Covariant Decomposition
Tensor Invariants: $\{$ Symmetry+AntiSymmetry, Trace \rightarrow Isotropy+Anisotropy, 4D (1+3) Splitting \}

 $V_{v v} T^{v v} \rightarrow\left(\rho_{\text {eoo }}\right)(1)+\left(-p_{o}\right)(0)+\left(T^{T}\left(0_{\nu \sigma}\right) Q^{\sigma}+Q^{\circ}\left(0_{v o}\right) T^{v}\right) / c+(0)$
$\mathrm{V}_{\mathrm{Hv}} \mathrm{T}^{\mathrm{pV}} \rightarrow\left(\rho_{\mathrm{eo}}\right) \quad$ EnergyDensity $\left(\rho_{\mathrm{eo}}\right)=\mathrm{V}_{\mathrm{pv}} \mathrm{T}^{\mathrm{HV}}$

$\mathrm{H}_{\mu v} \mathrm{~T}^{\mathrm{Tv}} \rightarrow\left(\rho_{\mathrm{eo}}\right)(0)+\left(-\mathrm{p}_{\mathrm{o}}\right)(3)+\left(\mathrm{T}^{\nu} \mathrm{H}_{\mu \mathrm{o}} \mathrm{Q}^{\sigma}+\mathrm{Q}^{\sigma} \mathrm{H}_{\nu v} \mathrm{~T}^{v}\right) / \mathrm{c}+(0 \mathrm{bc}$ traceless $)$
$\mathrm{H}_{\mathrm{Lv}} \mathrm{TlV}^{\mathrm{iv}} \rightarrow\left(\rho_{\mathrm{eo}}\right)(0)+\left(-\mathrm{p}_{\mathrm{o}}\right)(3)+\left[\left(0_{\mathrm{o}}\right) \mathrm{Q}^{\mathrm{o}}+\mathrm{Q}^{\mathrm{o}}\left(0_{\mathrm{o}}\right)\right] / \mathrm{c}+(0 \mathrm{bc}$ traceless $)$
$H_{\mu v} T^{p v} \rightarrow\left(-p_{0}\right)(3) \quad$ (Isotropic) Pressure $\left(p_{o}\right)=(-1 / 3) H_{p v} T^{p v}$

$\mathrm{T}_{\mu} \mathrm{T}^{\mathrm{vv}} \rightarrow\left(\rho_{\mathrm{eo}}\right) \mathrm{T}^{\mathrm{v}}+\left(-\mathrm{p}_{\mathrm{o}}\right)\left(0^{v}\right)+\left[(1) \mathrm{H}^{\mathrm{v}} \mathrm{Q}^{\mathrm{o}}+\mathrm{Q}^{\mathrm{o}}\left(0_{\sigma}\right) \mathrm{T}^{\mathrm{V}}\right] / \mathrm{C}+\left(0^{v}\right)$
$\mathrm{T}_{\mu} \mathrm{T}^{\mathrm{LV}} \rightarrow\left(\rho_{\mathrm{eo}}\right) \mathrm{T}^{\mathrm{V}}+\left[Q^{i}+0^{\mathrm{V}}\right] / \mathrm{c}$
$\mathrm{T}_{\mu} \mathrm{T}^{\mathrm{Lv}} \rightarrow\left(\mathrm{\rho}_{\mathrm{eo}}\right) \mathrm{T}^{\mathrm{v}}+\left[\mathrm{Q} \mathrm{Q}^{\mathrm{T}} / \mathrm{c}\right.$
$\mathrm{T}_{\mathrm{T}} \mathrm{TVV}^{\mathrm{VV}} \rightarrow\left(\rho_{\mathrm{e}}, \mathrm{q} / \mathrm{C}\right)=\mathrm{Q}^{\mathrm{V}} / \mathrm{C}$
$\mathrm{cT}_{\mu} \mathrm{T}^{\mathrm{pv}} \rightarrow \mathrm{c}\left(\rho_{\mathrm{e}}, \mathbf{q} / \mathrm{c}\right)=\mathrm{Q}^{\mathrm{v}}=\left(\rho_{\mathrm{e}} / \mathrm{c}, \mathbf{q}\right): \mathrm{cT}_{\mathrm{v}} \mathrm{T}^{\mathrm{pv}} \rightarrow \mathrm{c}\left(\rho_{\mathrm{e}}, \mathbf{q} / \mathrm{c}\right)=$ HeatFlux $\mathrm{Q}^{\mu}=\left(\rho_{\mathrm{e}} / \mathrm{c}, \mathbf{q}\right)$
 $\mathrm{H}_{\mu}{ }^{\text {a }} \mathrm{H}^{\beta}{ }^{\beta} T^{\mathrm{Nv}} \rightarrow\left(\rho_{\mathrm{eo}}\right)\left(0^{\alpha \beta}\right)+\left(-\mathrm{p}_{\mathrm{o}}\right) \mathrm{H}^{\mathrm{a} \mathrm{\beta}}+\left[\left(0^{\alpha \beta}\right)+\left(0^{\alpha \beta}\right)\right] / \mathrm{c}+\mathrm{H}^{\nu}{ }_{\rho} \mathrm{H}^{v}{ }^{\mathrm{o}} \Pi^{\sigma \rho}$

$\left(p_{o}\right)=(-1 / 3) H_{\alpha \beta} H_{\mu}{ }^{q} H_{v}{ }^{\beta T^{\mu v}}$: (Anisotropic) ViscousShear $\Pi^{\alpha \beta}=H_{\mu}{ }^{\alpha} H_{v}{ }^{\beta} T^{p v}+\left(p_{o}\right) H^{\alpha \beta}$

Full

Relativistic Fluid Stress-Energy(Density)
$\rho_{e}=\rho_{m} C^{2} Q^{0 j} / c$

\rightarrow MCRF
 Q ${ }^{i \%} \mathrm{c} \delta^{\mathrm{j}}+\Pi^{\mathrm{j}}$

$\left(\rho_{\mathrm{eo}}\right)=($ Temporal) EnergyDensity 4-Scalar $\left(\mathrm{p}_{\mathrm{o}}\right)=($ Spatial $)$ Isotropic Pressure 4-Scalar $\left(\mathrm{T}^{\nu}\right)=$ UnitTemporal 4-Vector
$\left(Q^{\mu}\right)=$ HeatEnergyFlux 4-Vector $w / Q^{\mu} \bar{T}_{\mu}=0$ aka MomentumDensity $\left(\Pi^{\mu \nu}\right)=$ ViscousShear 4-Tensor
 aka. Anisotropic Stress (traceless Tr[ח $\left(\mathrm{V}^{\mathrm{WV} V}\right)=($ Temporal) (V)ertical Projection 4-Tensor $\left(H^{\mu \mathrm{V}}\right)=($ Spatial $)(H)$ orizontal Projection 4-Tensor

10 independent components Symmetric 4D-Tensor Tuv

4-Tensor Symmetric

The combo $\left(p \delta^{i j}+\Pi^{j \mathrm{j}}\right)$
appears to be (σ^{jj}),
the Cauchy Stress Tensor
= True Stress Tensor
= Stress Tensor
The ($p \delta^{i j}$) is the mean hydrostatic stress tensor = volumetric stress tensor = "pressure" tensor

The (Π ij) is the stress deviator tensor
[Time-Space] Stress-EnergyDensity Tensor: (temporal) EnergyDensity $=$ MassDensity * c^{2} (mixed) HeatFlux / c
(spatial) Pressure \& ViscousShear
all have the same dimensional measurement units: $\left[\mathrm{Pa}=\mathrm{J} / \mathrm{m}^{3}=\mathrm{N} / \mathrm{m}^{2}=\mathrm{kg} / \mathrm{m} \cdot \mathrm{s}^{2}\right]$

SR 4-Tensor

 (2,0)-Tensor T ${ }^{\mu \nu}$ (1,1)-Tensor $\mathrm{T}^{\mu}{ }_{v}$ or $\mathrm{T}_{\mathrm{t}}$$(0,2)$-Tensor T_{μ} $(0,1)$-Tensor $\mathrm{V}_{\mu}=\left(\mathrm{v}_{0},-\mathrm{v}\right)$

Equation of State
$\operatorname{EoS}\left[T^{\mu \mathrm{v}}\right]=w=p_{o} / \rho_{\mathrm{e}}$
4-Scalar

SRQM Study: Physical 4-Tensors SR Perfect Fluid 4-Tensor Special-Cases based on "velocity"

?

A Tensor Study of Physical 4-Vectors

SR 4-Tensor (2,0)-Tensor T ${ }^{\mu \nu}$ (1,1)-Tensor $\mathrm{T}^{\mu}{ }_{v}$ or T_{μ} $(0,2)$-Tensor $T_{\mu \nu}$ $(0,1)$-Tensor $\mathrm{V}_{\mu}=\left(\mathrm{v}_{0},-\mathrm{v}\right)$

Technically, all these are 4D Stress-EnergyDensity Tensors That they are usually called "Stress-Energy" Tensors is a lazy abbreviation which causes confusion

Equation of State Trace $\left[T^{\mu \nu}\right]=\eta_{\mu v} T^{\mu \nu}=T_{\mu}^{\mu}=T$ $\operatorname{EoS}\left[T^{\mu v}\right]=w=p_{o} / \rho_{e 0} \mathbf{V} \cdot \mathbf{V}=V^{\mu} \eta_{\mu v} V^{V}=\left[\left(v^{0}\right)^{2}-\mathbf{v} \cdot \mathbf{v}\right]=\left(v^{0}{ }_{o}\right)^{2}$ 4-Scalar
$=$ Lorentz Scalar Invariant
(Cold) Matter-Dust

Stress-Energy 4-Tensor $\operatorname{Tr}\left[T^{\mu \mathrm{v}}\right]=\rho_{e \rho}$
Symmetric, Spatial Isotropic, Pressureles

t	\underline{x}	y	\underline{z}
$\underline{\mathrm{t}}\left[\gamma^{2} \mathrm{n}_{0} \mathrm{~m}_{0} \mathrm{C}^{2}\right.$	$\gamma^{2} \mathrm{n}_{0} \mathrm{~m}_{0} \mathrm{cu}^{x}$	$\gamma^{2} \mathrm{n}_{0} \mathrm{~m}_{0} \mathrm{Cu}^{y}$	$\gamma^{2} \mathrm{n}_{0} \mathrm{~m}_{0} \mathrm{Cu}^{\mathrm{z}}$]
$\underline{\mathrm{x}}\left[\gamma^{2} \mathrm{n}_{0} \mathrm{~m}_{0} \mathrm{cu}{ }^{\times}\right.$	$\gamma^{2} n_{0} m_{0} u^{x} u^{x}$	$\gamma^{2} n_{0} m_{0} u^{x} u^{y}$	$\gamma^{2} n_{0} \mathrm{~m}_{0} \mathrm{u}^{\mathrm{x}} \mathrm{U}^{\mathrm{z}}$]
$\underline{\mathrm{y}}\left[\gamma^{2} \mathrm{n}_{0} \mathrm{~m}_{0} \mathrm{cu}^{y}\right.$	$\gamma^{2} n_{0} m_{0} u^{y} u^{x}$	$\mathrm{V}^{2} \mathrm{n}_{0} \mathrm{~m}_{0} u^{y} u^{y}$	$\gamma^{2} \mathrm{n}_{0} \mathrm{~m}_{0} \mathrm{u}^{\mathrm{y}} \mathrm{u}^{\mathrm{x}}$]
$\underline{z}\left[\gamma^{2} \mathrm{n}_{0} \mathrm{~m}_{0} \mathrm{Cu}{ }^{2}\right.$	$\gamma^{2} n_{0} m_{0} u^{2} u^{x}$	$\gamma^{2} n_{0} m_{0} u^{z} u^{y}$	$\left.\gamma^{2} n_{0} m_{0} u^{z} u^{z}\right]$

$\gamma^{2} \rho_{e o}$	$\gamma^{2} \rho_{e o} \beta^{j}$
$\gamma^{2} \rho_{e o} \beta^{i}$	$\gamma^{2} \rho_{e o} \beta^{i} \beta^{j}$

TTime-Space] Stress-EnergyDensity Tensor: (temporal) EnergyDensity = MassDensity * c^{2} (mixed) HeatFlux / c
(spatial) Pressure \& Viscous Shear
all have the same dimensional measurement units: $\left[\mathrm{Pa}=\mathrm{J} / \mathrm{m}^{3}=\mathrm{N} / \mathrm{m}^{2}=\mathrm{kg} / \mathrm{m} \cdot \mathrm{s}^{2}\right]$

SR 4-Scalar
(0)-Tensor S or So
Lorentz Scalar
Lorentz Scalar

Technically, all these are 4D Stress-EnergyDensity Tensors That they are usually called "Stress-Energy" Tensors is a lazy abbreviation which causes confusion

Equation of State
$\operatorname{EoS}\left[T^{\mu \mathrm{L}}\right]=w=\mathrm{p}_{0} / \mathrm{\rho}_{\mathrm{e}}$ 4-Scalar

In a frame with 4-Velocity U

$$
\begin{array}{cc}
\gamma^{2}\left(\rho_{\mathrm{eo}}+p_{o}\right)-p_{o} \eta^{00} & \gamma^{2}\left(\rho_{\mathrm{eo}}+p_{o}\right) \beta^{j}-p_{o} \eta^{0 j} \\
\gamma^{2}\left(\rho_{\mathrm{eo}}+p_{o}\right) \beta^{i}-p_{o} \eta^{i 0} & \gamma^{2}\left(\rho_{\mathrm{eo}}+p_{o}\right) \beta^{j} \beta^{j}-p_{0} \eta^{j i}
\end{array}
$$

```
\(\gamma^{2}\left(\rho_{\text {eo }}+p_{o}\right)-p_{\circ} \quad \gamma^{2}\left(\rho_{\text {eo }}+p_{o}\right) \beta^{j}\)
\(\gamma^{2}\left(\rho_{\text {eo }}+p_{o}\right) \beta^{i} \quad \gamma^{2}\left(\rho_{\text {eo }}+p_{o}\right) \beta^{i} \beta^{i}-p_{o} \eta^{j}\)
```

$\gamma^{2}\left(\rho_{\mathrm{eo}}+p_{o}\right)-p_{\mathrm{o}}$	$\gamma^{2}\left(\rho_{\mathrm{eo}}+p_{\mathrm{o}}\right) \beta^{j}$
$\gamma^{2}\left(\rho_{\mathrm{eo}}+p_{\mathrm{o}}\right) \beta^{i}$	$\gamma^{2}\left(\rho_{\mathrm{eo}}+p_{\mathrm{o}}\right) \beta^{\prime} \beta^{i}+p_{o} \delta^{i j}$

```
\gamma
\gamma
```

$\mathrm{T}_{\text {perfluic }}{ }^{\mu \mathrm{V} v}=\left(\rho_{\text {eo }}+p_{o}\right) \bar{T}^{\mu} \bar{T}^{\mathrm{v}}-\left(p_{o}\right) \eta^{\mu \mathrm{V}}=\left(\rho_{\text {eo }}\right) \mathrm{V}^{\mu \mathrm{VV}}+\left(-p_{o}\right) H^{\mu \mathrm{v}}$
[Time-Space] Stress-EnergyDensity Tensor:
(temporal) EnergyDensity = MassDensity * c² (mixed) HeatFlux / c
(spatial) Pressure = Momentum Flux Density \& Viscous Shear all have the same dimensional measurement units: $\left[\mathrm{Pa}=\mathrm{J} / \mathrm{m}^{3}=\mathrm{N} / \mathrm{m}^{2}=\mathrm{kg} / \mathrm{m} \cdot \mathrm{s}^{2}\right]$

SR 4-Scalar (0,0)-Tensor S or So
Lorentz Scalar

Technically, all these are 4D Stress-EnergyDensity Tensors That they are usually called "Stress-Energy" Tensors is a lazy abbreviation which causes confusion

$$
\text { Rest Enthalpy } \mathrm{w}_{\mathrm{o}}=\rho_{\mathrm{eo}}+p_{\mathrm{o}}
$$

SRQM Study: Physical 4-Tensors SR Fluid:Dust:Vacuum 4-Tensors Also known as GR "Solutions"

$$
T^{\mu \nu} \rightarrow-\left(1 / \mu_{o}\right)\left[F^{\mu \alpha} F^{v}-(1 / 4) \eta^{\mu v} F_{\alpha \beta} F^{\alpha \beta}\right]
$$

> see on Wikipedia:
> Fuid Solution Perfect Fluid Dust Solution Null Dust Solution Vacuum Solution Electrovacuum Solution Lambdavacuum Solution Scalar Field Solution etc.
[Time-Space] Stress-EnergyDensity Tensor: (temporal) EnergyDensity = MassDensity * c² (mixed) HeatFlux / c
(spatial) Pressure \& Viscous Shear
all have the same dimensional measurement units: $\left[\mathrm{Pa}=\mathrm{J} / \mathrm{m}^{3}=\mathrm{N} / \mathrm{m}^{2}=\mathrm{kg} / \mathrm{m} \cdot \mathrm{s}^{2}\right]$

SR 4-Tensor (2,0)-Tensor T ${ }^{\mu v}$ $(1,1)$-Tensor $T^{\mu}{ }_{v}$ or T_{μ}

Technically, all these are 4D Stress-EnergyDensity Tensors That they are usually called "Stress-Energy" Tensors is a lazy abbreviation which causes confusion
$\mathrm{T}^{\mu \nu} \rightarrow\left(\rho_{\mathrm{eo}}\right) \mathrm{V}^{\mu \mathrm{V}}+\left(-\rho_{\mathrm{eo}} / 3\right) H^{\mu \nu} \rightarrow_{\text {\{MCRF? }}$

$\begin{gathered}1 \text { Stress-Energy 4-Tensor } \\ {[\mathrm{DoF}][\mathrm{Pa}] \text { Symmetric, Spatial Isotropic }}\end{gathered} \operatorname{Tr}\left[T^{\mu \mathrm{V}}\right]=0$

Perfect Fluid Stress-Energy

Stress-Energy 4 -Tensor $\quad \operatorname{Tr}\left[T^{\mu v}\right]=0$
[Pal $3-4$? Symmetric, Null
PhotonGas=RadiationFluid
(Cold) Matter-Dust

$$
\mathrm{T}^{\mu \mathrm{v}} \rightarrow \mathrm{P}^{\mu} \mathrm{N}^{\mathrm{V}}=\mathrm{m}_{0} \mathrm{U}^{\mathrm{V}} \mathrm{n}_{0} U^{\mathrm{V}}=\left(\rho_{\mathrm{eo}}\right) \mathrm{V}^{\mu \mathrm{V}} \rightarrow_{\{\mathrm{MCRF}\}}
$$

$\operatorname{EoS}\left[T^{\mu v}\right]=w=0$
Stress-Energy 4-Tensor $\operatorname{Tr}\left[T^{\mu v}\right]=\rho_{\text {eo }}$
Lambda Vacuum
$T^{\mu \nu} \rightarrow\left(\rho_{\text {eo }}\right) \eta^{\mu \nu}=(\Lambda) \eta^{\mu \nu} \rightarrow\{$ MCRF $\}$

 $\mathrm{T}^{\mu \mathrm{V}} \rightarrow 0^{\mathrm{Hv}} \mathrm{T}_{\text {\{MCRF }\}}$
(0,2)-Tensor $\mathrm{T}_{\mu \mathrm{v}}$ $(0,1)$-Tensor $\mathrm{V}_{\mu}=\left(\mathrm{v}_{0},-\mathrm{v}\right)$

Equation of State $\operatorname{EoS}\left[T^{\mu v}\right]=w=p_{o} / \rho_{\mathrm{eo}}$ 4-Scalar

SRQM Study: Physical 4-Tensors Some SR 4-Tensors and Symbols

A Tensor Study of Physical 4-Vectors

SRQM Study: Physical 4-Tensors Metric Sign-Convention:Signature

Ultimately, the Sign-Convention or Metric Signature is based on the definition of the 4-Gradient ∂^{μ} since it is used to create the Minkowski Metric $\eta^{\mu \mathrm{V}}=\partial^{\mu}\left[R^{\mathrm{V}}\right]$:
I prefer the (+,-,-,-) Metric Signature:SignConvention, and use it in this study $=\left\{\right.$ temporal, $\left.0^{\text {in }},+\right\}$, Timelike + ,ParticlePhysics, WestCoast convention,Mostly-minuses

$$
T^{\mu v}=\left(\rho_{\mathrm{mo}}+p_{0} / \mathrm{C}^{2}\right) \mathrm{U}^{\mathrm{V}}-\mathrm{p}_{\mathrm{o}} \eta^{\mu \mathrm{v}} \text { for }(+,-,,) \text { Timelike }+ \text {,ParticlePhys,WestCoast convention }
$$

-	$\underline{\mathrm{x}}$	y	\underline{Z}
t [ρ_{e}	0	0	0]
$\underline{x}[0$	p	0	$0]$
\underline{y} [0	0	p	$0]$
z[0	0	0	p]

$$
1,102
$$

$\rightarrow(-\partial / c, \partial, \partial, \partial)$
$=(-\partial / c \partial t, \partial / \partial x, \partial / \partial y, \partial / \partial z)$
for (-,+,+,+) Spacelike+,Relativity, EastCoast convention
preferred in this treatise $=\left(\partial_{t} / c,-\nabla\right)$
$\rightarrow\left(\partial_{t} / c,-\partial_{x^{\prime}}-\partial_{y^{\prime}},-\partial_{z}\right)$
$=(\partial / c \partial t,-\partial / \partial x,-\partial / \partial y,-\partial / \partial z)$
for (+,-,-,-) Timelike+,ParticlePhys, WestCoast convention

[m] 4-Position

$\mathbf{R}=\mathrm{R}^{\mu}=(\mathrm{ct}, \mathrm{r}) \in<$ Event $>$
$\rightarrow(\mathrm{ct}, \mathrm{x}, \mathrm{y}, \mathrm{z})$

SR:Minkowski Metric $\partial[R]=\partial^{\mu}\left[R^{\mathrm{V}}\right]=\eta^{\mathrm{HV}}=\mathrm{V}^{\mathrm{HV}}+\mathrm{H}^{\mathrm{HV}}$ \rightarrow Diag $\left[-1,+\mathrm{I}_{33}\right]=\operatorname{Diag}\left[-1,+\delta^{1}\right]$

for (-,,,+,,+) Spacelike+,Relativity, EastCoast convention
$\rightarrow \operatorname{Diag}\left[+1,-I_{(3)}\right]=\operatorname{Diag}\left[+1,-\delta^{-1}\right]$

for (+,,-,,-) Timelike+,ParticlePhys, WestCoast convention

4-Tensor Unit Dimensint-Symmetric Spatial Isotropic

Perfect Fluid 4D Stress-Energy Tensor (technically an EnergyDensity) $T^{\mu v}=\left(\rho_{\text {eo }}\right) V^{\mu v}+\left(-p_{o}\right) H^{\mu v}$
 $T^{\mu v}=\left(\rho_{m o}+p_{o} / c^{2}\right) U^{\mu} U^{V}+\{\{s c\}\} p_{o} \eta^{\mu v}$

Maxwell 4D EM Stress-Energy Tensor (technically an EnergyDensity)

$$
\left.T^{\mu \nu}=\{\{s c\}\}\left(1 / \mu_{o}\right)\left[F^{\mu \sigma} F_{\alpha}-(1 / 4)\right)^{\nu \nu} F_{\alpha \beta} F^{\alpha \beta}\right]
$$

$T^{\mu \nu}=+\left(1 / \mu_{o}\right)\left[F^{\mu a} F^{\nu}-(1 / 4) \eta^{\mu v} F_{\alpha \beta} F^{\alpha \beta}\right]$ for $(-,+,+,+)$ Spacelike + ,Relativity, EastCoast conv.
 \& $\mathbf{s}=\left(1 / \mu_{o}\right)$ exb $=$ PoyntingVector

with $\sigma^{i j}=\varepsilon_{0} e^{i} e^{i}+b^{i} b^{j} / \mu_{o}-1 / 2\left(\varepsilon_{0} e^{2}+b^{2} / \mu_{0}\right) \delta^{i j}$ = the 3D Maxwell Stress Tensor

4-Tensor
Symmetric

SR 4-Tensor (2,0)-Tensor T ${ }^{\mu v}$ (1,1)-Tensor $T^{\mu}{ }_{v}$ or T_{μ} $(0,2)$-Tensor $T_{\mu v}$

[^1]
SRQM Diagram:

Special Relativity \rightarrow Quantum Mechanics

4-Gradient=Alteration of SR <Events> SR SpaceTime "Flat" Minkowski 4D Metric SR SpaceTime Dimension=4 SR Lorentz Transforms SR Action \rightarrow 4-Momentum SR Phase $\rightarrow 4$-WaveVector SR ProperTime Derivative SR \& QM Invariant Waves $\partial \cdot \partial=(\partial / c)^{2}-\nabla \cdot \nabla$
$=-\left(m_{0} c / \hbar\right)^{2}=-\left(\omega_{0} / c\right)^{2}$

SR d'Alembertian \& Klein-Gordon Relativistic Quantum Wave Relation Schrödinger QWE is $\{|\mathbf{v}| \ll c\}$ limit of KG QWE **[SR \rightarrow QM]**

4-WaveVector=Substantiation of SR Wave <Events> oscillations proportional to mass:energy \& 3-momentum

4-WaveVector K^{μ} $K=(\omega / c, k)=\left(\omega / c, \omega \hat{n} / v_{\text {phase }}\right)$ $=(1 / c \mp, \hat{n} / A)=\left(\omega_{0} / c^{2}\right) \mathbf{U}=P / \hbar$ SR 4-CoVector:OneForm $(0,1)$-Tensor $\mathrm{V}_{\mu}=\left(\mathrm{v}_{0},-\mathrm{v}\right)$

SRQM Chart:

Special Relativity \rightarrow Quantum Mechanics

SRQM: The [SR \rightarrow QM] Interpretation of Quantum Mechanics

Special Relativity (SR) Axioms: Invariant Interval + LightSpeed (c) as Universal Physical Constant lead to SR, although technically SR is itself the Minkowski-SpaceTime low-curvature:"flat" limiting-case of GR.
$\left\{\mathrm{c}, \tau, \mathrm{m}_{\mathrm{o}}, \hbar, \mathrm{i}\right\}=\left\{\mathrm{c}:\right.$ SpeedOfLight, τ : ProperTime, m_{0} : RestMass, $\hbar:$ Dirac/PlanckReducedConstant($\overline{\mathrm{h}=\mathrm{h} / 2 \pi), \text { i: ImaginaryNumber\}: }}$ are all Empirically-Measured SR Lorentz-Invariant Physical and/or Mathematical Constants $\quad \mathrm{i}=+\sqrt{[-1]}=(0,1)_{\text {complext }}$

Standard SR 4-Vectors:
Related by these SR Lorentz Invariants:

4-Position	$\mathbf{R}=$ (ct, r)	$\epsilon<$ Event> \in <Time Space>	$(\mathbf{R} \cdot \mathbf{R})=(\mathrm{c} \tau)^{2}=\left(\mathrm{i} \mid \mathrm{r}_{\mathrm{o}}\right)^{2}$
4-Velocity	$\mathbf{U}=\gamma(\mathrm{c}, \mathrm{u})$	$=(\mathrm{U} \cdot \partial) \mathbf{R}=(\mathrm{d} / \mathrm{dr}) \mathrm{R}=\mathrm{dR} / \mathrm{d} \tau$	$(\mathbf{U} \cdot \mathbf{U})=(\mathrm{c})^{2}$
4-Momentum	$\mathbf{P}=(\mathrm{E} / \mathrm{c}, \mathrm{p})$	$=\mathrm{m}_{0} \mathbf{U}$	$(P \cdot P)=\left(m_{0} c\right)^{2}$
4-WaveVector	$\mathbf{K}=(\omega / \mathrm{c}, \mathrm{k})$	$=P / \hbar$	$(\mathrm{K} \cdot \mathrm{K})=\left(\mathrm{m}_{0} \mathrm{C} /\right)^{2} \quad$ KG Equation:
4-Gradient	$\partial=\left(\partial_{\mathrm{t}} / \mathrm{c},-\nabla\right)$	$=-\mathrm{i} \mathrm{K}$	$(\partial \cdot \partial)=\left(-\mathrm{im} \mathrm{o}_{0} / \hbar\right)^{2}=-\left(\mathrm{m}_{0} \mathrm{c} / \hbar\right)^{2}=\mathrm{QM}$ Relation $\rightarrow \mathrm{RQM} \rightarrow \mathrm{QM}$

SR + Empirically Measured Physical Constants lead to RQM via the (KG) Klein-Gordon Quantum Eqn, and thence to QM via the low-velocity limit $\{|\mathbf{v}| \ll \mathrm{c}\}$, giving the Schrödinger Eqn. This fundamental KG Relation also leads to the other

Quantum Wave Equations:

spin=0 boson field $=4$-Scalar: spin=1/2 fermion field $=4$-Spinor: spin=1 boson field $=4$-Vector:

> RQM (massless, no rest-frame, Lorentzian)
> $\left\{|\mathbf{v}|=\mathrm{c}: \mathrm{m}_{0}=0\right\}$

Free Scalar Wave (Higgs) Weyl
Maxwell (EM photonic)

RQM (with non-zero mass, Lorentzizn)
$\left\{0<=|\mathbf{v}|<c: m_{0}>0\right\}$
Klein-Gordon (KG)
Dirac (RQM w/ EM charge)
Proca

QM (ilimitcase from ROM, Gallean)
$\left\{0<=|\mathrm{v}| \ll \mathrm{c}: \mathrm{m}_{0}>0\right\}$
Schrödinger (regular QM)
Pauli (QM w/ EM charge)

A Tensor Study of Physical 4-Vectors

Mostly SR Stuff

4-Vector Basics, SR 4-Vectors = Physical 4D (1,0)-Tensors, Coordinate-Independent Objects Paradigm Assumptions: Right \& Wrong
Minkowski:SR SpaceTime, <Events> \in <Time-Space>, WorldLines, 4D Minkowski Metric SR \{4-Scalars, 4-Vectors, 4-Tensors\} \& Tensor Invariants, Cayley-Hamilton Theorem SR Lorentz Transforms, CPT Symmetry, Trace Identification, Antimatter, Feynman-Stueckelberg Fundamental Physical Constants: Lorentz Scalar Invariants = SR 4-Scalars = 4D (0,0)-Tensors Projection Tensors: Temporal "(V)ertical" \& Spatial "(H)orizontal": (V),(H) refer to Light-Cone Stress-Energy Tensors: Relativistic Fluids \rightarrow (PerfectFluid, Dust, Radiation, EM, DarkEnergy, etc) Invariant Intervals, Measurement, Metrics, Metric Signature
SpaceTime Kinematics \& Dynamics, ProperTime Derivative
Einstein's $\mathrm{E}=\mathrm{mc}^{2}=\gamma \mathrm{m}_{0} \mathrm{c}^{2}=\gamma \mathrm{E}_{0}$, Rest Mass (m_{0}):Rest Energy (E_{0}), Scalar Invariants SpaceTime Orthogonality: Time-like 4-Velocity, Space-like 4-Acceleration
Relativity of Simultaneity:Stationarity ; Invariance/Absolutes of Causality:Topology
Relativity: Time Dilation ($\leftarrow \mid$ clock moving $\mid \rightarrow$), Length Contraction ($\mid \rightarrow$ ruler moving $\leftarrow \mid$) Invariants: Proper Time (| clock at rest |), Proper Length (| ruler at rest |) Temporal Ordering: (Time-like) Causality is Absolute; (Space-like) Simultaneity is Relative Spatial Ordering: (Time-like) Stationarity is Relative ; (Space-like) Topology is Absolute SR Motion * Lorentz Scalar = Interesting Physical 4-Vector
SR Conservation Laws \& Local Continuity Equations, Symmetries
SR Wave-Particle Relation, Invariant d'Alembertian Wave Eqn, SR Waves, 4-WaveVector Relativistic Doppler Effect, Relativistic Aberration Effect
SpaceTime is 4D $=(1+3) D: \partial \cdot R=\partial_{\mu} R^{\mu}=4, \Lambda_{\mu v} \Lambda^{\mu v}=4$, $\operatorname{Tr}\left[\eta^{\mu v}\right]=4, A=A^{\mu}=\left(a^{\mu}\right)=\left(a^{0}, a^{1}, a^{2}, a^{3}\right)=4 \mathrm{comps}$ Minimal Coupling = Interaction with a (Vector)Potential, usually the EM 4-VectorPotential Conservation of 4-TotalMomentum (TotalEnergy=Hamiltonian \& 3-total-momentum) SR Hamiltonian:Lagrangian Connection
Lagrangian, Lagrangian Density
Hamilton-Jacobi Equation (differential ∂), Relativistic Action (integral f) 4-Position:4-Velocity Relation, Euler-Lagrange Equations
Noether's Theorem, Continuous Symmetries, Conservation Laws, Continuity Equations Relativistic Equations of Motion, Lorentz Force Equation
c^{2} Invariant Relations, The Speed-of-Light (c)
Thermodynamic 4-Vectors, Unruh-Hawking Temperature, Particle Distributions

Mostly QM \& SRQM Stuff

Advanced SRQM 4-Vectors
Where is Quantum Gravity?
Relativistic Quantum Wave Equations (RWE : QWE)
Klein-Gordon Equation (KG) / Fundamental Quantum Relation $(\partial \cdot \partial)=-\left(\mathrm{m}_{0} \mathrm{c} / \hbar\right)^{2}$ RoadMap from SR to QM: SR \rightarrow QM, SRQM 4-Vector Connections
QM Schrödinger Relation
QM Axioms? - No, (QM Principles derived from SR) = SRQM
Relativistic Wave Equations: based on mass \& spin \& relative velocity:energy RWE's: Klein-Gordon, Dirac, Proca, Maxwell, Weyl, Pauli, Schrödinger, etc Classical Limits: SR's $\{|\mathbf{v}| \ll \mathrm{c}\} ;$ QM's $\{\hbar|\nabla \cdot \mathbf{p}| \ll(\mathbf{p} \cdot \mathbf{p})$ or $|\nabla \cdot \mathbf{k}| \ll(\mathbf{k} \cdot \mathbf{k})\}$ Photon Polarization
Linear PDE's \rightarrow \{Principle of Superposition, Hilbert Space, <Bra|:|Ket> Notation\}
Canonical QM Commutation Relations \leftarrow derived from SR
Heisenberg Uncertainty Principle (due to non-zero commutation)
Pauli Exclusion Principle (Fermion spin n/2), Bose Aggregation Principle (Boson spin n) Complex 4-Vectors, Quantum Probability, Imaginary values
CPT Theorem, Lorentz Invariance, Poincaré Invariance, Isometry Hermitian Generators, Unitarity:Anti-Unitarity
QM \rightarrow Classical Correspondence Principle, similar to SR \rightarrow Classical Low Velocity The Compton Effect = Photon:Electron Interaction (neglecting Spin Effects) Photon Diffraction, Crystal-Electron Diffraction, The Kapitza-Dirac Effect
The (\AA) Relation, Einstein-de Broglie, Planck:Dirac, Wave-Particle
The Aharonov-Bohm Effect (integral f), The Josephson Junction Effect (differential ∂) Dimensionless Quantities
SRQM Symmetries:
Hamilton-Jacobi Equation (differential ∂), Relativistic Action (integral J)
Differential (∂) on (4-Vector) vs. Integral(I S) on (4-Scalar)
Schrödinger Relations vs. Cyclic Imaginary Time \leftrightarrow Inverse Temperature
4-Velocity:4-Position vs. Euler-Lagrange Equations
Matter-AntiMatter: Trace Identification of Lorentz Transforms, CPT
Quantum Relativity: GR is *NOT* wrong, *Never bet against Einstein* :)
Quantum Mechanics is Derivable from Special Relativity, SR \rightarrow QM: SRQM

There are some paradigm assumptions that need to be cleared up:

The real, physical world *IS NOT* Euclidean 3-dimensional (3D) with absolute background time. Classical and quantum 3D physics is a great approximation; but only for Galilean, slow-moving objects $|\mathrm{v}| \ll \mathrm{c}$.
3D physics uses \{3-vectors = 3D (1,0)-tensors\}, has 3D Euclidean invariants like lengths (Pythagorean theorem),
has 1D Euclidean scalar invariants like absolute time, but it does not contain or predict many of
the physical properties and relationships that we now know to be true from SR \& RQM.
Also, these 1D \& 3D Euclidean invariants have been empirically-proven to *NOT* be invariant in the real world.
This is based on a century+ of physics experiments and observations confirming the fact of 4D Relativity.
These 1D \& 3D scalar invariants are actually just relativistic components of 4-Vectors in 4D.
The fact that 4D Scalar Invariants don't display similar relativistic variance is a good indication that our universe is empirically 4D.
The real, physical world *IS* a locally Minkowskian 4-Dimensional SpaceTime (4D), with relativistically-interconnected (1 time +3 space) covariant dimensions.
Time and space are interconnected in a very specific Lorentzian way, via SpaceTime 4D Relativistic Metrics, which give a great many special relationships and invariances that 3D physics misses entirely.
These properties are easily explained using SR:Minkowskian Physical \{4-Vectors = 4D (1,0)-Tensors \}.
3D physics can be obtained as a limiting-case approximation from 4D Physics by using relative speed $|\mathbf{v}| \ll c$.
Classical Mechanics (CM) is just a low-speed limiting-case of Special Relativity (SR)
Quantum Mechanics (QM) is just the low-speed limiting-case of Relativistic Quantum Mechanics (RQM)
This is related to $(1+3)$ Time-Space Splitting

There are some paradigm assumptions that need to be cleared up:

Minkowskian:SR 4D Physical 4-Vectors *ARE NOT* generalizations of Classical/Quantum 3D physical 3-vectors.
While a "mathematical" Euclidean ($n+1$)D-vector is the generalization of a Euclidean (n)D-vector, the "physical/physics" analogy ends there.

Minkowskian:SR 4D Physical 4-Vectors *ARE* the primitive elements of 4D Minkowski:SR SpaceTime. Classical/Quantum physical 3-vectors are just the spatial components of SR Physical \{4-Vectors = 4D (1,0)-Tensors\}. There is also a fundamentally-related classical/quantum physical scalar related to each and every type of 3-vector, which is just the temporal component scalar of a given SR Physical SpaceTime 4-Vector.

> 4-Position R $=R^{\mu}=\left(r^{\mu}\right)=\left(r^{0}, r^{\prime}\right)=(c t, r) \rightarrow\left(c t=r^{t}, r^{x}, r^{y}, r^{2}\right)=(c t, x, y, z)$
> 4-Momentum $P=P^{\mu}=\left(p^{\mu}\right)=\left(p^{0}, p^{j}\right)=(E / c=m c, p=m u) \rightarrow\left(E / c=p^{t}, p^{x}, p^{y}, p^{2}\right)$
> 4-CurrentDensity $\mathbf{J}=J^{\mu}=\left(j^{\mu}\right)=\left(j^{0}, j\right)=(\rho c, j=p u) \rightarrow\left(p c=j^{j}, j^{x}, j^{y}, j^{z}\right)$

These Classical/Quantum \{scalar\}+\{3-vector\} are the dual \{temporal\}+\{spatial\} components of a single SR Time-Space 4-Vector $=$ (temporal scalar ${ }^{*} c^{ \pm 1}$, spatial 3-vector) with SR LightSpeed factor ($\mathrm{c}^{ \pm 1}$) to give correct overall dimensional measurement units.

While different observers may see different relative "values" of the Classical/Quantum components $\left(\mathrm{V}^{0}, \mathrm{v}^{1}, \mathrm{v}^{2}, \mathrm{v}^{3}\right)$ from their point-of-view:frame-of-reference in SpaceTime, each will see the same actual SR 4-Vector $\mathbf{V}=\mathrm{V}^{\mu}$ and its magnitude ${ }^{2}=\mathbf{V} \cdot \mathbf{V}=\mathrm{V}^{\mu} \mathrm{V}_{\mu}=\left[\left(\mathrm{V}^{0}\right)^{2}-\mathbf{V} \cdot \mathbf{v}\right]=\left(\mathrm{V}^{0}\right)^{2}$ at a given <Event> in SpaceTime. Magnitudes ${ }^{2}$ can be $\{+=$ temporal : $0=$ null : = = spatial $\}$ in (,,,+---$)$ Special Relativity, due to the $\left\{\right.$ metric signature $\left.=(1,3,0)^{+}\right\}$Lorentzian metric \subset pseudo-Riemannian metric (non-positive-definite)
(1,0)-Tensor $\mathrm{V}^{\mu}=\mathbf{V}=\left(\mathrm{v}^{0}, \mathbf{v}\right)$ SR 4-CoVector:OneForm $(0,1)$-Tensor $V_{\mu}=\left(v_{0},-v\right)$

There are some paradigm assumptions that need to be cleared up:

Relativistic Physics ${ }^{* *}$ IS NOT** the generalization of Classical or Quantum Physics.
Classical \& Quantum Physics **ARE** the low-relative-speed $\{|\mathbf{v}| \ll c\}$ limiting-case approximation of Relativistic Physics.
This includes (Newtonian) Classical Mechanics and Classical QM (NRQM: meaning the Non-Relativistic Schrödinger QM Equation - it is not fundamental). The rules of standard QM are just the low-relative-speed approx. $\{|\mathbf{v}| \ll \mathrm{c}\}$ of RQM rules. Classical EM is for the most part already compatible with Special Relativity. However, Classical EM doesn't include or take into account intrinsic spin, even though spin is a result of SR Poincaré Invariance, not QM.

So far, in all of my research, if there was a way to get a result classically,
then there was usually a much simpler way to get the result using tensorial 4-Vectors and SRQM relativistic thinking. Likewise, a lot of QM results make much more sense when approached from SRQM (ex: Temporal vs. Spatial relations). 4-Vector formulations are all extremely easy to derive in SRQM and are all relativistically covariant and give invariant results.

Hamiltonian: $\mathrm{H}=\gamma\left(\mathbf{P}_{\mathrm{T}} \cdot \mathbf{U}\right)_{\{\text {Relativisicic }\}} \rightarrow(\mathrm{T}+\mathrm{V})=\left(\mathrm{E}_{\text {kinetic }}+\mathrm{E}_{\text {potential }}\right)\{$ Classical-limit only, $\|u\| \ll c\}$ Lagrangian: $\mathrm{L}=-\left(\mathrm{P}_{\mathrm{T}} \cdot \mathrm{U}\right) / \gamma\{$ Relativistic $\} \rightarrow(\mathrm{T}-\mathrm{V})=\left(\mathrm{E}_{\text {kinetic }}-\mathrm{E}_{\text {potential }}\right)\{$ Classical-limit only, $\|\mathrm{u}\| \ll \mathrm{c}\}$	

\{differential 4-Vector formats\}
SR/QM Wave Eqn $\left\{\right.$ \{inv of Phase Eqn\}: $\quad \mathbf{K}_{T}=-\partial\left[\Phi_{\text {phase }}\right]=\mathbf{P}_{T} / \hbar \rightarrow\left\{\omega_{T}=-\partial_{t}[\Phi]: \mathbf{k}_{T}=\nabla[\Phi]\right\}$ Hamilton-Jacobi Eqn $\left\{\begin{array}{l}\text { inv of Action Ean\} }\end{array}: \mathrm{P}_{\mathrm{T}}=-\partial\left[\mathrm{S}_{\text {action }}\right]=\hbar \mathrm{K}_{\mathrm{T}} \rightarrow\left\{\mathrm{E}_{\mathrm{T}}=-\partial_{\mathrm{t}}[\mathrm{S}]: \mathrm{p}_{\mathrm{T}}=\nabla[\mathrm{S}]\right\}\right.$
\{integral 4-Scalar formats\}
SR Action Eqn \{inv of H-J Eqn\}: $\quad \Delta \mathbf{S}_{\text {action }}=-\int_{\text {path }} \mathbf{P}_{\mathrm{T}} \cdot \mathbf{d X}=-\int_{\text {path }}\left(\mathbf{P}_{\mathrm{T}} \cdot \mathbf{U}\right) \mathrm{d} \tau=\int_{\text {path }} \mathrm{L} d t$ SR/QM Phase Eqn \{invof Wave Eqn\}: $\Delta \Phi_{\text {phase }}=-\int_{\text {path }} \mathbf{K}_{\mathrm{T}} \cdot \mathbf{d X}=-\int_{\text {path }}\left(\mathbf{K}_{\mathrm{T}} \cdot \mathbf{U}\right) \mathrm{d} \tau=\Delta \mathrm{S}_{\text {action }} / \hbar$

\{advanced mechanics\}

Euler-Lagrange Equation: $(\mathrm{U}=(\mathrm{d} / \mathrm{d} \tau) \mathrm{R}) \rightarrow\left(\partial_{\mathrm{R}}=(\mathrm{d} / \mathrm{d} \tau) \partial_{\mathrm{u}}\right)_{\{\text {the easy derivation\} }}$ Hamilton's Equations: $(\mathrm{d} / \mathrm{d} \tau)[\mathbf{X}]=\left(\partial / \partial \mathbf{P}_{\mathrm{T}}\right)\left[\mathrm{H}_{0}\right] \&(\mathrm{~d} / \mathrm{d} \tau)\left[\mathbf{P}_{\mathrm{T}}\right]=(\partial / \partial \mathbf{X})\left[\mathrm{H}_{0}\right]$
\{SR wave mechanics - requires a 4-WaveVector K as solution\} d'Alembertian Wave Equation: $\partial \cdot \partial=\left(\partial_{t} / c\right)^{2}-\nabla \cdot \nabla$, with solutions $\sim \Sigma_{n}\left(A_{n}\right) \mathrm{e}^{ \pm\left(\mathrm{K}_{n} \cdot x\right)}$

```
Einstein-de Broglie Relation: P = \hbarK }->{E=\hbar\omega:p=\hbark 
    Complex Plane-Wave Relation: K =i\partial -> {\omega=i\mp@subsup{\partial}{t}{}:k=-i\nabla}
    Schrödinger Relations: P = i\hbar\partial -> {E = i\hbar\partialt: p = -i\hbar\nabla}
```

Canonical QM Commutation Relations inc. QM Time,Energy:
$\left[P^{\mu}, X^{\mathrm{V}}\right]=i \hbar \eta^{\mu \mathrm{v}} \rightarrow\left\{\left[\mathrm{x}^{0}, \mathrm{p}^{0}\right]=[\mathrm{ct}, \mathrm{E} / \mathrm{c}]=[\mathrm{t}, \mathrm{E}]=-i \hbar:\left[\mathrm{x}^{\mathrm{j}}, \mathrm{p}^{\mathrm{k}}\right]=\mathrm{i} \hbar \mathrm{\delta}^{\mathrm{k}}\right\}$
$\left[\partial^{\mu}, X^{\mathrm{V}}\right]=\quad \eta^{\mu \mathrm{v}} \rightarrow\left\{\left[\mathrm{x}^{0}, \partial^{0}\right]=\left[\mathrm{ct}, \partial_{\mathrm{t}} / \mathrm{c}\right]=\left[\mathrm{t}, \partial_{\mathrm{t}}\right]=-1:\left[\mathrm{x}^{\mathrm{j}}, \partial^{\mathrm{k}}\right]=+\delta^{\mathrm{ik}}\right\}$
Total Momentum: $\mathbf{P}_{\mathrm{T}}=\mathbf{P}+q \mathbf{A} \rightarrow\left\{\mathrm{E}_{\mathrm{T}}=\mathrm{E}+\mathrm{q} \varphi: \mathrm{p}_{\mathrm{T}}=\mathrm{p}+\mathrm{qa}\right\}$ Minimal Coupling: $\mathbf{P}=\mathrm{P}_{\mathrm{T}}-q \mathbf{A} \rightarrow\left\{E=\mathrm{E}_{\mathrm{T}}-\mathrm{q} \varphi: p=\mathrm{p}_{\mathrm{T}}-q a\right\}$
\{Physical Inverse Efiects\}
Josephson-Junction ${ }_{\text {(dififerential } 4 \text {-vector format) }: ~}^{A}=-(\hbar / q) \partial\left[\Delta \Phi_{\text {pot }}\right]$ Aharonov-Bohm (integral 4 -scalar format): $\Delta \Phi_{\text {pot }}=-(\mathrm{q} / \hbar) \int_{\text {path }} \mathbf{A} \cdot \mathrm{dX}$

Compton Scattering: $\Delta A=\left(A^{\prime}-A\right)=\left(\hbar / m_{\circ} c\right)(1-\cos [\varnothing])$
Klein-Gordon Relativistic Quantum Wave Eqn: $\partial \cdot \partial=-\left(m_{0} c / \hbar\right)^{2}$

There are some paradigm assumptions that need to be cleared up:

We will **NOT** be employing the commonly-(mis)used Newtonian classical limits $\{\mathrm{c} \rightarrow \infty\}$ and $\{\hbar \rightarrow 0\}$. Neither of these is a valid physical assumption, for the following reasons:

Both (c) and ($\hbar=\mathrm{h} / 2 \pi$) are unchanging Universal Physical Constants and Lorentz Scalar Invariants. Taking a limit where these change is non-physical. They are CONSTANT. Tensor math shows them Invariant. Many, many experiments verify that these physical constants have not changed over the lifetime of the universe. This is one reason for the 2019 Redefinition of SI Base Units on Fundamental Constants $\left\{\mathrm{c}, \mathrm{h}, \mathrm{e}, \mathrm{k}_{\mathrm{B}}, \mathrm{N}_{\mathrm{A}}, \mathrm{K}_{\mathrm{CD}}, \Delta \mathrm{v}_{\mathrm{Gs}}\right\}$.
[2]
 Let $E=|p| c$. If $c \rightarrow \infty$, then $E \rightarrow \infty$. Then Classical EM light rays/waves have infinite energy.
Let $E=\hbar \omega=h v$. If $\hbar \rightarrow 0$, then $E \rightarrow 0$. Then Classical EM light rays/waves have zero energy.
Obviously neither of these energy results is true in the Newtonian/Classical limit.
In Classical EM and Classical Mechanics, LightSpeed (c) remains a large but finite constant.
Likewise, Dirac's (Planck-reduced) Constant ($\AA=\mathrm{h} / 2 \pi$) remains very small but never becomes zero.
The correct way to take the limits is via:
The low-speed non-relativistic limit $\{|\mathbf{v}| \ll \mathrm{c}\}$, which is a physically-occurring situation.
The Hamilton-Jacobi non-quantum limit $\{\hbar|\nabla \cdot \mathbf{p}| \ll(\mathbf{p} \cdot \mathbf{p})\}$ or $\{|\nabla \cdot \mathbf{k}| \ll(\mathbf{k} \cdot \mathbf{k})\}$, which is a physically-occurring situation.

Special Relativity \rightarrow Quantum Mechanics Paradigm Background Assumptions (part 5)

There are some paradigm assumptions that need to be cleared up:

While we are discussing units, note that the following are *ALL* fundamental Relativistic Invariants, meaning also that they are *ALL* Lorentz Scalar Invariants = 4D (0,0)-Tensors:

Universal Constants (True for all Time-Space)
c: LightSpeed in Vacuum Constant [m/s] (maximum speed of causality) E ~ pc
G: Gravitational Constant $\left[\mathrm{m}^{3} / \mathrm{kg} \cdot \mathrm{s}^{2}=\mathrm{N} \cdot \mathrm{m}^{2} / \mathrm{kg}^{2}\right]$ (GR curvature) $\mathrm{E} \sim-\mathrm{GMm} / \mathrm{r}$
$\mathrm{h}, \hbar=\mathrm{h} / 2 \pi$: Planck's Constant, Dirac's Constant(Planck Reduced) [J•s] (QM action, waves) E ~ $\sim \omega=h \nu$
k_{B} : Boltzmann's Constant [J/K] (Stat Mech, temperature, entropy) E ~ $\mathrm{k}_{\mathrm{B}} \mathrm{T}$
ε_{0} : Electric Constant $\left[\mathrm{F} / \mathrm{m}=\mathrm{C}^{2} \cdot \mathrm{~s}^{2} / \mathrm{kg} \cdot \mathrm{m}^{3}\right]$
μ_{0} : Magnetic Constant $\left[H / m=k g \cdot m / C^{2}\right] E / V \sim 1 / 2\left(\varepsilon_{0} e^{2}+b^{2} / \mu_{0}\right)$, with $\varepsilon_{0} \mu_{0}=1 / c^{2}$
Particle-Dependent Constants \{interestingly, also the "No Hair" scalar parameters of a BlackHole\}
m_{0} : Rest Mass [kg] E $\sim \mathrm{m}_{0} \mathrm{c}^{2}$
q: EM Charge [C] E ~ -(1/4 $\left.\pi \varepsilon_{0}\right)$ Qq/r or $\mathrm{E} \sim \mathrm{q} \Phi: \mathrm{ex} . \mathrm{E} \sim \mathrm{eV}$
s_{0} : Intrinsic Spin $[\mathrm{J} \cdot \mathrm{s}] \mathrm{E} \sim(\mathrm{g} / 2) \mu \cdot \mathrm{b}$, with $\mu=\mathrm{qs} / 2 \mathrm{~m}$
Fluid-Dependent Scalars
$\rho_{\mathrm{e} 0}$: MRCF Fluid EnergyDensity (temporal) $\left[\mathrm{Pa}=\mathrm{J} / \mathrm{m}^{3}=\mathrm{N} / \mathrm{m}^{2}=\mathrm{kg} / \mathrm{m} \cdot \mathrm{s}^{2}\right]$

These scalars join with Unit-Projection 4-Tensors to give property descriptions to particles and fluids:
4-UnitTemporal $\mathbf{T}=\gamma(1, \beta)$

4-Velocity U = (c)T
4-Momentum $\mathbf{P}=\left(\mathrm{cm}_{0}\right) \mathrm{T}$
4-UnitSpatial $\mathbf{S}=\gamma_{\beta \hat{n}}(\beta \cdot n, \hat{n})$
4-Spin S = (So)S
along with the 4-Position $\mathbf{R}=(c t, r)$ (1,0)-Tensor $\mathrm{V}^{\mu}=\mathbf{V}=\left(\mathrm{v}^{0}, \mathbf{v}\right)$

SR 4-Scalar SR 4-CoVector:OneForm
(0,0)-Tensor S or S
$(0,1)$-Tensor $\mathrm{V}_{\mu}=\left(\mathrm{V}_{0},-\mathrm{v}\right)$
Lorentz Scalar
SRQM: A treatise of SR \rightarrow QM by John B. Wilson (SciRealm@aol.com)

There are some paradigm assumptions that need to be cleared up:

We will *NOT* be implementing the common $\{\rightarrow$ lazy and extremely misguided $\}$ convention of setting physical constants to the value of (dimensionless) unity, often called "Natural Units", to hide them from equations; nor using mass (m) in place of RestMass (m_{0}). Likewise for other components vs Lorentz Scalars with rest-value-naughts (o), like Energy (E) vs RestEnergy (E_{o}).

One sees this very often in the literature (ex. LightSpeed c $\rightarrow 1$). The usual excuse cited is "For the sake of brevity" or "For the sake of simplicity". Well, the "sake of brevity" forsakes "clarity". There is nothing physically "natural" about "natural units".

The *ONLY* situations in which setting constants to unity (1) is practical or advisable is in numerical simulation or mathematical analysis.
When teaching physics, or trying to understand physics: it helps when equations are dimensionally, unit-wise, correct.
In other words, the physics technique of "dimensional analysis" is a powerful tool that should not be disdained.
i.e. Brevity only aids speed of computation, Clarity aids understanding.

The situation of using "naught $={ }_{0}$ " for rest-values, such as $\left(m_{0}\right)$ for RestMass and (E_{0}) for RestEnergy:
is intrinsic to SR, is a very good idea, absolutely adds clarity, identifies Lorentz Scalar Invariants, and will be explained in more detail later. Essentially, relativistic gamma (γ) pairs with invariant (Lorentz scalar:rest value o) to make a relativistic component: $\left\{\mathrm{m}=\gamma \mathrm{m}_{0} ; \mathrm{E}=\gamma \mathrm{E}_{0} ; \rho=\gamma \rho_{0} ; \omega=\gamma \omega_{0}\right\}$ Note the multiple equivalent ways that one can write 4-Vectors of SpaceTime (Time-Space) using these rules:
$\left\{t=\gamma \mathrm{t}_{\mathrm{o}} ; \mathrm{L}=\mathrm{L} \mathrm{L} / \gamma ; \mathrm{V}=\mathrm{Vo} / \gamma ;\right.$ etc. $\}$

$$
\begin{aligned}
& \text { 4-Momentum } \mathbf{P}=P^{\mu}=\left(p^{\mu}\right)=\left(p^{0}, p^{\prime}\right)=(m c=E / c, p=m u)=\left(\gamma m_{0} c=\gamma E_{d} / c, p=\gamma m_{0} u\right)=-\partial_{R}\left[S_{\text {acion,free }}\right]=-\partial_{u}\left[L_{o, R e s t L a g r a n g i a n, f r e e ~}\right] \\
& =\mathrm{m}_{0} \mathbf{U}=\mathrm{m}_{\mathrm{o}} \gamma(\mathrm{c}, \mathrm{u})=\gamma \mathrm{m}_{\mathrm{o}}(\mathrm{c}, \mathrm{u})=\mathrm{m}(\mathrm{c}, \mathrm{u})=(\mathrm{mc}, \mathrm{mu})=(\mathrm{mc}, \mathrm{p})=\mathrm{mc}(1, \beta)=\mathrm{m}_{\mathrm{o}} \mathrm{c} \mathrm{\gamma}(1, \beta)=\left(\mathrm{m}_{\mathrm{o}} \mathrm{c}\right) \boldsymbol{T} \\
& =\left(\mathrm{E}_{\mathrm{d}} / \mathrm{c}^{2}\right) \mathbf{U}=\left(\mathrm{E}_{\mathrm{d}} / \mathrm{c}^{2}\right) \gamma(\mathrm{c}, \mathrm{u})=\gamma\left(\mathrm{E}_{\mathrm{o}} / \mathrm{c}^{2}\right)(\mathrm{c}, \mathrm{u})=\left(\mathrm{E} / \mathrm{c}^{2}\right)(\mathrm{c}, \mathrm{u})=\left(\mathrm{E} / \mathrm{c}, \mathrm{Eu} / \mathrm{c}^{2}\right)=(\mathrm{E} / \mathrm{c}, \mathrm{p})=(\mathrm{E} / \mathrm{c})(1, \beta)=\left(\mathrm{E}_{\mathrm{o}} / \mathrm{c}\right) \gamma(1, \beta)=\left(\mathrm{E}_{\mathrm{o}} / \mathrm{c}\right) \mathbf{T}
\end{aligned}
$$

This notation makes clear what is \{relativistically-varying=(frame-dependent) vs. Invariant=(frame-independent) \} and \{ Temporal vs. Spatial \} BTW, I prefer the "Particle Physics" Metric-Signature-Convention (+,-,-,-)=\{temporal: $\left.0^{\text {tin }}:+\right\}$. \{Makes rest values positive, fewer minus signs to deal with

Show the physical constants and rest naughts (o) in the work. They deserve the respect and you will benefit.
You can always set constants to unity later, when you are doing your numerical simulations.
SR 4-Vector (1,0)-Tensor $\mathrm{V}^{\mu}=\mathbf{V}=\left(\mathrm{v}^{0}, \mathbf{v}\right)$ SR 4-CoVector:OneForm $(0,1)$-Tensor $\mathrm{V}_{\mu}=\left(\mathrm{v}_{0},-\mathrm{v}\right)$
SR 4-Scalar
(0,0)-Tensor S or S.
Lorentz Scalar

4-Vector SRQM Interpretation

There are some paradigm assumptions that need to be cleared up:

Some physics books on ElectroMagnetism (EM) say that:
Electric field E and the Magnetic field B are the "real" physical objects, and that EM scalar-potential φ and the EM 3-vector-potential "A" are just "calculational/mathematical" artifacts.

Neither statement is relativistically correct: See Jefimenko's equations \& Liénard-Wiechert Potential.
All of these physical EM properties: $\{\mathbf{E}, \mathbf{B}, \varphi$, " \mathbf{A} " $\}$ are actually just the components of SR tensors, and as such, their values will relativistically vary in different observers' reference-frames.

Given this SR knowledge, and to match our 4-Vector notation, we demote the physical property symbols (the tensor "components") to their lower-case equivalents $\{\mathbf{e}, \mathrm{b}, \varphi, \mathrm{a}\}$ to match other 4-Vector comps. see Wolfgang Rindler's works as example

The truly SR invariant physical objects are:

The 4-Gradient ∂, the 4 -VectorPotential \mathbf{A}, their combination via the exterior (wedge ${ }^{\boldsymbol{\wedge}}{ }^{\wedge}$) product into the Faraday EM 4-Tensor $F^{\alpha \beta}=\partial^{\alpha} A^{\beta}-\partial^{\beta} A^{\alpha}=\left(\partial^{\wedge} A\right)$, and their combination via the inner (dot=•) product into the Lorenz Gauge 4-Scalar $(\partial \cdot \mathbf{A})=0$. Yes, Lorenz, not Lorentz.

Temporal-spatial components of 4-Tensor Faß. electric 3-vector field e $=\mathrm{e}^{\mathrm{i}}=\mathrm{e}^{\mathrm{i} 0}$ Spatial-spatial components of 4-Tensor Faß: magnetic 3-vector field $b=b^{k}=(1 / 2) \varepsilon_{i j}{ }^{k} F^{i}$ Temporal component of 4-Vector $\mathbf{A}=A^{\mu}$: EM scalar-potential φ Spatial components of 4 -Vector $\mathbf{A}=A^{\mu}$: EM 3-vector-potential a

Note that the Speed-of-Light (c) plays a prominent role in the component definitions. Also, QM requires the 4-VectorPotential A as explanation of the Aharonov-Bohm Effect. The physical measurability of the AB Effect proves the reality of the 4-VectorPotential A. Again, all the lower and higher-rank SR tensors can be built from fundamental 4-Vectors. (1,0) -Tensor $\mathrm{V}^{\mu}=\mathbf{V}=\left(\mathrm{v}^{0}, \mathrm{v}\right)$ SR 4-CoVector:OneForm $(0,1)$-Tensor $\mathrm{V}_{\mu}=\left(\mathrm{v}_{0},-\mathrm{v}\right)$

SRQM: A treatise of SR \rightarrow QM by John B. Wilson (SciRealm@aol.com)

Faraday EM Tensor $F^{\alpha \beta}=\partial^{\alpha} A^{\beta}-\partial^{\beta} A^{\alpha}$ $=\partial \wedge A$
$\left[F^{x t} F^{x x} F^{x y} F^{x z}\right]$
[$F^{y t} F^{y x} F^{y y} F^{y z}$]
$\left[F^{z t} F^{z x} F^{z y} F^{z z}\right]$
$=$
$\left[\begin{array}{cccc}0 & -e^{x} / c & -e^{y} / c & -e^{z} / c\end{array}\right]$
$=$
$\left[\begin{array}{c}0 \\ {\left[+e^{i 0} / c,\right.} \\ ,\end{array},-\varepsilon^{0 j} / c\right]$
=

4-Vector SRQM Interpretation Special Relativity \rightarrow Quantum Mechanics Paradigm Background Assumptions

There are some paradigm assumptions that need to be cleared up:

A number of QM philosophies make the assertion that particle "properties" do not "exist" until measured.
The assertion is based on the QM Heisenberg Uncertainty Principle, and more specifically on quantum non-zero commutation,
in which a measurement on one property of a particle alters a different non-commuting property of the same particle.
That is an incorrect analysis. Properties define particles: what they do \& how they interact with other particles. Particles and their properties "exist" as <events> independently of human intervention or observation. The correct way to analyze this is to understand what a measurement is: an arrangement of some number of particles in a particular manner as to allow an observer to get information:knowledge about one or more of the "subject particle's" properties. Typically this involves "counting" spacetime <events> and using SR invariant intervals as a basis-of-measurement.

Some properties are indeed non-commuting. This simply means that it is not possible to arrange a set of particles (the measuring device) in such a way as to measure (ie. obtain "complete" information about) both of the "subject particle's" non-commuting properties at the same spacetime
The measurement arrangement <events> can be done at best sequentially, and the temporal order of these <events> makes a difference in observed results.
EPR-Bell, however, allows one to "infer" (due to conservation:continuity laws) properties on a "distant" subject particle by making a measurement on a different "local" \{space-like-separated but entangled\} particle. This does *not* imply FTL signaling nor non-locality.
The (psi-epistemic) measurement just updates local partial-information one already has about particles that interacted/entangled then separated.
So, a better way to think about it is this: The "Measurement \rightarrow InformationUpdate" of a property does not "exist" until a physical setup <event> is arranged. Non-commuting properties require different physical arrangements in order for the properties to be measured, and the temporally-first measurement alters
that particle's properties in a minimum sort of way, which affects the latter measurement. All observers agree on Causality, the time-order of
temporally-separated spacetime <events>. However, individual observers may have different sets of partial information about the same particle(s).
This objective, realist view makes way more sense than the subjective belief that a particle's actual properties don't exist until it is "observed", which is about as unscientific and laughable a statement as I can imagine.

[^2] $(0,1)$-Tensor $V_{\mu}=\left(v_{0},-v\right)$

SR 4-Scalar
(0,0)-Tensor S or S.
Lorentz Scalar

Special Relativity \rightarrow Quantum Mechanics Paradigm Background Assumptions (part 9

There are some paradigm assumptions that need to be cleared up:

A well-formulated and correctly-used notation is critical for understanding physics

Unfortunately, there are a number of "sloppy" notations seen in relativistic and quantum physics.
Incorrect: Using T^{ii} as a Trace of 3D tensor T^{ij}, or $\mathrm{T}^{\mu \mu}$ as a Trace of 4D Tensor T^{μ}
T^{ij} is actually just the diagonal part of 3-tensor T^{ij}, the components: $\mathrm{T}^{\mathrm{i}}=\operatorname{Diag}\left[\mathrm{T}^{11}, \mathrm{~T}^{22}, \mathrm{~T}^{33}\right]$ The Trace operation requires a paired upper-lower index combination (Einstein Sum), which then gets summed over.
$\mathrm{T}_{\mathrm{i}}{ }^{\mathrm{i}}$ is the Trace of 3-tensor T^{ij} : $\mathrm{T}_{\mathrm{i}}^{\mathrm{i}}=\mathrm{T}_{1}{ }^{1}+\mathrm{T}_{2}{ }^{2}+\mathrm{T}_{3}{ }^{3}=3$-trace $\left[\mathrm{T}^{\mathrm{ij}}\right]=\delta_{\mathrm{ij}} \mathrm{T}^{\mathrm{ij}}=+\mathrm{T}^{11}+\mathrm{T}^{22}+\mathrm{T}^{33}$ in the Euclidean Metric $\mathrm{E}^{\mathrm{j}}=\delta^{\mathrm{ij}}=$ Diag $[+1,+1,+1]$
$T^{\mu \mu}$ is actually just the diagonal part of 4-Tensor $T^{\mu \nu}$, the components: $T^{\mu \mu}=\operatorname{Diag}\left[T^{00}, T^{11}, T^{22}, T^{33}\right]$ The Trace operation requires a paired upper-lower index combination (Einstein Sum), which then gets summed over.

Incorrect: Hiding factors of LightSpeed (c) in relativistic equations, ex. $\mathrm{E}=\mathrm{m}$
The use of "natural units" leads to a lot of ambiguity, and one loses the ability to do proper dimensional analysis.
Wrong: E=m: Energy [$\mathrm{J}=\mathrm{kg} \cdot \mathrm{m}^{2} / \mathrm{s}^{2}$] is *not* identical to mass [kg], not in dimensional units nor in reality. Correct: E=mc²: Energy is related to mass via the Speed-of-Light (c) [m/s], ie. mass is a type of concentrated energy.

Incorrect: Using m instead of m_{0} for rest mass; Using E instead of E_{0} for rest energy
Correct: $\mathrm{E}=\mathrm{mc}^{2}=\gamma \mathrm{m}_{0} \mathrm{C}^{2}=\gamma \mathrm{E}_{0}$
E \& m, and p are relativistic internal components of 4-Momentum $P=(E / c, p)=(m c, p)$ which vary in different reference-frames.
$E_{0} \& m_{0}$ are Lorentz Scalar Invariants, the SR Rest Values, which are the same, even in different reference-frames: $P=m_{0} U=\left(E_{0} / c^{2}\right) U$

There are some paradigm assumptions that need to be cleared up:

Incorrect: Using the same symbol for a tensor-index and a component The biggest offender in many books for this one is quantum commutation. Unclear because (i) means two different things in the same equation. Correct way: $(i=\sqrt{[-1]})$ is the imaginary unit ; $\{\mathrm{j}, \mathrm{k}\}$ are tensor-indicies

Wrong: $\left[\mathrm{x}^{i}, \mathrm{p}^{j}\right]=i \hbar \delta^{\mathrm{ij}}$
Right: $\left[\mathrm{x}^{\mathrm{j}}, \mathrm{p}^{\mathrm{k}}\right]=\mathrm{i} \hbar \delta^{\mathrm{jk}}$
Better: $\left[P^{\mu}, X^{v}\right]=i \hbar \eta^{\mu v}$
because: $\left[\partial^{\mu}, X^{\vee}\right]=\eta^{\mu v}$

In general, any equation which uses complex-number math should reserve (i) for the imaginary, not as a tensor-index.
Incorrect: Using the 4-Gradient:Gradient One-Form notation incorrectly
The 4-Gradient is a 4-Vector, a 4D (1,0)-Tensor, uses an upper index, and has a negative spatial component ($-\nabla$) in (+,-,-,-) SR. The Gradient (4D) One-Form, its more natural tensor form, a 4D (0,1)-Tensor, uses a lower index in SR.

4-Gradient: $\partial=\bar{\partial}=\partial^{\mu}=\left(\partial_{\mathrm{t}} / \mathrm{c},-\nabla\right)=\left(\partial_{\mathrm{t}} / \mathrm{c},-\nabla\right)$
Gradient (4D) One-Form: $\partial_{=}=\partial_{\mu}=\left(\partial_{\mathrm{t}} / \mathrm{c},+\nabla\right)=\left(\partial_{\mathrm{t}} / \mathrm{c}, \nabla\right)$
Incorrect: Mixing styles in 4-Vector naming conventions
There is pretty much universal agreement on the 4-Momentum $P=P^{\mu}=\left(p^{\mu}\right)=\left(p^{0}, p^{i}\right)=(E / c, p)=(m c, p)=(E / c, p)=(m c, p)$
Do not in the same document use 4-Potential $\mathbf{A}=(\varphi, \mathbf{A})$: This is wrong on many levels, inc. dimensional units.
The correct form is 4-VectorPotential $\mathbf{A}=A^{\mu}=\left(a^{\mu}\right)=\left(a^{0}, a^{i}\right)=(\varphi / c, a)=(\varphi / c, a)$, with $(\varphi)=$ the scalar-potential \& (a)=the 3-vector-potential
For all SR 4-Vectors, one should use a consistent notation:
The UPPER-CASE SpaceTime (Time-Space) 4-Vector Names match the lower-case spatial 3-vector names There is a LightSpeed (c) factor in the temporal component to give overall matching dimensional units for the entire 4-Vector 4 -Vector components are typically lower-case with a few exceptions, mainly energy (E) vs. energy-density $\left\{(\mathrm{e}),\left(\rho_{\mathrm{e}}\right),\left(\rho_{\mathrm{E}}\right)\right\}$

Simple GR Axioms:
Principle of Equivalence Invariant Interval Measure Tensors describe Physics SpaceTime Metric g ${ }^{\text {uv }}$ $\{c, G\}=$ physical constants

GR limiting-case: $\mathrm{g}^{\mu \mathrm{v}} \rightarrow \eta^{\mu \mathrm{v}}$ Minkowski "Flat" SpaceTime Metric $=($ Curvature $\sim 0)$

Obscure QM Axioms:

Wave-Particle Duality
Unitary Evolution
Operator Formalism
Hilbert Space Representation Principle of Superposition Canonical Commutation Relation Heisenberg Uncertainty Principle Pauli Exclusion Principle (FD-statistics) Bose Aggregation Principle (BE-statistics) Hermitian Generators Correspondence Principle to CM Born Probability Interpretation $\{\hbar=\mathrm{h} / 2 \pi\}=$ physical constant

SR and QM still as separate theories

 QM limiting-case better defined, still no QGGR limiting-case: $\mathrm{g}^{\mu v} \rightarrow \eta^{\mu v}$ Minkowski "Flat" SpaceTime Metric $=($ Curvature $\sim 0)$

Obscure QM Axioms:

Wave-Particle Duality
Unitary Evolution
Operator Formalism
Hilbert Space Representation Principle of Superposition Canonical Commutation Relation Heisenberg Uncertainty Principle Pauli Exclusion Principle (FD-statistics) Bose Aggregation Principle (BE-statistics) Hermitian Generators Correspondence Principle to CM Born Probability Interpretation $\{\hbar=\mathrm{h} / 2 \pi\}=$ physical constant
$\{\hbar=h / 2 \pi\}=$ physical constant

Quantum
Gravity ???
Yet another "would be" fortuitous merging???

50+ years searching for QG with no success...
QM limiting-case:

A fortuitous merging?

$$
\{\hbar|\nabla \cdot \mathbf{p}| \ll(\mathbf{p} \cdot \mathbf{p})\} \text { or }
$$

$$
\{|\nabla \cdot \mathbf{k}| \ll(\mathbf{k} \cdot \mathbf{k})\} \text { or }\{\psi \rightarrow \operatorname{Re}[\psi]\}
$$

It is known that QM + SR "join nicely" together to form RQM, but problems with RQM + GR...

Physical Theories as Venn Diagram Which regions are empirically real?

Many QM physicists believe that the regions outside of QM don't exist.. SRQM Interpretation would say that the regions outside of GR probably don't exist...
 \title{
SRQM Study: Regimes of Physics
 \title{
SRQM Study: Regimes of Physics Physical Limit-Cases as Venn Diagram Which limit-regions use which physics?
}

SR limit-case: $|v| \ll c$ Non-relativistic velocities

Instead of taking the Physical Theories as set, examine

Physical Reality and then apply various limiting-conditions.

What do we then call the various regions?
As we move inwards from any region on the diagram, we are adding more stringent conditions which give physical limiting-cases of "larger, more encompassing" theories.

If one is in Classical GR, one can get Classical SR by moving toward the Minkowski "Flat" SpaceTime limit.

There is no "Quantized Gravity" $?$

If one is in RQM, one can get Classical SR by moving toward the Hamilton-Jacobi non-QM limit, or to standard QM by moving toward the SR low-velocity limit.

Looking at it this way, I can define SRQM to be equivalent to Minkowski SpaceTime, which contains RQM, and leads to Classical SR, or QM, or CM by taking additional limits. Actual GR contains SRQM and Classical GR.

Perhaps "Gravitizing QM"...

$$
\because
$$

My assertion:

Special Relativity \rightarrow Quantum Mechanics

 Background: Proven PhysicsBoth General Relativity (GR) and Special Relativity (SR) have passed very stringent tests of multiple varieties.
Likewise, Relativistic Quantum Mechanics (RQM) and standard Quantum Mechanics (QM) have passed all tests within their realms of validity: \{ generally micro-scale systems: ex. Single particles, ions, atoms, molecules, electric circuits, atomic-force microscopes, etc., but also a few special macro-scale systems: ex. Bose-Einstein condensates, super-currents, super-fluids, long-distance entanglement, etc.\}.

To-date, however, there is no observational/experimental indication that quantum effects "alter" the fundamentals of either SR or GR. Likewise, there are no known violations, QM or otherwise, of Local Lorentz Invariance (LLI) nor of Local Position/Poincaré Invariance (LPI). In fact, in all known experiments where both SR/GR and QM are present, QM respects the principles of SR/GR, whereas SR/GR modify the results of QM. All tested quantum-level particles, atoms, isotopes, super-positions, spin-states, etc. obey GR's Universality of Free-Fall \& Equivalence Principle and SR's $\left\{\mathrm{E}=\mathrm{mc}^{2}\right\}$ and speed-of-light (c) communication/signaling limit. Meanwhile, quantum-level atomic clocks are used to measure gravitational red:blue-shift effects. i.e. GR gravitational frequency-shift (gravitational time-dilation) alters atomic=quantum-level timing. Think about that for a moment...

Some might argue that QM modifies the results of SR, such as via non-commuting measurements. However, that is an alteration of CM expectations, not SR expectations. In fact, there is a basic non-zero commutation relation fully within SR: ($\left[\partial^{\mu}, X^{\vee}\right]=\eta^{\text {pv }}$) which will be derived from purely SR Principles in this treatise. The actual commutation part (Commutator $[\mathrm{a}, \mathrm{b}]$) is not about ($\mathrm{\hbar}$) or (i), which are just invariant Lorentz Scalar multipliers.

On the other hand, GR Gravity *does* induce changes in quantum interference patterns and hence modifies QM:
See the COW gravity-induced neutron QM interference experiments, the LIGO \& VIRGO \& KAGRA gravitational-wave detections via QM interferometry, and now also QM atomic matter-wave gravimeters via QM interferometry, ie. gravitational potential modifies atomic-level (quantum) timing. Likewise, SR induces fine-structure splitting of spectral lines of atoms, "quantum" spin, spin magnetic moments, spin-statistics (fermions \& bosons), antimatter, QED, Lamb shift, relativistic heavy-atom effects (liquid mercury, yellowish color of gold, lead batteries having higher voltage than classically predicted, heavy noble-gas interactions, relativistic chemistry...), etc. - essentially requiring QM to be RQM to be valid. QM is instead seen to be the limiting-case of RQM for $\{|\mathbf{v}| \ll \mathrm{c}\}$.

Some QM scientists say that quantum entanglement is "non-local", but you still can't send any real messages/signals/information/particles faster than SR's speed-of-light (c). The only "non-local" aspect is the alteration of probability-distributions based on knowledge-changes obtained via measurement.

A local measurement can only alter the "partial information" already-known about the probability-distribution of a distant (entangled) system. There is no FTL-communication-with nor alteration-of the distant particle. Getting a Stern-Gerlach "up" here doesn't cause the distant entangled particle to suddenly start moving "down" there. One only knows "now" that it "would" go down "if" the distant experimenter actually performs the measurement.

Principles/Axioms and Mathematical Consequences of General Relativity (GR):

Equivalence Principle: Inertial Motion = Geodesic Motion, Universality of Free-Fall, Mass Equivalency (Massineriial $=$ Mass $_{\text {gravitational }}$)
Relativity Principle: SpaceTime (M) has a Lorentzian \subset pseudo-Riemannian Metric ($g^{\text {LVV }}$) \& SR:Minkowski Space rules apply locally ($\mathrm{g}^{\mu \mathrm{VV}} \rightarrow \eta^{\mathrm{LV}}$) (Minkowksi)

General Covariance Principle: Tensors describe Physics, General Laws of Physics are independent of arbitrarily chosen Coordinate-Systems
Invariance Principle: Invariant Interval Measure comes from Tensor Invariance Properties, 4D SpaceTime (Time-Space) from Invariant Trace[g/v] = 4
Causality Principle: Minkowski Diagram/Light-Cone gives \{ Time-Like (+), Light-Like:Null (0), Space-Like (-) \} Measures and Causality Conditions
Einstein:Riemann's Ideas about Matter \& Curvature:
Riemann (g) has 20 independent components \rightarrow too many
Ricci(g) has 10 independent components = enough to describe/specify a gravitational field = \# of Poincaré Invariances (10)
$\{\mathrm{c}, \mathrm{G}\}$ are Fundamental Physical Constants; so are $\{\hbar=\mathrm{h} / 2 \pi\}$, but less well-known that this actually comes from SR
To-date, there are no known violations of any of these GR Principles,
GR has passed EVERY observational test to-date, in both weak and strong field regimes.

SR:Minkowski Space is the GR limiting-case: $g^{\mu \nu} \rightarrow \eta^{\mu \nu}$ Minkowski "Flat" SpaceTime Metric $=($ Curvature $\sim 0)$

It is vitally important to keep the mathematics grounded in known physics.
There are too many instances of trying to apply top-down, theoretical-only mathematics to physics.
(ex. String Theory, SuperSymmetry: no physical evidence to-date; SuperGravity: physically disproven)
Progress in science doesn't work that way: Nature itself is the arbiter of what math works with physics. Tensor mathematics applies well to known physics $\{S R$ and GR\}, which have been empirically extremely well-tested in a huge variety of physical situations. Tensors describe physics.

Old Paradigm: QM Axioms (for comparison)

 SR and QM still as separate theories QM limiting-case better defined, still no QGGR limiting-case: $\mathrm{g}^{\mu \mathrm{v}} \rightarrow \eta^{\mu \mathrm{v}}$ Minkowski "Flat" SpaceTime Metric $=($ Curvature $\sim 0)$

Obscure QM Axioms:

Wave-Particle Duality
Unitary Evolution
Operator Formalism
Hilbert Space Representation Principle of Superposition Canonical Commutation Relation Heisenberg Uncertainty Principle Pauli Exclusion Principle (FD-statistics) Bose Aggregation Principle (BE-statistics) Hermitian Generators Correspondence Principle to CM Born Probability Interpretation $\{\hbar=\mathrm{h} / 2 \pi\}=$ physical constant

A fortuitous merging?

CM

It is known that $Q M+S R$ "join nicely" together to form RQM, but problems with RQM + GR...

Simple GR Axioms:

Principle of Equivalence Invariant Interval Measure Tensors describe Physics SpaceTime Metric g ${ }^{\mathrm{uv}}$ $\{\mathrm{c}, \mathrm{G}\}=$ physical constants

GR limiting-case: $g^{\mu v} \rightarrow \eta^{\mu \nu}$ Minkowski "Flat" SpaceTime Metric $=($ Curvature $\sim 0)$

Derived RQM **Principles**:

 Wave-Particle Duality Unitary Evolution Operator Formalism Hilbert Space Representation Principle of Superposition Canonical Commutation Relation Heisenberg Uncertainty Principle Pauli Exclusion Principle (FD-statistics) Bose Aggregation Principle (BE-statistics) Hermitian Generators(relations)
SR 4-vector:
$\mathrm{R} \in<$ Event $>$
$\mathrm{U}=\mathrm{dR} / \mathrm{d} \tau$
$\mathrm{P}=\left(\mathrm{m}_{0}\right) \mathrm{U}$
$\mathrm{K}=(1 / \hbar) \mathrm{P}$
$\partial=(-i) \mathrm{K}$
(relations) SR 4-vector:
$\mathrm{R} \in<$ Event>
$\mathrm{U}=\mathrm{dR} / \mathrm{d} \tau$
$K=(1 / \hbar) P$
$\partial=(-i) K$

This new paradigm explains why RQM "miraculously fits" SR, but not necessarily GR
New Paradigm: SRQM w/ EM QM, EM, CM derived from SR + a few empirical facts

Simple GR Axioms:

Principle of Equivalence: Invariant Interval Measure Tensors describe Physics SpaceTime Metric guv $\{\mathrm{c}, \mathrm{G}\}=$ physical constants

Derived RQM **Principles**:

 Wave-Particle Duality Unitary Evolution Operator Formalism Hilbert Space Representation Principle of Superposition Canonical Commutation Relation Heisenberg Uncertainty Principle Pauli Exclusion Principle (FD-statistics) Bose Aggregation Principle (BE-statistics) Hermitian Generators $\{\hbar=\mathrm{h} / 2 \pi\}=$ physical constant

Classical SR w/ EM Paradigm (for comparison) CM \& EM derived from

 SR + a few empirical facts| (properties)
 SR 4-vector \& EM tensor: |
| :---: |
| $\mathbf{R}=(\mathrm{ct}, \mathrm{r}) \quad \mathbf{A}=(\varphi / \mathrm{c}, \mathrm{a})$ |
| $\mathbf{U}=\gamma(\mathrm{c}, \mathrm{u}) \quad \mathbf{J}=(\mathrm{c} \rho, \mathrm{j})$ |
| $\mathrm{P}=(\mathrm{E} / \mathrm{c}, \mathrm{p})$ |
| $\mathbf{K}=(\omega / \mathrm{c}, \mathrm{k}) \quad \mathrm{F}^{\alpha \beta}=\left[\quad 0,-\mathrm{e}^{0 j} / \mathrm{c}\right]$ |
| $\partial=\left(\partial_{\mathrm{t}} / \mathrm{c},-\nabla\right) \quad\left[+\mathrm{e}^{\mathrm{io}} / \mathrm{c},-\varepsilon^{\mathrm{ij}} \mathrm{k}^{\mathrm{k}}\right]$ |
| $\mathbf{F}=\gamma(\dot{E} / \mathrm{c}, \mathrm{f})$ |
| $\mathrm{N}=$ (nc, n) |

GR limiting-case: $\mathrm{g}^{\mu \nu} \rightarrow \eta^{\mu \nu}$ Minkowski "Flat" SpaceTime Metric $=($ Curvature $\sim 0)$

The entire classical SR $\rightarrow\{E M, C M\}$ structure is based on the limiting-case of quantum effects being negligible.

Notice that only the SR 4-Vector relation: $\mathbf{K}=(1 / \hbar) \mathbf{P}$ is missing from the Classical Interpretation...

All of the SR 4-Vectors, including (K \& ∂), are still present in the Classical setting.

K is used in the Relativistic Doppler Effect and EM waves. ∂ is used in the SR Conservation/Continuity Equations, Maxwell Equations, Hamilton-Jacobi, Lorenz Gauge, etc. $\partial=(-i) \mathrm{K}$ may be somewhat controversial, but it is the equation for complex plane-waves, which are still used in classical EM.
 -

This (Classical=non-QM) SR $\rightarrow\{E M, C M\}$ approximation-paradigm has been working successfully for decades...

SRQM = New Paradigm:

SRQM View as Venn Diagram Ranges of Validity

SRQM = New Paradigm:
 SR 4-CoVector:OneForm (0,0)-Tensor S or So

SR language beautifully expressed with Physical 4-Vectors

Newton's laws of classical physics are greatly simplified by the use of physical 3-vector notation, which converts 3 separate space components, which may be different (relative) in various coordinate systems, into a single invariant object: a 3D vector, with an invariant 3D magnitude (but not 4D invariant). The basis-values of these components can differ in certain \{relativistic\} ways, via Galilean transforms, yet still refer to the same overall 3-vector object.
$a \cdot a=a^{i} \delta_{j k} a^{k}=\left(a^{1}\right)^{2}+\left(a^{2}\right)^{2}+\left(a^{3}\right)^{2}=|a|^{2}$
$\mathbf{A} \cdot \mathbf{A}=A^{\nu} \eta_{\mu \nu} A^{\nu}=\left(a^{0}\right)^{2}-\mathbf{a} \cdot \mathbf{a}=\left(a_{0}^{0}\right)^{2}$
4 -Vector $=4 D(1,0)$-Tensor
$\mathbf{A}=A^{\mu}=\left(a^{\mu}\right)=\left(a^{0}, a^{1}\right)=\left(a^{0}, a\right)=\left(a^{0}, a^{1}, a^{2}, a^{3}\right)$
$\rightarrow\left(\mathrm{a}^{\mathrm{x}}, \mathrm{a}^{\mathrm{y}}, \mathrm{a}^{\mathrm{z}}\right)$ Cartesian/Rectangular 3D basis
$\rightarrow\left(\mathrm{a}^{r}, \mathrm{a}^{\theta}, \mathrm{a}^{2}\right)$ Polar/Cylindrical 3D basis $\rightarrow\left(a^{\Gamma}, a^{\theta}, a^{\oplus}\right)$ Spherical 3D basis

The scalar products of either type: $\{3 \mathrm{D}, 4 \mathrm{D}\}$ are basis-independent. However, unlike the 3D magnitude ${ }^{2}$ (only +)=Riemannian=positive-definite, the 4D magnitude ${ }^{2}$ can be ($+/ 0 /-$)=pseudo-Riemannian \rightarrow CausalConditions
$\rightarrow\left(a^{\dagger}, a^{x}, a^{y}, a^{z}\right)$ Cartesian/Rectangular 4D basis
$\rightarrow\left(a^{\mathrm{a}}, \mathrm{a}^{\mathrm{r}}, \mathrm{a}^{\mathrm{\theta}}, \mathrm{a}^{\mathrm{a}}\right)$ Polar/Cylindrical 4D basis
$\rightarrow\left(a^{\dagger}, a^{\top}, a^{\oplus}, a^{9}\right)$ Spherical 4D basis

I style classical 3D objects this way (by a triangle/wedge $\boldsymbol{\triangle}$) to emphasize that they are actually just the separated components of SR 4-Vectors.

The triangle/wedge $\boldsymbol{\Delta}$ (3 sides) represents splitting the components into a scalar and 3 -vector.

SR is able to expand the concept of mathematical vectors into the Physical 4-Vector, which combines both (time) and (space) components into a single (Time-Space) object: These 4-Vectors are elements of Minkowski 4D SR SpaceTime. They have Lorentzian (relative) components but invariant 4D Magnitudes. There is a Speed-of-Light factor (c) in the temporal component to make the dimensional units match. ex. $\mathbf{R}=(\mathrm{ct}, \mathrm{r})$: overall dimensional units of [length] = SI Unit [m] This also allows the 4-Vector name to match up with the 3-vector name.

In this presentation:
$\left\{\right.$ Temporal, $\left.0^{n h},+\right\}=(+,-,-$,$) metric signature, giving A \cdot A=A{ }^{4} \eta_{1 I} A^{4}=\left[\left(a^{0}\right)^{2}-a \cdot a\right]=\left(a^{0}{ }_{0}\right)^{2}$

Classical 3-vector (3D)

4-Position \mathbf{R}
$R^{u}=\left(r^{u}\right)=(c t, r)$
$=\left(r^{0}, r^{i}\right)=\left(r^{0}, r^{1}, r^{2}, r^{3}\right)$
$\in<$ Event> $>\ni$
<time $>\&<$ location $>$
$\rightarrow(c t, x, y, z)$

SR 4-Vector (4D) 4-Vectors will use Upper-Case Letters, ex. A; 3-vectors will use lower-case letters, ex. a; I always put the (c) dimensional factor in the temporal component. Vectors of both types will be in bold font; components and scalars in normal font and usually lower-case. 4-Vector name will match with 3 -vector name. Tensor form will usually be normal font with tensor indicies: $\left\{\right.$ Greek Time-Space index ($0,1 . .3$): ex. $\left.\mathbf{A}=A^{\mu}\right\}$ or $\left\{\right.$ Latin SpaceOnly index ($1 . .3$): ex. $\left.a=a^{k}\right\}$
$(0,2)$-Tensor T_{μ}

SR 4-Vectors are primitive elements of Minkowski SpaceTime 4D $\leftarrow(1+3) \mathrm{D}$

We want to be clear, however, that SR 4-Vectors are NOT generalizations of Classical or Quantum 3-vectors.

> SR 4-Vectors are the primitive elements of Minkowski SpaceTime (Time-Space) $=4 \mathrm{D} \leftarrow(1+3) \mathrm{D}$, which incorporate both:
> a \{temporal scalar element and a $\{$ spatial 3 -vector element as components. Temporals and Spatials are metrically distinct, but can mix in SR. 4-Vector $\mathbf{A}=A^{\mu}=\left(a^{\mu}\right)=\left(a^{0}, a^{1}, a^{2}, a^{3}\right)=\left(a^{0}, a^{i}=a\right) \rightarrow\left(a^{t}, a^{x}, a^{y}, a^{2}\right)$ with component scalar $\left(a^{0}\right) \rightarrow\left(a^{\top}\right) \&$ component 3 -vector $\left(a^{1}=a\right) \rightarrow\left(a^{x}, a^{y}, a^{x}\right)$

It is the \{Classical (Newtonian) or Quantum\} 3-vector (a) which is a limiting-case approximation of the spatial part of SR 4-Vector (A) for $\{|\mathbf{v}| \ll \mathrm{c}\}$.
i.e. The energy (E) and 3-momentum (\mathbf{p}) as "separate" entities occurs only in the low-velocity limit $\{|\mathbf{v}| \ll \mathrm{c}\}$ of the Lorentz Boost Transform. They are actually part of a single 4D entity: the 4-Momentum $\mathbf{P}=(\mathrm{E} / \mathrm{c}, \mathrm{p})$; with the components: temporal energy (E), spatial 3-momentum (p), dependent on a frame-of-reference, while the overall 4-Vector \mathbf{P} is invariant. Likewise with time (t), space 3 -position (r) in the 4-Position $\mathbf{R}=(\mathrm{ct}, \mathrm{r}$).

SR is 4D Minkowskian; obeys LorentzCPoincaré Invariance. , CM is 3D Euclidean; obeys Galilean Invariance.
(E) can intermix with (p) via a Lorentz Boost Transformation $\Lambda \mu_{v} \rightarrow B^{\mu}{ }_{v}$

Spatial components can intermix via a Lorentz Rotation Transform $\wedge \nu_{v} \rightarrow R^{w^{*}}$
(t) can intermix with (r) via a Lorentz Boost Transformation $\wedge^{v}{ }_{v} \rightarrow B^{\prime \prime}{ }_{v}$

Minkowski $(1+3) \mathrm{D} \rightarrow 4 \mathrm{D}$ [TimeSpace] [m] 4-Position [m] R=(ct,r)

SR 4-Tensor
(2,0)-Tensor T ${ }^{\text {uv }}$ (1,1)-Tensor $T^{\mu}{ }_{v}$ or T_{ν}
$(0,2)$-Tensor T

SR 4-Vector (1,0)-Tensor $\mathrm{V}^{\mu}=\mathbf{V}=\left(\mathrm{v}^{0}, \mathbf{v}\right)$ SR 4-CoVector:OneForm $(0,1)$-Tensor $\mathrm{V}_{\mu}=\left(\mathrm{v}_{0},-\mathrm{v}\right)$

SR 4-Scalar
$(0,0)$-Tensor S or S_{0}
Lorentz Scalar

$A \cdot A=\left(a^{0} a^{0}-a \cdot a\right)=\left(a_{0}^{0}\right)^{2}$, where $\left(a^{0}\right)$ is the rest-value, the value of the temporal coordinate when the spatial coordinate is zero $(a \rightarrow 0)$. The "rest-values" of several physical properties are all invariant Lorentz scalars.

$\mathbf{P}=(\mathrm{mc}, \mathrm{p})$	$\mathbf{K}=(\omega / \mathrm{c}, \mathrm{k})$
$\mathbf{P} \cdot \mathbf{P}=(\mathrm{mc})^{2}-\mathbf{p} \cdot \mathbf{p}$	$\mathbf{K} \cdot \mathbf{K}=(\omega / \mathrm{c})^{2}-\mathbf{k} \cdot \mathbf{k}$
$(\mathbf{P} \cdot \mathbf{P})$ and $(\mathbf{K} \cdot \mathbf{K})$ are Lorentz Scalars. We can choose a frame that may simplify the expressions.	

$4-$ Vector A^{μ}
$\mathbf{A}=\left(a^{0}, a\right)=\left(a^{0}, a^{1}, a^{2}, a^{3}\right)$
$\rightarrow\left(a^{0}{ }_{0}, 0\right)_{\text {in spatial rest frame\} }}$
$A \cdot A=\left(a_{0}{ }^{0}\right)^{2}$
Choose a frame in which the spatial component is zero.
This is known as the "rest-frame" of the 4-Vector. It is not moving spatially = Stationary.
No" for scalar rest values $\{$ naughts, "(o)bserver value" $\}$
" 0 " for temporal components $\left\{0^{\text {th }}\right.$ index $\}$
$\mathbf{P} \cdot \mathbf{P}=(m \mathrm{c})^{2}-\mathbf{p} \cdot \mathbf{p}=\left(m_{0} \mathrm{c}\right)^{2} \quad \mathbf{K} \cdot \mathbf{K}=(\omega / \mathrm{c})^{2}-\mathbf{k} \cdot \mathbf{k}=\left(\omega_{0} / \mathrm{c}\right)^{2}$
The resulting simpler expressions then give the "rest values", indicated by $\left(_{0}\right.$). RestMass (m_{0}) and RestAngularFrequency (ω_{o})
They are Invariant Lorentz Scalars by construction.
This leads to simple relations between 4-Vectors.
$\mathbf{P}=\left(m_{0}\right) \mathbf{U}=\left(E_{0} / c^{2}\right) \mathbf{U}$
$\mathrm{K}=\left(\omega_{\mathrm{o}} / \mathrm{c}^{2}\right) \mathbf{U}$

And gives nice Scalar Product relations between 4-Vectors as well.

$$
\mathbf{P} \cdot \mathbf{U}=\left(m_{0}\right) \mathbf{U} \cdot \mathbf{U}=\left(m_{0}\right) \mathbf{c}^{2}=\left(E_{0}\right) \quad \mathbf{K} \cdot \mathbf{U}=\left(\omega_{0} / c^{2}\right) \mathbf{U} \cdot \mathbf{U}=\left(\omega_{0} / c^{2}\right) \mathbf{c}^{2}=\left(\omega_{0}\right)
$$

$\mathbf{P} \cdot \mathbf{K}=\left(m_{0} \omega_{0}\right) \rightarrow \mathbf{P}=\left(m_{0} c^{2} / \omega_{0}\right) \mathbf{K}=\left(E_{0} / \omega_{0}\right) \mathbf{K} \rightarrow \mathbf{P}=($ scalar invariant $) \mathbf{K}$
This property of SR equations is a very good reason to use the "naught" convention for specifying the difference between relativistic component values which can vary, like (E), versus RestValue Invariant Scalars, like (E_{0}), which do not vary.
 They are usually related via a Lorentz Factor: $\left\{m=\gamma m_{0} ; E=\gamma E_{0} ; \omega=\gamma \omega_{0}\right\}$, as seen in the relations of \mathbf{P}, \mathbf{K}, \mathbf{U}, and \mathbf{T}.
$P=(m c, p)=\left(m_{0}\right) U=\left(m_{0}\right) \gamma(c, u)=\left(\gamma m_{0} c, \gamma m_{0} u\right)=(m c, m u)=(m c, p)=\left(m_{0} c\right) T=\left(m_{0} c\right) \gamma(1, \beta)=(m c)(1, \beta)$
$\boldsymbol{P}=(E / c, p)=\left(E_{0} / c^{2}\right) U=\left(E_{0} / c^{2}\right) \gamma(c, u)=\left(\gamma E_{0} / c, \gamma E_{0} u / c^{2}\right)=\left(E / c, E u / c^{2}\right)=(E / c, p)=\left(E_{0} / c\right) \boldsymbol{T}=\left(E_{0} / c\right) \gamma(1, \beta)=(E / c)(1, \beta)$

SR 4-Tensor
(2,0)-Tensor $\mathrm{T}^{\mathrm{\mu v}}$ (1,1)-Tensor $T^{\mu}{ }_{v}$ or T_{ν}
$(0,2)$-Tensor $T_{\mu v}$

SR 4-Vector
(1,0)-Tensor $\mathrm{V}^{\mu}=\mathbf{V}=\left(\mathrm{v}^{0}, \mathrm{v}\right)$ SR 4-CoVector:OneForm $(0,1)$-Tensor $\mathrm{V}_{\mu}=\left(\mathrm{v}_{0},-\mathrm{v}\right)$

SR 4-Scalar
$(0,0)$-Tensor S or S_{0}
Lorentz Scalar

Relations among just tensors, ex. 4-Vectors and Lorentz 4-Scalars, are Manifestly Invariant, meaning that they are true in all inertial reference frames.
Consider a particle at a SpaceTime (Time-Space) <Event> that has properties described by 4-Vectors A and B:
One possible relationship is that the two 4-Vectors are related by a Lorentz 4-Scalar (S): ex. $\mathbf{B}=(\mathrm{S}) \mathbf{A}$.
How can one determine this? Answer: Make an experiment that empirically measures the tensor invariant [B-C / A.C]. If $\mathbf{B}=(\mathbf{S}) \mathbf{A}$ then $\mathbf{B} \cdot \mathbf{C}=(\mathrm{S}) \mathbf{A} \cdot \mathbf{C}$, giving $(\mathbf{S})=[\mathbf{B} \cdot \mathbf{C} / \mathbf{A} \cdot \mathbf{C}]$
if $\mathbf{C}=\mathbf{A}, \quad$ then $(\mathbf{S})=[\mathbf{B} \cdot \mathbf{A} / \mathbf{A} \cdot \mathbf{A}]$ This basically a standard vector projection.
if $\mathbf{C}=$ other, Invariant result mediated by another 4-Vector C, always possible.

Run the experiment many times. If you always get the same result for (S), then it is likely that the relationship is true, and thus invariant.
Example: Measure $\left(\mathrm{S}_{\mathrm{p}}\right)=[\mathbf{P} \cdot \mathbf{U} / \mathbf{U} \cdot \mathbf{U}]$ for a given particle type.
Repeated measurement always give $\left(S_{p}\right)=m_{0}$
This makes sense because we know [P.U] = $\gamma(\mathbf{E}-\mathbf{p} \cdot \mathbf{u})=\mathbf{E}_{0}$ and [$\left.\mathbf{U} \cdot \mathbf{U}\right]=\mathbf{c}^{2}$ Thus, 4-Momentum $\mathbf{P}=\left(E_{o} / c^{2}\right) \mathbf{U}=\left(m_{0}\right) \mathbf{U}=\left(m_{0}\right)^{*} 4$-Velocity \mathbf{U}

Example: Measure $\left(\mathrm{S}_{\mathrm{K}}\right)=[\mathrm{K} \cdot \mathbf{U} / \mathrm{U} \cdot \mathbf{U}]$ for a given particle type.
Repeated measurement always give $\left(\mathrm{S}_{\mathrm{K}}\right)=\left(\omega_{\mathrm{o}} / \mathrm{c}^{2}\right)$
This makes sense because we know [$\mathbf{K} \cdot \mathbf{U}$] $=\gamma(\omega-\mathbf{k} \cdot \mathbf{u})=\omega_{o}$ and [$\mathbf{U} \cdot \mathbf{U}$] = \mathbf{c}^{2} Thus, 4 -WaveVector $\mathrm{K}=\left(\omega_{o} / c^{2}\right) \mathbf{U}=\left(\omega_{o} / c^{2}\right)^{*} 4$-Velocity \mathbf{U}

Since \mathbf{P} and \mathbf{K} are both related to \mathbf{U}, this would also mean that the 4-Momentum \mathbf{P} is related to the 4-WaveVector \mathbf{K} in a particular Lorentz Invariant manner for each given particle type... a major hint for later...

$$
\begin{aligned}
& \text { Trace }\left[T^{\nu V}\right]=\eta_{\text {Iv }} T^{\text {LV }}=T_{\mu}^{\mu_{\mu}}=T \\
& \mathbf{V} \cdot \mathbf{V}=\mathrm{V}^{\boldsymbol{V}} \eta_{\mathrm{Iv}} \mathbf{V}^{\mathrm{v}}=\left[\left(\mathrm{V}^{0}\right)^{2}-\mathbf{v} \cdot \mathbf{v}\right]=\left(\mathrm{V}^{0}\right)^{2} \\
& \text { = Lorentz Scalar Invariant }
\end{aligned}
$$

$\underset{\text { Physics }}{(+,-,-,-)} \mathbf{S R} \rightarrow \mathrm{QM}$ Physics

SR 4-Vectors \& Lorentz Scalars Frame-Invariant Equations SRQM Diagramming Method

4-Vectors are 4D (1,0)-Tensors, Lorentz 4-Scalars are 4D (0,0)-Tensors, 4-CoVectors are 4D (0,1)-Tensors,

Any equation which employs only Tensors, such as those with only 4-Vectors and Lorentz 4-Scalars, ($e x . P^{\prime}=P^{\mu}=m_{0} U=m_{0} U^{\mu}$) is automatically Frame-Invariant, or coordinate-frame-independent. One's frame-of-reference plays no role in the form of the overall equations. This is also known as being "Manifestly-Invariant", not showing inner components. This is exactly what Einstein meant by his postulate:
"The laws of physics should have the same form for all inertial observers". Use of the RestFrame-naught (o) helps show this.
It is seen when the spatial part (v) of a magnitude can be set to zero (= at-rest). The temporal part (v^{0}) would then equal the rest value ($\mathrm{v}^{0}{ }_{\mathrm{o}}$).

$$
\begin{aligned}
& 4 \text {-Vector }=4 \mathrm{D}(1,0) \text {-Tensor } \\
& \mathbf{V}=\boldsymbol{\nabla}=\mathrm{V}^{\mu}=\left(\mathrm{v}^{\mu}\right)=\left(\mathrm{v}^{0}, \mathrm{v}^{\mathrm{i}}\right)=\left(\mathrm{v}^{0}, \mathrm{v}\right)=\left(\mathrm{v}^{\mathrm{o}}, \mathrm{v}^{\mathrm{N}}, \mathrm{~V}^{2}, \mathrm{v}^{3}\right) \rightarrow\left(\mathrm{v}^{\mathrm{t}}, \mathrm{v}^{\mathrm{x}}, \mathrm{~V}^{\mathrm{y}}, \mathrm{v}^{\mathrm{z}}\right)_{\text {\{rectangular basis\} }} \\
&\left.\rightarrow\left(\mathrm{v}^{0}\right), 0\right)_{\text {\{Temporal Interval, Spatially At-Rest, Stationary\} }} \\
& \rightarrow\left(0, \mathrm{v}_{\mathrm{o}}\right)_{\{\text {Spatial interval, Temporally At-Rest, Simultaneous\} }}
\end{aligned}
$$

$\mathbf{V} \cdot \mathbf{V}=V^{\mu} \eta_{\mu \mathrm{u}} V^{v}=\left(\mathbf{v}^{0}\right)^{2}-\mathbf{V} \cdot \mathbf{V}$
$\left.=\left(\mathbf{v}^{0}\right)^{2}\right)^{2 \text { temporal Interval, Spatially At-Rest, Stationary }}$
$=-(|\mathbf{v}|)^{2}=(\mathrm{i}|\mathbf{v}|)^{2 \text { Spatial Interval, Temporally At-Rest, Simu }}$

$$
\mathbf{V} \cdot \mathbf{V}=V^{\mu} \eta_{\mu v} \mathbf{V}^{v}=\left(\mathbf{v}^{0}\right)^{2}-\mathbf{v} \cdot \mathbf{v}
$$

$$
=\left(\mathrm{v}^{0}{ }^{0}\right)^{2}{ }^{2} \text { emporal Interval, Spatially At-Rest, Stationary }
$$

$=-\left(\left|\mathbf{v}_{\mathrm{o}}\right|\right)^{2}=\left(\mathrm{i}\left|\mathbf{V}_{\mathrm{o}}\right|\right)^{2 \text { Spatial Interval, Temporally At-Rest, Simultaneous }}$

The components $\left(v^{0}, v^{1}, v^{2}, v^{3}\right)$ of the 4 -Vector \mathbf{V} can relativistically vary depending on the observer and their choice of coordinate system, but the 4-Vector $\mathbf{V}=V^{\mu}$ itself is invariant. Equations using only 4-Tensors, 4-Vectors, and Lorentz 4-Scalars are true for all inertial observers. The SRQM Diagramming Method makes this easy to see in a visual format, and will be used throughout this treatise. The following examples are SR Time-Space frame-invariant equations:
$\mathbf{U} \cdot \mathbf{U}=(\mathrm{c})^{2}$
$\mathbf{U}=\gamma(\mathrm{c}, \mathbf{u})$
$\mathbf{P}=(\mathrm{mc}, \mathbf{p})=(\mathrm{E} / \mathrm{c}, \mathbf{p})=\mathrm{m}_{0} \mathbf{U}=\left(\mathrm{E}_{\mathrm{o}} / \mathrm{c}^{2}\right) \mathbf{U}$
$\mathbf{K}=(\omega / \mathrm{c}, \mathbf{k})=\left(\omega / \mathrm{c}, \omega \hat{\mathrm{n}} / \mathrm{v}_{\text {phase }}\right)=\left(\omega_{0} / \mathrm{c}^{2}\right) \mathbf{U}$
$\mathbf{P} \cdot \mathbf{U}=\mathrm{E}_{\mathrm{o}} \quad$ Equation Form
$\mathbf{U} \cdot \mathbf{U}=(\mathrm{c})^{2}$
$=\gamma(\mathrm{c}, \mathrm{u}$
$\mathbf{P}=(\mathrm{mc}, \mathrm{p})=(\mathrm{E} / \mathrm{c}, \mathrm{p})=\mathrm{m}_{0} \mathbf{U}=\left(\mathrm{E}_{0} / \mathrm{c}^{2}\right) \mathbf{U}$
$\mathbf{K}=(\omega / c, \mathbf{k})=\left(\omega / c, \omega \hat{n} / V_{\text {phase }}\right)=\left(\omega_{0} / c^{2}\right) \mathbf{U}$
$\mathbf{P} \cdot \mathbf{U}=\mathrm{E}_{\mathbf{0}}$
Equation Form

The SRQM Diagram Form, on the right, has all of the info of the Equation Form,
but shows overall relationships and symmetries among the 4 -Vectors much more clearly.

Blue: Temporal components
Red: Spatial components
Purple: Mixed Time-Space components

SR 4-Tensor
(2,0)-Tensor T ${ }^{\mu v}$ (1,1)-Tensor $\mathrm{T}^{\mu}{ }_{v}$ or $\mathrm{T}_{\mu}{ }^{\nu}$ $(0,2)$-Tensor $T_{\mu v}$

SR 4-Vector
(1,0)-Tensor $\mathrm{V}^{\boldsymbol{\mu}}=\mathbf{V}=\left(\mathrm{v}^{0}, \mathrm{v}\right)$ SR 4-CoVector:OneForm $(0,1)$-Tensor $\mathrm{V}_{\mu}=\left(\mathrm{v}_{0},-\mathrm{v}\right)$

SR 4-Scalar
(0,0)-Tensor S or S.
Lorentz Scalar of Physical 4-Vectors

Some SR Mathematical Tools Definitions, Approximations, Misc.

```
\beta=v/c; \beta=|\beta|:
\gamma=1/N[1-\beta}\mp@subsup{\beta}{}{2}]=1/N[1-\beta\cdot\beta]
```

dimensionless Velocity Beta Factor
dimensionless Lorentz Relativistic Gamma Factor
$\{\beta=(0 . .1)$; rest at $(\beta=0)$; speed-of-light (c) at $(\beta=1)\}$
$\{\gamma=(1 . . \infty)$; rest at ($\gamma=1$); speed-of-light (c) at $(\gamma=\infty)\}$
$(1+x)^{n} \sim\left(1+n x+O\left[x^{2}\right]\right)$ for $\{|x| \ll 1\}$ Approximation used for SR \rightarrow Classical limiting-cases, typically used on the Relativistic Gamma γ
Lorentz Transformation $\Lambda_{v}^{\prime}=\partial X^{\mu^{\prime}} / \partial X^{v}=\partial_{v}\left[X^{\mu}\right]$: a relativistic frame-shift, such as a (spatial) Rotation or (spacetime) Velocity-Boost. It transforms a 4-Vector in the following way: $X^{\mu^{\prime}}=\Lambda_{v_{v}} X^{v}$: with Einstein summation over the paired indices, and the (') indicating an alternate frame. A typical Lorentz Boost Transformation $\Lambda \mu_{v}^{\prime} \rightarrow B{ }^{\prime}{ }_{v}$ for a linear-velocity frame-shift (x,t)-Boost in the \hat{x}-direction:

```
Lorentz
```

Lorentz
x-Boost
x-Boost
Transform
Transform
u"

```
u"
```


General Time-Space Boost

Boosted $A^{\mu^{\prime}}=\left(a^{t}, a^{x}, a^{y}, a^{z}\right)^{\prime}=\Lambda r^{\prime}{ }^{\prime} A^{v} \rightarrow B^{\mu^{\prime}}{ }^{\prime} A^{v}=\left(\gamma a^{t}-\gamma \beta a^{x},-\gamma \beta a^{t}+\gamma a^{x}, a^{y}, a^{z}\right)$

$$
\begin{aligned}
A^{\prime} \cdot \mathbf{B}^{\prime}=\left(\Lambda^{u^{\prime}} A^{v}\right) \cdot\left(\Lambda^{\circ}{ }_{0} B^{\sigma}\right) & =\mathbf{A} \cdot \mathbf{B}=A^{\mu} \eta_{v v} B^{v}=\left(a^{0} b^{0}-a^{1} b^{1}-a^{2} b^{2}-a^{3} b^{3}\right)=\left(a^{0} b^{0}-a \cdot b\right)=\left(a^{0}{ }_{0} b^{0}{ }_{0}\right) \\
& =A^{v} B_{\mu}=\Sigma_{u=0.3}\left[a^{v} b_{u}\right]=\left(a^{0} b_{0}+a^{1} b_{1}+a^{2} b_{2}+a^{3} b_{3}\right) \\
& =A_{v} B^{v}=\Sigma_{v=0.3}\left[a_{v} b^{v}\right]=\left(a_{0} b^{0}+a_{1} b^{1}+a_{2} b^{2}+a_{3} b^{3}\right)
\end{aligned}
$$

```
Original Av}=(\mp@subsup{a}{}{t},\mp@subsup{a}{}{x},\mp@subsup{a}{}{y},\mp@subsup{a}{}{z}
Original Av}=(\mp@subsup{a}{}{t},\mp@subsup{a}{}{x},\mp@subsup{a}{}{y},\mp@subsup{a}{}{z}
using the Einstein Summation Convention where upper:lower paired-indices are summed over.
\(\partial[\mathbf{X}]=\partial^{\mu}\left[X^{V}\right]=\left(\partial_{\mathrm{t}} / \mathrm{c},-\nabla\right)(\mathrm{ct}, \mathrm{x})=\operatorname{Diag}\left[\partial_{\mathrm{t}} / \mathrm{c}[\mathrm{ct}],-\nabla[\mathbf{x}]\right]=\operatorname{Diag}\left[1,-\mathrm{I}_{(3)}\right]=\operatorname{Diag}[1,-1,-1,-1]=\eta^{\mu v}\) Minkowski "Flat" SpaceTime Metric
SR:Minkowski Metric
\(\partial[R]=\partial^{\mu}\left[R^{\mathrm{V}}\right]=\eta^{\mathrm{Lv}}=\mathrm{V}^{\mathrm{av}}+\mathrm{H}^{\mathrm{Hv}} \rightarrow\)
\(\operatorname{Diag}[+1,-1,-1,-1]=\operatorname{Diag}\left[1,-\mathrm{I}_{(3)}\right]=\operatorname{Diag}\left[1,-\delta^{\mathrm{j}}\right]\)



> SR:Lorentz Transform \(\partial_{v}\left[R^{\mu}\right]=\partial R^{\mu^{\prime} / \partial R^{v}}=\Lambda^{\mu^{\prime}}\)
\(\Lambda^{\mu}{ }_{v}=\left(\Lambda^{-1}\right)_{v^{\mu}}: \Lambda^{\mu}{ }_{a}\left(\Lambda^{-1}\right)^{\alpha}{ }_{v}=\eta^{\mu}{ }_{v}=\delta^{\mu}{ }_{v}\)
    \(\eta_{\mu v} \wedge^{\mu}{ }_{\alpha} \wedge_{\beta}=\eta_{\alpha \beta}\)
    \(\operatorname{Det}\left[\wedge^{\mu}\right]= \pm D<\Lambda_{u v} \Lambda^{\mu v}=4=\Lambda^{\mu}{ }_{v} \Lambda\)
    \(\operatorname{Tr}\left[\Lambda_{\mathrm{v}}\right]=\{-\infty . .+\infty\}\)
        SpaceTime
    \(\partial \cdot R=\partial_{\mu} R^{\mu}=4\)
Dimension
(+,.,-) SR \(\rightarrow \mathrm{QM}\)
Physics of Physical 4-Vectors

SRQM Study: Ordering of Time-Space <Events> \({ }^{\text {4veceso srom nevperation }}\) diom Temporal Causality vs. Spatial Topology Simultaneity vs. Stationarity Venn Diagram

\section*{Light-Like (Null) Separated <EEvents>}


\section*{Light-Like (Null) Separated <Events>}

Causal: Invariant \(=\) Absolute Temporal Order \((\mathrm{A} \rightarrow \mathrm{B} \rightarrow \mathrm{C})\) All observers agree on temporal order of light-separated events, and on the invariant TimeSpace <Event> interval measurement.


Causal: Invariant \(=\) Absolute Temporal Order \((\mathrm{A} \rightarrow \mathrm{B} \rightarrow \mathrm{C})\) \{ProperTime \(\left(\mathrm{t}_{0}=\tau\right)\) for | clock at-rest | \} \{ Time Dilation \(\left(t=\gamma t_{0}=\gamma \tau\right)\) for \(\ldots \leftarrow \mid\) moving clock \(\mid \rightarrow\) \} All observers agree on temporal order of time-separated events,


Topological: Invariant \(=\) Absolute Spatial \(\operatorname{Order}(\mathrm{A} \rightarrow \mathrm{B} \rightarrow \mathrm{C})\) or \((\mathrm{C} \rightarrow \mathrm{B} \rightarrow \mathrm{A})\) Simultaneity: (only if in reference-frame with Same-Time occurrence) ("no wait" for simultaneous events, "wait" in all other reference frames) Any 2 space-separated <events> may occur in any temporal order = frame-dependen
 \(\left\{\right.\) Length Contraction \(\left(L=L_{o} / \gamma\right)\) for \(\ldots \mid \rightarrow\) moving ruler \(\left.\leftarrow \mid\right\}\) All observers agree on spatial order/topology of space-separated events although spatial event separation may be \(\| \rightarrow\) Length-Contracted \(\leftarrow \|\)
(0,2)-Tensor \(\mathrm{T}^{\prime}\)

SR 4-Vector
(1,0)-Tensor \(\mathrm{V}^{\mu}=\mathbf{V}=\left(\mathrm{v}^{0}, \mathbf{v}\right)\) SR 4-CoVector:OneForm \((0,1)\)-Tensor \(\mathrm{V}_{\mu}=\left(\mathrm{v}_{0},-\mathrm{v}\right)\)

SR 4-Scalar
(0,0)-Tensor S or So
Lorentz Scalar
\(\mathrm{dR}=\mathrm{dR}^{\mu}=(\mathrm{cdt}, \mathrm{dr}) \quad\{\) \{infintesimal\}

Trace \(\left[T^{\mu v}\right]=\eta_{\mu v} T^{\mu v}=T_{\mu}^{\mu}=T\) \(\mathbf{V} \cdot \mathbf{V}=\mathrm{V}^{\mu} \eta_{\mu \mathrm{v}} \mathrm{V}^{\mathrm{v}}=\left[\left(\mathrm{v}^{0}\right)^{2}-\mathbf{v} \cdot \mathbf{v}\right]=\left(\mathrm{v}^{0}{ }_{\mathrm{o}}\right)^{2}\)
= Lorentz Scalar Invariant of Physical 4-Vectors

\section*{Focus on a few of the main SR Physical 4-Vectors:}
 including 4D SR:Minkowski Space concepts like: The 'flat' Minkowski Metric, SpaceTime (Time-Space) Dimension = 4, Lorentz Transformations, <Events>, Invariant Interval Measure, Minkowski Diagrams, The Light-Cone, etc.


4-Gradient
\(\partial=\left(\partial_{t} / c,-\nabla\right)=\partial / \partial R_{\mu}\)
\(\rightarrow\left(\partial_{t} / \mathrm{c},-\partial_{\mathrm{x}},-\partial_{\mathrm{y}},-\partial_{\mathrm{z}}\right)\)
\(=(\partial / c \partial t,-\partial / \partial x,-\partial / \partial y,-\partial / \partial z)\) mathematical func
4-Position \(R=R^{r}\) :
\[
\begin{array}{ll}
\text { 4-Displacement } \mathrm{dR}=\mathrm{dR} R^{\mu}=\mathrm{d}\left[R^{\mu}\right] \\
\text { 4-Gradient } & \partial=\partial^{\mu}=\partial / \partial R_{\mu}: R_{\mu}=\eta_{\mu v} R^{v} \\
\text { 4-Velocity } & \mathrm{U}=\mathrm{U}^{\mu}=\mathrm{d} / \mathrm{d} \tau\left[R^{\mu}\right]=\mathrm{d} R^{\mu} / \mathrm{d} \tau
\end{array}
\]

 Spatial 3D Ordering of:\{ (Time-like <event> separations) \(\rightarrow\) Stationarity is Relative , (Space-like <event> separations)=Topology is Absolute \}

Use of the Lorentz Scalar Product to make Lorentz Invariants, Continuity Equations, etc.
The Invariant Speed-of-Light (c), Invariant Proper:Rest Measurement (Time \& Space), Relative Components of 4-Vectors=Lorentz Covariance Invariant SR Wave Equations, via the d'Alembertian (Lorentz Scalar Product of 4-Gradient with itself), leads to a 4-WaveVector K solution.
to time as Infinity is to space

4-Universe

SR is a theory about the relations between
4D Time-Space <Events>, ie. how their intervals are "measured"
\((0,2)\)-Tensor \(T_{\mu}\)

SR 4-Scalar
(0,0)-Tensor S or S
Lorentz Scalar

Trace[TV] \(=\eta_{I V} T^{\text {NV }}=T^{\mu_{\mu}}=T\)
\(\mathbf{V} \cdot \mathbf{V}=\mathrm{V}^{-1} \eta_{\mathrm{pv}} \mathrm{V}^{\mathrm{V}}=\left[\left(\mathrm{v}^{0}\right)^{2}-\mathbf{v} \cdot \mathbf{v}\right]=\left(\mathrm{v}^{0}\right)^{2}\)
= Lorentz Scalar Invariant

The Basis of most all Classical SR Physics is in the SR Minkowski Metric of "Flat" SpaceTime \(\eta^{\mu v}=\partial^{\mu}\left[R^{v}\right]=\partial[R]\), which is generated from the 4-Gradient \(\partial=\partial^{\mu}\) and 4-Position \(R=R^{v}\) and and determines the invariant measurement interval \(R \cdot R=R^{\mu} \eta_{\mu v} R^{v}\) between <Events>.

This Minkowski Metric \(\eta^{\text {lV }}\) provides the relations between the 4 -Vectors of SR: 4-Position \(R=R^{\mu}, 4\)-Gradient \(\partial=\partial^{\mu}, 4\)-Velocity \(\mathbf{U}=U^{\mu}\)

The Tensor Invariants of these 4-Vectors give the: Invariant Interval Measures \(\rightarrow\) Causality:Topology, from R•R Invariant |Magnitude| LightSpeed (c), from U•U
 \(\mathbf{R} \cdot \mathbf{R}=(c t)^{2}-\mathbf{r} \cdot \mathbf{r}=(\mathrm{c} \tau)^{2}\) \(\Delta \mathbf{R} \cdot \Delta \mathbf{R}=(\mathrm{c} \Delta \mathrm{t})^{2}-\Delta \mathbf{r} \cdot \Delta \mathbf{r}=(\mathrm{c} \Delta \tau)^{2}\)
\(\mathrm{dR} \cdot \mathrm{dR}=(\mathrm{cdt})^{2}-\mathrm{dr} \cdot \mathrm{dr}=(\mathrm{cd})^{2}\) Invariant d'Alembertian Wave Equation \& 4-WaveVector K, from \(\partial \cdot \partial\)

The relation between 4-Gradient \(\partial\) and 4-Position \(\mathbf{R}\) gives the Dimension of SpaceTime = (4), the Minkowski Metric ( \(\eta^{\mu \nu}\) ), and the Lorentz Transformations ( \(\wedge^{\mu_{v}^{\prime}}\) ).

The relation between 4-Gradient \(\partial\) and 4 -Velocity \(\mathbf{U}\) gives the invariant ProperTime Derivative ( \(\mathrm{d} / \mathrm{d} \tau\) ). Rearranging gives the invariant ProperTime Differential ( \(\mathrm{d} \tau\) ), which gives relativistic \(\leftarrow \mid\) Time Dilation \(\mid \rightarrow\) (temporal) \(\& \mid \rightarrow\) Length Contraction \(\leftarrow \mid\) (spatial).

The ProperTime Derivative \(\mathrm{d} / \mathrm{d} \tau\) :
acting on 4-Position R gives 4-Velocity U acting on the SpaceTime Dimension Lorentz Scalar gives the Continuity of 4-Velocity Flow.

The relation between 4-Displacement \(\Delta \mathbf{R}\) and 4-Velocity \(\mathbf{U}\) gives Relativity of Simultaneity:Stationarity.

One of the most important properties is the Tensor Invariant Lorentz Scalar Product ( dot \(=\cdot\) ), provided by the lowered- index form of the Minkowski Metric \(\eta_{\text {lv. }}\).

SR is a theory about the relations between
From here, each object will be examined in turn...

4D Time-Space <Events>, ie. how their intervals are "measured"

\section*{SRQM Diagram}

ProperTime Differential
\(\mathrm{d} \tau=(1 / \gamma) \mathrm{dt}\)
\(=\) Time Dilation

4-Gradient \(\partial=\left(\partial_{t} / c,-\nabla\right)=\partial / \partial R_{\mu}\) \(\rightarrow\left(\partial_{\mathrm{t}} / \mathrm{c},-\partial_{x^{\prime}}-\partial_{y^{\prime}}-\partial_{z}\right)\)
\(=(\partial / c \partial t,-\partial / \partial x,-\partial / \partial y,-\partial \partial z z)\)
Invariant d'Alembertian Wave Equation \(\partial \cdot \partial=\left(\partial_{\mathrm{t}} / \mathrm{c}\right)^{2}-\nabla \cdot \nabla\)
\((0,2)\)-Tensor \(T_{\mu v}\)

SR 4-Scalar \((0,1)\)-Tensor \(\mathrm{V}_{\mu}=\left(\mathrm{v}_{0},-\mathrm{v}\right)\)

Trace \(\left[T^{\mu \nu}\right]=\eta_{\mu v} T^{\mu v}=T_{\mu}^{\mu}=T\)
\(\mathbf{V} \cdot \mathbf{V}=V^{\mu} \eta_{\mu v} V^{v}=\left[\left(v^{0}\right)^{2}-\mathbf{v} \cdot \mathbf{v}\right]=\left(v^{0}{ }_{0}\right)^{2}\)
= Lorentz Scalar Invariant

\section*{SRQM Diagram:}

The 4-Position \(\mathbf{R}=(\mathrm{ct}, \mathrm{r})\) \{alt. notation \(=\mathbf{X}\}\) is essentially one of the most fundamental 4-Vectors of SR. It is the SpaceTime location of an <Event>, the basic element ( \(\in\) ) of Minkowski 4D SpaceTime: a time \((\mathrm{t})\) \& a place \((\mathrm{r}) \rightarrow\left(\mathrm{c}^{*}\right.\) when, where \()=(\mathrm{ct}, \mathrm{r})=\left(\mathrm{r}^{\mu}\right)=\mathbf{R}\).
 Technically, the 4-Position is just one of the possible properties of an <Event>, which may also have a 4-Velocity, 4-Momentum, 4-Spin, etc I emphasize the 4 -Position \(R\) as " \(\in\) " of an <Event> since that is its most basic property.

The 4-Position \(\mathbf{R}=(\mathrm{ct}, \mathrm{r})\) relates time to space via the fundamental invariant physical constant (c): the Speed-of-Light = "(c)elerity ; (c)eleritas", which is used to give consistent dimensional units across all SR 4-Vector components.

The 4-Position is a specific type of 4-Displacement,
for which one of the endpoints is the <Origin> = 4-Zero \(\mathbf{Z}=4\)-Origin \(\mathbf{O}=\) (c*now,here).
\(\mathbf{R}_{\mathbf{2}} \rightarrow \mathbf{R}, \mathbf{R}_{1} \rightarrow \mathbf{0}\)
\(\Delta R=R_{2}-R_{1} \rightarrow R-O=R\)
\[
0^{\mu}=\left(0,0^{0}\right)=(0,0)=(0,0,0,0)=\left(c^{*} \text { now,here }\right)=\left(0^{\mu}\right) \in<\text { Origin }>
\]

As such, any "defined" 4-Position, like the 4-Zero, is Lorentz Invariant (point rotations and boosts), but not Poincaré Invariant (Lorentz + time \& space translations), since the translations can move it

Invariant Magnitude
The more general 4-Displacement and 4-Differential(Displacement) are invariant under both Lorentz and Poincaré transformations, since neither of their endpoints are "pinned" this way.

The 4-Differential(Displacement) is just the infinitesimal version of the finite 4-Displacement, and is used in the calculus of \(S R\). \(\mathbf{U}=\mathrm{dR} / \mathrm{d} \tau: \mathrm{dR}=\mathrm{Ud} \tau\)

4-Position \(\mathbf{R}=R^{\mu}=(c t, r)=\left(r^{\mu}\right) \in<\) Event>
\(\mathbf{R}=\int \mathrm{d} \mathbf{R}=\int \mathbf{U} \mathrm{d} \tau=\int \gamma(\mathrm{c}, \mathrm{u}) \mathrm{d} \tau=\int(\mathrm{c}, \mathrm{u}) \gamma \mathrm{d} \tau=\int(\mathrm{c}, \mathrm{u}) \mathrm{dt}=(\mathrm{ct}, \mathrm{r})\) \(\mathbf{R}=\Sigma \Delta \mathbf{R}=\Sigma \mathbf{U} \Delta \tau=\Sigma \gamma(\mathrm{c}, \mathrm{u}) \Delta \tau=\Sigma(\mathrm{c}, \mathrm{u}) \gamma \Delta \tau=\Sigma(\mathrm{c}, \mathrm{u}) \Delta \mathrm{t}=(\mathrm{ct}, \mathrm{r})\)

SR is a theory about the relations between

\section*{4-Displacement \(\Delta R^{\mu}=\Delta \mathbf{R}=(c \Delta t, \Delta r)=\mathbf{U} \Delta \tau=\mathbf{R}_{2}-\mathbf{R}_{1}=\left(\mathrm{ct}_{2}-\mathrm{ct}_{1}, \mathrm{r}_{2}-\mathrm{r}_{1}\right)\) : \(\{\) finite \(\}\)} 4-Differential \(\mathrm{dR}^{\mu}=\mathrm{dR}=(\mathrm{cdt}, \mathrm{dr})=\mathrm{Ud} \tau\) : \{infintesimal\} 4-Position \(R^{\mu}=\mathbf{R}=(c t, r)=\left(c^{*}\right.\) when, where \()=\left(r^{\mu}\right) \in<\) Event \(>\rightarrow(c t, x, y, z)\)

The Invariant Interval is the Lorentz Scalar Product of the \{4-Position, 4-Displacement, 4-Differential\} with itself, giving a magnitude-squared, which may be (+/0/-).

\begin{tabular}{|c|}
\hline \multirow[t]{2}{*}{} \\
\hline \\
\hline
\end{tabular} \(\mathrm{dR} \cdot \mathrm{dR}=(\mathrm{cdt})^{2}-\mathrm{dr} \cdot \mathrm{dr}=\left(\mathrm{cdt}_{\mathrm{o}}\right)^{2}=(\mathrm{cd} \tau)^{2}=-\left(\mathrm{dr}_{\mathrm{o}}\right)^{2}=\left(\mathrm{idr}_{\mathrm{o}}\right)^{2}\) time-like interval (+)


The 4D SpaceTime Intervals are Invariant:

meaning that all observers must agree on their magnitudes, regardless of differing reference frames. This leads to the idea of ProperTime ( \(\Delta \tau=\Delta \mathrm{t}_{0}\) ), which is the time-displacement measured by a clock at-rest, and ProperLength \(\left(L_{0}=\left|\Delta x_{0}\right|\right)\), which is the space-displacement measured by a ruler at-rest. This also leads to the various Causality Conditions of SR, and the concept of the (Minkowski Diagram) Light-Cone. The differential form \(\mathrm{dR} \cdot \mathrm{dR}\) is apparently also still true in the curved spacetime of GR.

\section*{\((\mathrm{c} \Delta \tau)^{2}\) Time-like:Temporal}
(+) \{causal = 1D temporally-ordered, spatially relative\} \(\Delta \boldsymbol{R} \cdot \Delta \boldsymbol{R}=\left[(c \Delta t)^{2}-\Delta r \cdot \Delta r\right]=(0) \quad\) Light-like:Null:Photonic (0) \{causal \& topological, maximum signal speed \(\left.(|\Delta r / \Delta t|=c)\right\}\) \(-\left(\Delta r_{0}\right)^{2}\) Space-like:Spatial (-) \{temporally relative, topological = 3D spatially-ordered\}

SR 4-Tensor
(2,0)-Tensor T \({ }^{\mu v}\) (1,1)-Tensor \(\mathrm{T}^{\mu}{ }_{v}\) or \(\mathrm{T}_{\nu}\)
\((0,2)\)-Tensor \(T\)

SR 4-Vector
\((0,1)\)-Tensor \(\mathrm{V}_{\mu}=\left(\mathrm{v}_{0},-\mathrm{v}\right)\)

Causality is temporal Topology : Topology is spatial Causality

Trace \(\left[T^{\mu V}\right]=\eta_{\mu v} T^{\mu V}=T_{\mu}=T\)
\(\mathbf{V} \cdot \mathbf{V}=\mathrm{V}^{\boldsymbol{V}} \eta_{\mathrm{Iv}} \mathbf{V}^{\mathrm{V}}=\left[\left(\mathrm{v}^{0}\right)^{2}-\mathbf{v} \cdot \mathbf{v}\right]=\left(\mathrm{V}_{0}^{0}\right)^{2}\)
= Lorentz Scalar Invariant

\(\partial \cdot \mathbf{R}=4\) : The 4-Divergence SpaceTime Dimension Relation
\[
=\left(\partial_{\mathrm{t}}[\mathrm{t}]+\nabla \cdot \mathbf{r}\right)
\]
\[
\left.=\left(\partial_{\mathrm{t}} \mathrm{t}\right]+\partial_{\mathrm{x}}[\mathrm{x}]+\partial_{\mathrm{y}}[\mathrm{y}]+\partial_{\mathrm{z}}[\mathrm{z}]\right)
\]
\[
=(\partial[t] / \partial t+\partial[x] / \partial x+\partial[y] / \partial y+\partial[z] / \partial z)
\]
\[
=(1+1+1+1)
\]
\[
=4
\]

Alternate Tensorial Derivation:
\((\partial \cdot R)=\left(\partial^{\alpha} \cdot R^{\beta}\right)=\left(\partial^{\alpha} \eta_{\alpha \beta} R^{\beta}\right)=\eta_{\alpha \beta}\left(\partial^{\alpha} R^{\beta}\right)=\eta_{\alpha \beta}\left(\eta^{\alpha \beta}\right)=\eta_{\beta}{ }^{\beta}=\eta_{\alpha}{ }^{\alpha}=\delta_{\alpha}{ }^{\alpha}\)
\(=\left(\delta_{0}{ }^{0}+\delta_{1}{ }^{1}+\delta_{2}{ }^{2}+\delta_{3}{ }^{3}\right)=(1+1+1+1)=4\)
This Tensor Invariant Lorentz Scalar relation gives the dimension of SpaceTime. The only way there can more dimensions is if there is another SpaceTime direction available. 4-Divergence \((\partial \cdot[]\).\() is also used in SR Conservation Laws, ex. (\partial \cdot \mathrm{J})=0\)

All empirical evidence to-date indicates that there are only the 4 known dimensions: 1 temporal ( t ): measured in SI units = [s], with ( ct ): measured in SI units [m] 3 spatial ( \(x, y, z\) ) : measured in SI units \(=[m]\)

These are the 4 components that appear in:

4-Position
\(R=(c t, r) \rightarrow(c t, x, y, z):\) measured in SI units [m]

\section*{SR 4-Tensor}
(2,0)-Tensor \(T^{\mu v}\) (1,1)-Tensor \(T^{\mu}{ }_{v}\) or \(T_{\mu}{ }^{\prime}\)
\((0,2)\)-Tensor \(\mathrm{T}_{\mu v}\)

SR 4-Vector
\((1,0)\)-Tensor \(\mathrm{V}^{\mathrm{V}}=\mathbf{V}=\left(\mathrm{v}^{0}, \mathrm{v}\right)\) SR 4-CoVector:OneForm \((0,1)\)-Tensor \(\mathrm{V}_{\mu}=\left(\mathrm{v}_{0},-\mathrm{v}\right)\)

\(\begin{array}{lll}\text { OD () } & \text { 1D }(x) & 2 D(x, y) \\ \text { point } & \text { line } & \text { square }\end{array}\)

\section*{3D (x,y,z) cube}

Invariant interva
\(\mathbf{R} \cdot \mathbf{R}=(\mathrm{ct})^{2} \mathbf{- r} \cdot \mathbf{r}=(\mathrm{ct})^{2}\)
\(\Delta \mathbf{R} \cdot \boldsymbol{\Delta R}=(c \Delta t)^{2}-\Delta \mathbf{r} \cdot \Delta \mathbf{r}=(\mathrm{c} \Delta \tau)^{2}\)

\(\mathrm{dR} \cdot \mathrm{dR}=(\mathrm{cdt})^{2}-\mathrm{dr} \cdot \mathrm{dr}=(\mathrm{cd} \tau)^{2}\)


SR : Minkowski
Time-Space is 4D

The Tesseract,
a 4D "cube",
4D SpaceTime

4-Gradient
\(\partial=\left(\partial_{t} c,-\nabla\right)=\partial / \partial R_{\mu}\)
\(\rightarrow\left(\partial_{t} / c,-\partial_{x^{\prime}}-\partial_{y^{\prime}},-\partial_{z}\right)\)
\(\rightarrow\left(\partial_{t} / c,-\partial_{x^{\prime}}-\partial_{y^{\prime}}, \partial_{z}\right)\)
\(=(\partial / c \partial t,-\partial / \partial x,-\partial / \partial \mathrm{y},-\partial / \partial z)\)

d'Alariant d'Alembertian Wave Equation \(\partial \cdot \partial=\left(\partial_{\mathrm{t}} / \mathrm{c}\right)^{2}-\nabla \cdot \nabla\)

\section*{SRQM Diagram:}


SR 4-Tensor
(2,0)-Tensor T \({ }^{\text {uv }}\) (1,1)-Tensor \(T^{\mu}{ }_{v}\) or \(T_{\nu}\)
\((0,2)\)-Tensor \(\mathrm{T}_{\mu v}\)
\[
\delta^{\mu v}=\delta^{\mu}{ }_{v}=\delta_{\mu v}=\mathrm{I}_{(4)}=\{1 \text { if } \mu=v \text {, else } 0\}=\operatorname{Diag}[1,1,1,1]
\] 4D Kronecker Delta = 4D Identity
\((+,-,-) S, R \rightarrow Q\)
SRQM Diagram: The Basis of Classical SR Physics The Lorentz-Transform \(\partial_{v}\left[R^{\mu^{\prime}}\right]=\partial R^{\mu^{\prime}} / \partial R^{v}=\Lambda^{\mu^{\prime}}\)

A Tensor Study of Physical 4-Vectors

4-Position \(R^{\mu}\)
\(R=(c t, r)=\left(r^{\mu}\right) \in<\) Event \(>\)


General Lorentz Boost Transform (symmetric,continuous): for a linear-velocity time-space-mixing frame-shift (Boost) in the \(\mathrm{v} / \mathrm{c}=\beta=\left(\beta^{1}, \beta^{2}, \beta^{3}\right)\)-direction: \(\Lambda \mu_{v}^{\prime} \rightarrow \mathrm{Br}^{\mu_{v}}=\)


General Lorentz Rotation Transform (non-symmetric,orthogonal,continuous): for an angular-displacement spatial-only frame-shift (Rotation) angle \(\theta\) about the \(\hat{n}=\left(\mathrm{n}^{1}, \mathrm{n}^{2}, \mathrm{n}^{3}\right)\)-direction: \(\wedge \mu_{v} \rightarrow \mathrm{R}^{w_{v}}=\)
\begin{tabular}{|cc|}
\hline 1 & \(0_{j}\) \\
\(0^{i}\) & \(\left(\delta_{j}^{i}-n^{i} n_{j}\right) \cos (\theta)-\left(\varepsilon_{j k}^{j} n^{k}\right) \sin (\theta)+n^{i} n_{j}\)
\end{tabular}

General Lorentz Discrete Transforms (symmetric,discrete):
\(\Lambda_{v}^{u_{v}} \rightarrow\) (PT) \({ }^{u_{v}}\)
\(=\) Diag[-1,- \(-\dot{\sim}]\)

Lorentz-Transform Properties: \(\Lambda_{\mu_{v}}=\partial X^{v^{\prime}} / \partial X^{v}\) \(\Lambda_{v}^{v}=\left(\Lambda^{-1}\right)_{\mu}^{v}: B^{\top}=B: R^{\top}=R^{-1}\) \(\Lambda^{-1}(\beta)=\Lambda(-\beta): \Lambda^{-1}(\theta)=\Lambda(-\theta)\) \(\eta_{1 \sim} \wedge^{\nu_{\sigma}} \wedge \wedge_{\beta}=\eta_{\alpha \beta}\)
 \(\Lambda_{u v} \Lambda^{\mathrm{uv}}=\Lambda_{v} \Lambda_{v}{ }_{v}=4\) : SpaceTime Dimension \(\operatorname{Det}\left[\Lambda^{\mu} \mathrm{v}\right]= \pm 1:(+)=\) Linearity; \((-)=\) Anti-Linearity \(|\Lambda|=1: \Lambda^{-1}(0)=\Lambda(0)=I_{(4)}\)
**The Trace Invariant of the various Lorentz-Transforms leads to very interesting results: CPT Symmetry and Antimatter**

\section*{SR 4-Tensor}
(2,0)-Tensor T \({ }^{\mathrm{\mu v}}\) (1,1)-Tensor \(\mathrm{T}^{\mu}{ }_{v}\) or \(\mathrm{T}_{\nu}\)
\((0,2)\)-Tensor \(\mathrm{T}_{\mu v}\)

\section*{Invariant \(\operatorname{Tr}\left[\Lambda^{\mu_{v}^{\prime}}\right] \rightarrow\)}
\[
-\infty, \ldots,(-4), \ldots,-2, \ldots,(0), \ldots,+2, \ldots,(+4), \ldots,+\infty
\] The Lorentz-Transform \(\partial_{v}\left[R^{p}\right]=\partial R^{p^{\prime}} / \partial R^{v}=\Lambda^{w^{\prime}}\) continuous Lorentz Transforms, ie. the Boosts and Rotations: 4-TimeLike,Future
4-TimeLike,Past
4-Null,Future = 4-LightLike,Future 4-Null,Past = 4-LightLike,Past 4-SpaceLike 4-Zero

\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{l}
SR 4-Tensor (2,0)-Tensor T \({ }^{\mu v}\) \\
(1,1)-Tensor \(\mathrm{T}^{\mu}{ }_{v}\) or \(\mathrm{T}_{\mu}{ }^{v}\) \((0,2)\)-Tensor \(\mathrm{T}_{\mu v}\)
\end{tabular} & \begin{tabular}{l}
SR 4-Vector \\
(1,0)-Tensor \(\mathrm{V}^{\mu}=\mathbf{V}=\left(\mathrm{v}^{0}, \mathbf{v}\right)\) SR 4-CoVector:OneForm \((0,1)\)-Tensor \(\mathrm{V}_{\mu}=\left(\mathrm{v}_{0},-\mathrm{v}\right)\)
\end{tabular} & SR 4-Scalar \((0,0)\)-Tensor \(S\) or \(S_{0}\) Lorentz Scalar & \begin{tabular}{l}
\[
-\infty, \ldots,(-4), \ldots,-2, \ldots,(0), \ldots,+2, \ldots,(+4), \ldots,+\infty
\] \\
Trace identifies CPT Symmetry in the Lorentz Transform
\end{tabular} & \[
\begin{gathered}
\text { Trace }\left[T^{\mu v}\right]=\eta_{\mu v} T^{\mu v}=T_{\mu}^{\mu}=T \\
\mathbf{V} \cdot \mathbf{V}=V^{\mu} \eta_{\mu v} V^{v}=\left[\left(v^{0}\right)^{2}-\mathbf{v} \cdot \mathbf{v}\right]=\left(v^{0}{ }_{0}\right)^{2} \\
=\text { Lorentz Scalar Invariant }
\end{gathered}
\] \\
\hline
\end{tabular}

The Lorentz transformation can also be derived empirically. In order to achieve this, it's necessary to write down coordinate transformations that include experimentally testable parameters.
For instance, let there be given a single "preferred" inertial frame ( \(\mathrm{t}, \mathrm{x}, \mathrm{y}, \mathrm{z}\) ) in which the speed of light is constant, isotropic, and independent of the velocity of the source. It is also assumed that Einstein synchronization and synchronization by slow clock transport are equivalent in this frame. Then assume another frame \((t, x, y, z)^{\prime}=\left(t^{\prime}, x^{\prime}, y^{\prime}, z^{\prime}\right.\) in relative motion, in which clocks and rods have
the same internal constitution as in the preferred frame. The following relations, however, are left undefined:
\(a(v)\) : differences in time measurements,
\(b(v)\) : differences in measured longitudinal lengths,
\(\mathrm{d}(\mathrm{v})\) : differences in measured transverse lengths,
\(\varepsilon(v)\) : depends on the clock synchronization procedure in the moving frame,

\(\mathbf{R} \cdot \mathbf{R}=(c t)^{2} \mathbf{- r} \cdot \mathbf{r}=(\mathrm{c} \tau)^{2}\) \(\Delta \mathbf{R} \cdot \mathbf{\Delta R}=(\mathrm{c} \Delta \mathrm{t})^{2}-\boldsymbol{\Delta r} \cdot \Delta \mathbf{r}=(\mathrm{c} \Delta \tau)^{2}\) \(\mathrm{dR} \cdot \mathrm{dR}=(\mathrm{cdt})^{2}-\mathrm{dr} \cdot \mathrm{dr}=(\mathrm{cd} \tau)^{2}\)
\(\partial_{v}\left[R^{\mu^{\prime}}\right]\)
\(=\partial R^{u^{\prime}} \partial R^{v}=\Lambda^{\mu^{\prime}}\)
Lorentz
Lorentz Transform

 then the transformation formula (assumed to be linear) between those frames are given by \(=\gamma\)
\(t^{\prime}=a(v)(t+\varepsilon(v) x\)
\(x^{\prime}=b(v)(x-v t)\)
\(x^{\prime}=b(v)(x-v t)\)
\(y^{\prime}=d(v) y\)
\(z^{\prime}=d(v) z\)

\(\varepsilon(v)\) depends on the synchronization convention and is not determined experimentally, it obtains the value \(\left(-\mathrm{v} / \mathrm{c}^{2}\right)\) by using Einstein synchronization in both frames. The ratio between \(b(v)\) and \(d(v)\) is determined by the Michelson-Morley experiment. The ratio between \(a(v)\) and \(b(v)\) is determined by the Kennedy-Thorndike experiment. \(a(v)\) alone is determined by the Ives-Stilwell experiment.
In this way, they have been determined with great precision to \(\{\mathrm{a}(\mathrm{v})=\mathrm{b}(\mathrm{v})=\gamma\) and \(\mathrm{d}(\mathrm{v})=1\}\), which converts the above transformation into the Lorentz transformation.

SRQM Diagram
\(\Lambda^{\mu}{ }_{a}\left(\Lambda^{-1}\right)^{a}{ }_{v}=\Lambda^{\mu a}\left(\Lambda^{-1}\right)_{a v}=\eta^{\mu}{ }_{v}=\delta^{\mu}{ }_{v}\)
SR:Lorentz Transform
\(\partial_{v}\left[R^{\prime}\right]=\partial R^{\mu^{\prime}} / \partial R^{v}=\Lambda^{\mu_{v}}{ }_{v}\)
\(\Lambda^{\mu}{ }_{v}=\left(\Lambda^{-1}\right)_{v}{ }^{\mu}\)
\(\eta_{\mu v} \wedge^{{ }_{a}} \Lambda \wedge_{\beta}=\eta_{\alpha B}\)
4-Position \(\mathrm{R}^{\mu}\)
\(R=(c t, r)=(c t, x, y, z)\)

SR 4-Tensor
(2,0)-Tensor T \({ }^{\mu v}\) (1,1)-Tensor \(T^{\mu}{ }_{v}\) or \(T_{\nu}\)
(0,2)-Tensor T

\section*{\((1,0)\)-Tensor \(\mathrm{V}^{\mu}=\mathbf{V}=\left(\mathrm{v}^{0}, \mathbf{v}\right)\) SR 4-CoVector:OneForm} \((0,1)\)-Tensor \(V_{\mu}=\left(v_{0},-v\right)\)

The value of LightSpeed (c) was \(1^{\text {st }}\) empirically measured by Ole Rømer to be finite using the timing of Jovian moon eclipses. His estimate was 1 Earth-Orbit-Diameter/22 minutes, about 75\% of the actual value of (c).

\section*{Trace \(\left[T^{t v}\right]=\eta_{v v} T^{v V}=T_{\mu}=T\)} \(\mathbf{V} \cdot \mathbf{V}=\mathbf{V}^{\top} \eta_{\mathrm{Iv}} \mathbf{V}^{\mathrm{V}}=\left[\left(\mathrm{v}^{0}\right)^{2}-\mathbf{v} \cdot \mathbf{v}\right]=\left(\mathrm{v}^{0}{ }_{0}\right)^{2}\) = Lorentz Scalar Invariant

\section*{\(\partial \cdot R=\operatorname{Tr}\left[n^{\mu \nu}\right]=\Lambda^{\mu \beta} \Lambda_{\mu \beta}=4\)}

\section*{The SpaceTime Dimension Relations}

Tensor Invariants include: \{Trace, InnerProduct, Determinant, etc.\} 4-Divergence[4-Position] , Trace[Minkowski Metric] , and the InnerProduct[any of the Lorentz Transforms] give the Dimension of SR SpaceTime as 4D.

\section*{Minkowski Metr
Trace Invariant \(\frac{\text { Trace Inve }}{\text { Trace }\left[\eta^{\nu+1}\right]}\)}
\(=\operatorname{Tr}\left[\eta^{\mu v}\right]\)
-Divergence Lorentz Transform of 4-Position Inner Prod Invariant
\(\eta_{\mu \nu} \wedge^{\mu} \wedge^{v_{\beta}}=\eta_{\alpha \beta}\)
\(=\eta_{\mu v}\left[\eta^{\mu V}\right]\) \(=\partial^{\mu} \cdot R^{v} \quad \eta^{\alpha \beta} \eta_{\mu \nu} \wedge^{\nu_{\alpha}} \wedge^{v}{ }^{v}=\eta_{\alpha \beta} \eta^{\alpha \beta}\) \(=\partial^{\mu} \eta_{\mu \mathrm{v}} R^{v} \quad \eta^{\alpha \beta} \wedge^{\mu}{ }_{\alpha} \eta_{\mu v} \wedge^{v}{ }_{\beta}=\eta_{\alpha \beta} \eta^{\alpha \beta}\)
\(=\eta_{\mu}{ }^{\mu}\)
\(=\delta_{\mu}{ }^{\mu}\)
\(=(1+1+1+1)\)
\[
=\eta_{1 v v} \partial^{u} R^{v} \quad\left(\eta^{\alpha \beta} \Lambda_{\alpha} \mu_{\alpha}\right)\left(\eta_{w v} \Lambda^{\vee} \beta\right)=\eta_{\alpha \beta} \eta^{\alpha \beta}
\]

Trace Invariant
General Tensor
Trace Invariant

\(\operatorname{Tr}\left[\eta^{\mu \nu}\right]=\eta_{v}{ }^{\nu}=(1)-(-1)-(-1)-(-1)=\)

\section*{Minkowski}

Metric \(\eta^{\mu v}\)
\(\rightarrow\)
[ \(+1,0,0,0\) ]
[0,-1,0,0]
[0,0,-1,0]
[0,0,0,-

SR 4-Tensor
(2,0)-Tensor T \({ }^{\mu v}\) 1,1)-Tensor \(T^{\mu}{ }_{v}\) or \(T_{\mu}\)
\((0,2)\)-Tensor \(\mathrm{T}_{\mathrm{uv}}\)

\[
=\eta_{\mu \nu} \eta^{\mu \nu} \quad \Lambda^{\mu \nu \beta} \Lambda_{\mu \beta}=\eta_{\alpha \beta} \eta^{\alpha \beta}=\operatorname{Tr}\left[\eta^{\mu \nu}\right]
\]
\[
=\operatorname{Tr}\left[\eta^{\mu \nu}\right] \quad \Lambda^{\mu \beta} \Lambda_{\mu \beta}=4
\]
```

$=4$

```
\[
=4 \quad=4 \quad \text { Minkowski Metric }
\]

\section*{SRQM Diagram:} The Basis of Classical SR Physics Lorentz Scalar (Dot) Product ( \(\eta_{\mu v}=\cdot\) )
A Tensor Study of Physical 4-Vectors

The Tensor Invariant Lorentz Scalar Product (LSP) is the SR 4D (Dot=•) Produc It is used to make Invariant Lorentz Scalars from two 4-Vectors. \(\mathbf{A} \cdot \mathbf{B}=\mathrm{A}^{\mu} \cdot \mathrm{B}^{v}=\mathrm{A}^{\mu} \eta_{\mathrm{Iv}} \mathrm{B}^{v}=\mathrm{A}_{v} \mathrm{~B}^{\mathrm{v}}=\mathrm{A}^{\mathrm{V}} \mathrm{B}_{\mu}=\left(\mathrm{a}^{0} \mathrm{~b}^{0}-\mathbf{a} \cdot \mathrm{b}\right)=\left(\mathrm{a}^{0}{ }^{0} \mathrm{~b}^{0}{ }^{0}\right)\) \(A \cdot A=A^{\nu} \cdot A^{v}=A^{\mu} \eta_{\mu v} A^{v}=A_{v} A^{v}=A^{\nu} A_{\mu}=\left(a^{0} a^{0}-a \cdot a\right)=\left(a^{0}{ }_{0}\right)^{2}\)

\(\rightarrow \operatorname{Diag}[+1,-1,-1,-1]_{\text {\{Cartesian basis }\}}\) with \(\hat{\mathbf{e}}_{\mu}\) and \(\hat{\mathbf{e}}_{\mathrm{v}}\) as basis co-vectors \(\mathrm{A}=\mathrm{A}^{\mu} \hat{\mathbf{e}}_{\mu} \rightarrow \mathrm{A}^{\mu}{ }_{\text {\{Cartesian basis }\}}\)
( \(\eta_{\mathrm{pv}}\) ) is itself just the lowered-index form of the SR Minkowski Metric ( \(\eta^{\mu v}\) ), with individual components [ \(\eta_{\mu \nu}\) ] = 1/[ \(\left.\eta^{\mu \nu}\right]\), else 0 . In Cartesian basis, this gives \(\left\{\eta_{\mu v}=\eta^{\mu v}\right\}_{\{\text {Cartesian : no summantion }\}}\)

The LSP is used in just about every relation between any two interesting 4-Vectors. It also gives the Invariant Magnitude of a single 4-Vector. If the 4-Vector is temporal, then the spatial component can be set to zero, giving the rest-frame invariant value,

\(a^{0}\) or \(a_{0}:(0)^{\text {th }}=\) temporal component (can relativistically vary)
 SR 4-CoVector:OneForm ( 0,0 )-Tensor \(S\) or \(S_{0}\) \((0,1)\)-Tensor \(\mathrm{V}_{\mu}=\left(\mathrm{v}_{0},-\mathrm{v}\right)\)

\section*{The Basis of Classical SR Physics 4-Velocity U, SpaceTime <Event> Motion}

4-Velocity \(\mathbf{U}=\gamma(\mathrm{c}, \mathrm{u})=(\gamma \mathrm{c}, \gamma \mathrm{u})=(\mathbf{U} \cdot \partial) \mathbf{R}=\gamma\left(\partial_{\mathrm{t}}+\mathbf{u} \cdot \nabla\right) \mathbf{R}=(\mathrm{d} / \mathrm{d} \tau) \mathbf{R}=\) \(=\mathrm{dR} / \mathrm{d} \tau=(\mathrm{d} t / \mathrm{dt})(\mathrm{dR} / \mathrm{d} \tau)=(\mathrm{dt} / \mathrm{d} \tau)(\mathrm{dR} / \mathrm{dt})=\gamma(\mathrm{dR} / \mathrm{dt})=\gamma(\mathrm{ct}, \dot{\mathrm{r}})=\gamma(\mathrm{c}, \mathrm{u})=\mathrm{U}^{a}\)
4-Velocity U is the ProperTime Derivative ( \(\mathrm{d} / \mathrm{d} \tau\) ) of the 4-Position \(\mathbf{R}\) or of the 4-Displacement \(\Delta \boldsymbol{R}\).

4-Velocity is the SR 4-Vector that describes the motion of <Events> through SpaceTime. (a) For an un-accelerated observer, the 4-Velocity U is a constant along the WorldLine at all points.
(b) For an accelerated observer,

the 4-Velocity \(\mathbf{U}\) is still tangent to the WorldLine at each point, but changes direction as the WorldLine bends thru SpaceTime.

The 4-UnitTemporal T \& 4-Velocity U are unlike most of the other SR 4-Vectors They have 3 independent components, whereas the others usually have 4. This is due to the constraints placed by the LSP Tensor Invariants. \(\mathbf{T} \cdot \mathbf{T}=+1\) \& \(\mathbf{U} \cdot \mathbf{U}=\mathrm{c}^{2}\) have constant magnitudes, giving the Speed-of-Light (c) in SpaceTime. Components:
3 independent +0 independent \(\rightarrow 3\) independent +1 independent
\(=4\) independent


They also usually have the Relativistic Gamma factor \((\gamma)\) exposed in component form, whereas most of the other temporal 4 -Vectors have it absorbed into the Lorentz 4-Scalar factor that goes into their components. 4-UnitTemporal \(\mathbf{T}=\mathbf{T}^{a}=\gamma(1, \beta)=(\gamma, \gamma \beta)=\mathbf{U} / \mathbf{c}\)
4-Velocity \(\quad \mathbf{U}=\mathbf{U}^{\mathrm{a}}=\gamma(\mathrm{c}, \mathrm{u})=(\gamma \mathrm{c}, \gamma \mathrm{u})=\mathbf{c T}\)
4-Momentum \(\mathbf{P}=\mathrm{P}^{\mathrm{a}}=(\mathrm{mc}, \mathrm{p})=\mathrm{m}_{0} \mathbf{U}=\gamma \mathrm{m}_{0}(\mathrm{c}, \mathrm{u})=\mathrm{m}(\mathrm{c}, \mathrm{u})=(\mathrm{mc}, \mathrm{mu})=(\mathrm{E} / \mathrm{c}, \mathrm{p})\)
\(\mathbf{P}=\mathrm{m}_{0} \mathbf{U}=\left(\mathrm{E}_{\mathrm{o}} / \mathrm{c}^{2}\right) \mathbf{U}\)
The temporal components give Einstein's famous

The spatial components give \(\mathrm{p}=\mathrm{mu}=\gamma \mathrm{m}_{0} \mathbf{u}\)

E \& m: Relativistically varying \(E_{0} \& m_{0}\) : Invariant Lorentz Scalars

SR 4-Tensor
(2,0)-Tensor T \({ }^{\mu v}\) \(1,1)\)-Tensor \(T^{\mu}{ }_{v}\) or \(T_{\mu}{ }^{v}\)
(0,2)-Tensor T \((0,1)\)-Tensor \(\mathrm{V}_{\mu}=\left(\mathrm{v}_{0},-\mathrm{v}\right)\)
\[
\begin{aligned}
& \text { Trace }\left[T^{\mu v}\right]=\eta_{\mu v} T^{\mu v}=T_{\mu}^{\mu}=T \\
& \mathbf{V} \cdot \mathbf{V}=\mathrm{V}^{\mu} \eta_{\mu \mathrm{v}} \mathrm{~V}^{\mathrm{V}}=\left[\left(\mathrm{v}^{0}\right)^{2}-\mathbf{v} \cdot \mathbf{v}\right]=\left(\mathrm{v}^{0}{ }_{\mathrm{o}}\right)^{2}
\end{aligned}
\] \\ \title{
SRQM Diagram: \\ \title{
SRQM Diagram: \\ \\ The Basis of Classical SR Physics \\ \\ The Basis of Classical SR Physics 4-Velocity U, SpaceTime <Event> Motion
} 4-Velocity U, SpaceTime <Event> Motion
}


\section*{SR 4-Tensor}
(2,0)-Tensor T \({ }^{\mu \nu}\) (1,1)-Tensor \(T^{\mu}{ }_{v}\) or \(T_{\nu}\)
(1,0) SR 4-Vector \((1,0)\)-Tensor \(\mathrm{V}^{\mu}=\mathbf{V}=\left(\mathrm{v}^{0}, \mathrm{v}\right)\) SR 4-CoVector:OneForm

SR 4-Scalar \((0,1)\)-Tensor \(\mathrm{V}_{\mu}=\left(\mathrm{v}_{0},-\mathrm{v}\right)\)
(0,0)-Tensor S or So
Lorentz Scalar

4-Velocity \(\mathbf{U}=\gamma(\mathrm{c}, \mathbf{u})=(\gamma \mathrm{c}, \gamma \mathrm{u})=(\mathbf{U} \cdot \partial) \mathbf{R}=\gamma\left(\partial_{\mathrm{t}}+\mathbf{u} \cdot \nabla\right) \mathbf{R}=(\mathrm{d} / \mathrm{d} \tau) \mathbf{R}=\) \(=\mathrm{dR} / \mathrm{d} \tau=(\mathrm{dt} / \mathrm{dt})(\mathrm{dR} / \mathrm{d} \tau)=(\mathrm{dt} / \mathrm{d} \tau)(\mathrm{dR} / \mathrm{dt})=\gamma(\mathrm{dR} / \mathrm{dt})=\gamma(\mathrm{ct}, \mathrm{r})=\gamma(\mathrm{c}, \mathbf{u})=\mathbf{U}^{a}\)

The Lorentz Scalar Product of the 4-Velocity leads to the Invariant |Magnitude| Speed-of-Light (c), one the main fundamental SR physical constants of physics.
Alt Derivation:
\(\mathbf{U} \cdot \mathbf{U}\)
\(=\mathrm{dR} / \mathrm{d} \tau \cdot \mathrm{dR} / \mathrm{d} \tau\)
\(=(\mathrm{dR} \cdot \mathrm{dR}) /(\mathrm{d} \tau)^{2}\)
\(=(\mathrm{dd} \tau)^{2} /(\mathrm{d} \tau)^{2}\)
\(=(\mathrm{c})^{2}\) \(=\mathrm{c}^{2}\) : Invariant |Magnitude| Speed-of-Light (c)
(c) is the unique maximum speed of SR causality which all massless particles (RestMass \(m_{0}=0\) ), ex. the photon, travel at temporally \& spatially. Massive particles can travel at (c) only temporally.
\(\mathbf{P}=(\mathrm{E} / \mathrm{c}, \mathrm{p})=\left(\mathrm{E}_{\mathrm{o}} / \mathrm{c}^{2}\right) \mathbf{U}=\left(\mathrm{E}_{\mathrm{o}} / \mathrm{c}^{2}\right) \gamma(\mathrm{c}, \mathrm{u})=\left(\mathrm{E} / \mathrm{c}, \mathrm{p}=\mathrm{Eu} / \mathrm{c}^{2}\right)\)
P•P \(=\left(m_{0} c\right)^{2}=(E / c)^{2}-p \cdot p=(E / c)^{2}-(E / c)^{2}\left(\mathbf{u} \cdot \mathbf{u} / c^{2}\right)=(E / c)^{2}\left[1-\beta^{2}\right]\)
From this eqn:
\((|\beta|=1) \leftrightarrow(|\mathbf{u}|=c) \leftrightarrow\left(m_{0}=0\right)\) : Massless objects always spatially-move at speed (c)
This fundamental constant Lorentz Invariant (c) provides an extra constraint on the components of 4 -Velocity \(\mathbf{U}\), making it have only 3 independent components ( \(\mathbf{u}\) ). This allows it to construct new 4-Vectors related to 4-Velocity by multiplying by other Lorentz Scalars. (Lorentz Scalar)* \((4\)-Velocity \()=(\) New 4 -Vector \()\)

Components: 3 independent
\(\mathbf{P}=(\mathrm{E} / \mathrm{c}, \mathrm{p})=\left(\mathrm{E}_{\mathrm{o}} / \mathrm{c}^{2}\right) \mathbf{U}\)
\(\mathbf{K}=(\omega / \mathrm{c}, \mathrm{k})=\left(\omega_{\mathrm{o}} / \mathrm{c}^{2}\right) \mathbf{U}\)

+1 independent
\(\mathbf{P} \cdot \mathbf{P}=\left(\mathrm{m}_{0} \mathrm{C}\right)^{2}=\left(\mathrm{E}_{\mathrm{d}} / \mathrm{c}\right)^{2}\) 4-Momentum
\(\mathbf{P}=(\mathrm{mc}, \mathrm{p})=(\mathrm{E} / \mathrm{c}, \mathrm{p})\)
= 4 independent 4-WaveVector \(K=(\omega / c, k)=\left(\omega / c, \omega \hat{n} / V_{\text {phase }}\right)\)
\(\mathbf{K} \cdot \mathbf{K}=\left(\omega_{0} / \mathrm{c}\right)^{2}\)

4-Gradient
\(\partial=\left(\partial_{t} / c,-\nabla\right)=\partial / \partial R_{\mu}\)
\(\rightarrow\left(\partial_{t} / c,-\partial_{x},-\partial_{y},-\partial_{z}\right)\)
\(=(\partial / c \partial \mathrm{t},-\partial / \partial \mathrm{x},-\partial / \partial \mathrm{y},-\partial / \partial \mathrm{z})\)

\section*{Invariant}
d'Alembertian Wave Equation



The newly made 4-Vectors thus have \(\{3+1=4\}\) independent components. \(\gamma^{\prime}=\mathrm{d} \gamma / \mathrm{dt}=\gamma^{3} \beta \cdot \mathrm{a} / \mathrm{c}=\gamma^{3} \mathbf{u} \cdot \mathrm{a} / \mathrm{c}^{2}\) \((0,1)\)-Tensor \(\mathrm{V}_{\mu}=\left(\mathrm{V}_{0},-\mathrm{v}\right)\)
= V
If (c) was not a constant, but varied somehow, then all 4-Vectors made from the 4 -Velocity would have more than 4 independent components, which is not observed. It seems a very strong, compelling argument against variable light-speed theories.

SciRealm.org John B. Wilson SciRealm@aol.com http://scirealm.org/SRQM.pdf

Relativity of Simultaneity:Time-Delay
\[
\mathbf{U} \cdot \Delta \mathbf{X}=\gamma(\mathrm{c}, \mathrm{u}) \cdot(\mathrm{c} \Delta \mathrm{t}, \Delta \mathbf{x})=\gamma\left(\mathrm{c}^{2} \Delta \mathrm{t}-\mathbf{u} \cdot \Delta \mathbf{x}\right)
\]
\[
=\mathrm{c}^{2} \Delta \mathrm{t}_{\mathrm{o}}=\mathrm{c}^{2} \Delta \tau
\]

Lorentz Scalar ( \(\mathbf{U} \cdot \Delta \mathbf{X}=0=\mathrm{c}^{2} \Delta \tau\) ),
then the ProperTime displacement \((\Delta \tau)\) is zero and the <Event>'s separation \(\left(\Delta \mathbf{X}=\mathbf{X}_{2}-\mathbf{X}_{1}\right)\) is orthogonal to the worldline at U
<Event>'s \(\mathbf{X}_{1}\) and \(\mathbf{X}_{2}\) are therefore simultaneous ( \(\Delta \tau=0\) ) for the observer on this worldline at \(\mathbf{U}\).

Examining the equation we get Boost Frame \(\gamma\left(\mathrm{c}^{2} \Delta \mathrm{t}-\mathbf{u} \cdot \Delta \mathbf{\Delta x}\right)=0\). The coordinate time difference between the events is \(\left(\Delta t=u \cdot \Delta x / c^{2}\right)\) The condition for simultaneity in an alternate reference frame (moving at 3-velocity \(\mathbf{u}\) wrt. the worldline U ) is \(\Delta \mathrm{t}=0\), which implies \((\mathbf{u} \cdot \Delta \mathbf{x})=0\).

This condition can be met by:
( \(|\mathbf{u}|=0\) ), the alternate observer is not moving wrt. the events, i.e. is on worldline \(\mathbf{U}\) or on a worldline parallel to \(\mathbf{U}\)
( \(|\Delta \mathbf{x}|=0\) ), the events are at the same spatial location (co-local). \((\mathbf{u} \cdot \Delta \mathbf{x}=0=|\mathbf{u}||\Delta \mathbf{x}| \cos [\theta])\), the alternate observer's motion is perpendicular (orthogonal, \(\theta=90^{\circ}\) ) to the spatial separation \(\Delta \mathbf{x}\) of the events in that frame.

If none of these conditions is met, then the events will not be simultaneous in the alternate reference-frame.

This can be shown on a Minkowski Diagram.
\(\Delta t^{\prime}=0\)
Simultaneous in \(\left\{\mathbf{t}^{\prime}, \mathbf{x}^{\prime}\right\}\)
\(\Delta t \neq 0\)
Not Simultaneous in \(\{\mathrm{t}, \mathbf{x}\}\)
Time-Delay


R. \(=(c t)^{2}\) Interva \(\Delta \mathbf{R} \cdot \Delta \mathbf{R}=(\mathrm{c} \Delta \mathrm{t})^{2}-\Delta \mathbf{r} \cdot \Delta \mathbf{r}=(\mathrm{c} \Delta \tau)^{2}\) \(\mathbf{d R} \cdot \mathbf{d R}=(\mathrm{cdt})^{2}-\mathrm{dr} \cdot \mathrm{dr}=(\mathrm{cd} \tau)^{2}\)

\section*{The Basis of Classical SR Physics}

\section*{Relativity of Stationarity:Space-Motion}
(Stationarity \(\leftrightarrow\) Same-Place Occurrence \(\leftrightarrow \Delta \mathbf{x}=0\) ) (Space-Motion \(\leftrightarrow\) Different-Place Occurrence \(\leftrightarrow \Delta \mathbf{x} \neq \mathbf{0}\) )
\[
\begin{aligned}
& \text { Relativity of Stationarity:Space-Motion } \\
& \begin{aligned}
& \mathbf{U} \cdot \Delta \mathbf{X}=\gamma(\mathrm{c}, \mathrm{u}) \cdot(\mathrm{c} \Delta \mathrm{t}, \Delta \mathrm{x})=\gamma\left(\mathrm{c}^{2} \Delta \mathrm{t}-\mathbf{u} \cdot \Delta \mathbf{x}\right) \\
&=\mathrm{c}^{2} \Delta \mathrm{t}_{\mathrm{o}}=\mathrm{c}^{2} \Delta \tau
\end{aligned}
\end{aligned}
\]
\[
\text { Let <Event>'s } X_{1} \text { and } X_{2} \text { be local }\left(\Delta \mathbf{x}^{\prime}=\mathbf{0}\right)
\] for the observer on worldline at \(\mathbf{U}\)

This has equation \((\mathbf{U} \cdot \Delta \mathbf{X})=\gamma\left(\mathbf{c}^{2} \Delta t-\mathbf{u} \cdot \Delta \mathbf{x}\right)=\mathbf{c}^{2} \Delta \tau \neq 0\).
To be stationary/motionless in the Rest-Frame is \(\mathbf{\Delta} \mathbf{x}^{\mathbf{\prime}}=\mathbf{0}\)
In a Boosted Frame, using \(\gamma \beta=\sqrt{ }\left[\gamma^{2}-1\right]\) and \(\Delta t=\gamma \Delta \tau\) :
\(\gamma\left(c^{2} \Delta t-\mathbf{u} \cdot \Delta \mathbf{x}\right)=c^{2} \Delta \tau\)
\(\gamma \mathbf{c}^{2} \Delta \mathrm{t}-\mathrm{c}^{2} \Delta \tau=\gamma \mathbf{u} \cdot \Delta \mathbf{x}\)
\(\gamma^{2} \mathbf{c}^{2} \Delta \tau-\mathbf{c}^{2} \Delta \tau=\gamma \mathbf{u} \cdot \mathbf{\Delta} \mathbf{x}\)
\(\left(\gamma^{2}-1\right) \mathrm{c}^{2} \Delta \tau=\gamma \mathbf{u} \cdot \Delta \mathbf{x}\)
\(\left(\gamma^{2}-1\right) c \Delta \tau=\gamma \beta \cdot \Delta \mathbf{x}\)
\(\sqrt{\left[\gamma^{2}-1\right] c \Delta \tau}=\hat{\mathbf{n}} \cdot \Delta \mathbf{x}\)
If \(\mathbf{u}=0\), then \(\gamma=1\), then \(\hat{\mathbf{n}} \cdot \mathbf{\Delta x}=0\), which is RestFrame If \(\mathbf{u}>0\), then \(\gamma>1\), then \(\hat{n} \cdot \Delta \mathbf{x} \neq 0\)

So, in any Boosted Frame, \(\Delta \mathbf{x} \neq 0\)
If this condition is met,
then the events will not be stationary in the alternate reference-frame.

This can be shown on a Minkowski Diagram.
\(\Delta x^{\prime}=0\) Stationary in \(\left\{\mathrm{t}^{\prime}, \mathbf{x}^{\prime}\right\}\)
s can be shown on a Minkowski Diagram.

SR 4-Tensor
(2,0)-Tensor T \({ }^{\mu \nu}\) (1)-Tensor \(\mathrm{T}^{\mu}{ }_{v}\) or \(\mathrm{T}_{\nu}\)
(0,2)-Tensor \(\mathrm{T}_{\mu}\) \((0,1)\)-Tensor \(\mathrm{V}_{\mu}=\left(\mathrm{v}_{0},-\mathrm{v}\right)\)
\(\partial_{v}\left[R^{\mu^{\prime}}\right]\)
\(=\partial R^{\mu^{\prime}} / \partial R^{v}=\Lambda^{\mu^{\prime}}\)
Lorentz Transform

Invariant Interval
\(\mathbf{R} \cdot \mathbf{R}=(c t)^{2}-\mathbf{r} \cdot \mathbf{r}=(\mathrm{c} \tau)^{2}\)
\(\Delta \mathbf{R} \cdot \boldsymbol{\Delta} \mathbf{R}=(\mathrm{c} \Delta \mathrm{t})^{2}-\boldsymbol{\Delta r} \cdot \boldsymbol{\Delta r}=(\mathrm{c} \Delta \tau)^{2}\)


4-Displacement \(\mathbf{d R}=(c d\)



Realizing that Stationarity (no-motion) is not an invariant concept leads to a duality of Time and Space, via SR Lorentz Time-Space Boosts

A Tensor Study of Physical 4-Vectors

\section*{The Basis of Classical SR Physics The ProperTime Derivative \((\mathrm{d} / \mathrm{d} \tau)=(\mathrm{U} \cdot \partial)\)}
\begin{tabular}{c} 
4-Velocity \(\mathrm{U}^{\mu}\) \\
\(\mathbf{U}=\mathrm{dR} / \mathrm{d} \tau=\gamma(\mathrm{c}, \mathrm{u})=\left(\mathrm{u}^{\mu}\right)\)
\end{tabular}\(\quad\)\begin{tabular}{c} 
4-Gradi \\
\(\partial=\partial / \partial \mathrm{R}_{\mu}=\left(\partial_{\mathrm{t}} /\right.\)
\end{tabular}
ProperTime Derivative
\begin{tabular}{c}
\(\mathrm{U} \cdot \partial=\gamma(\mathrm{c}, \mathrm{u}) \cdot\left(\partial_{\mathrm{t}} / \mathrm{c},-\nabla\right)=\gamma\left(\partial_{\mathrm{t}}+\mathbf{u} \cdot \nabla\right)\) \\
\(=\gamma\left(\partial_{\mathrm{t}}+(\mathrm{dx} / \mathrm{dt}) \partial_{\mathrm{x}}+(\mathrm{dyy} / \mathrm{dt}) \partial_{\mathrm{y}}+(\mathrm{dzz} / \mathrm{dt}) \partial_{\mathrm{z}}\right)\) \\
\\
\(=\gamma \mathrm{d} / \mathrm{dt}=\mathrm{d} / \mathrm{d} \tau\)
\end{tabular}

The derivation shows that the ProperTime Derivative ( \(\mathrm{d} / \mathrm{d} \tau\) ) is an Invariant Lorentz Scalar. Therefore, all observers must agree on its magnitude, regardless of their frame-of-reference. \((\mathrm{d} / \mathrm{d} \tau)\) is used to derive some of the physical 4-Vectors: 4-Velocity, 4-Acceleration,


\section*{The Basis of Classical SR Physics ProperTime Derivative in SR: 4-Tensors, 4-Vectors, and 4-Scalars}
The ProperTime Derivative
\(\mathbf{U} \cdot \partial=\gamma(\mathrm{c}, \mathrm{u}) \cdot\left(\partial_{\mathrm{t}} / \mathrm{c},-\nabla\right)=\gamma\left(\partial_{\mathrm{t}}+\mathrm{u} \cdot \nabla\right)=\gamma \mathrm{d} / \mathrm{dt}=\mathrm{d} / \mathrm{d} \tau\)

\section*{4-Vectors \& 4-Tensors (acted on by ProperTime Derivative \(\mathrm{d} / \mathrm{d} \tau\) ):} 4-Position \(\mathbf{R}=\) <Event> 4-Velocity \(\mathbf{U}=\mathrm{dR} / \mathrm{d} \tau\) 4-Acceleration \(\mathrm{A}=\mathrm{dU} / \mathrm{d} \tau \quad .-\cdots\)

4-Momentum \(\mathbf{P}=\mathrm{m}_{0} \mathbf{U}\) 4-Force \(\mathbf{F}=\mathrm{dP} / \mathrm{d} \tau\)

4-AngularMomentum \(M^{a \beta}=R^{\wedge} P=R^{a} P^{\beta}-R^{\beta} P^{a}\) 4 -Torque \(T^{\alpha \beta}=R^{\wedge} F=R^{\alpha} F^{\beta}-R^{\beta} F^{\alpha}=d M^{\sigma} / \mathrm{d} \tau\)

As shown from the list, the ProperTime Derivative gives the tensors that are the change in status of the tensor that ProperTime Derivative acts on. It can also act on Scalar Values to give deep SR results.
\(\partial \cdot R=4\) : SpaceTime Dimension is 4
\(\mathrm{d} / \mathrm{d} \tau(\partial \cdot \mathbf{R})=\mathrm{d} / \mathrm{d} \tau(4)=0\)
\(\mathrm{d} / \mathrm{d} \tau(\partial \cdot \mathbf{R})=\mathrm{d} / \mathrm{d} \tau[\partial] \cdot \mathbf{R}+\partial \cdot \mathbf{U}=\mathbf{0}\)
\(\partial \cdot \mathbf{U}=0\) : Conservation of the SR 4-Velocity Flow
\begin{tabular}{|c|}
\hline \(=\mathrm{c}^{2}\) : Tensor Invariant of 4-Velo \\
\hline
\end{tabular} \(\mathrm{d} / \mathrm{d} \tau[\mathbf{U} \cdot \mathbf{U}]=\mathrm{d} / \mathrm{d} \tau\left[\mathrm{C}^{2}\right]=0\)
\(d / d \tau[\mathbf{U} \cdot \mathbf{U}]=\mathrm{d} / \mathrm{d} \tau[\mathbf{U}] \cdot \mathbf{U}+\mathbf{U} \cdot \mathrm{d} / \mathrm{d} \tau[\mathbf{U}]=2(\mathbf{U} \cdot \mathbf{A})=0\) \(\mathbf{U} \cdot \mathbf{A}=\mathbf{U} \cdot \mathbf{U}=0\) : The 4 -Velocity \(\mathbf{U}\) is SpaceTime orthogonal \((-)\) to it's own 4-Acceleration \(\mathbf{A}=\mathbf{U}^{\prime}\)


SR 4-Tensor (2,0)-Tensor T \({ }^{\mu \nu}\) (1,1)-Tensor \(T^{\mu}{ }_{v}\) or \(T_{\mu}\) \((0,2)\)-Tensor \(T_{\mu v}\) of Physical 4-Vectors

SRQM Diagram:

There are several ways to derive Time Dilation
\[
\begin{gathered}
\text { The ProperTime Derivative } \\
\mathbf{U} \cdot \partial=\gamma(\mathrm{c}, \mathrm{u}) \cdot\left(\partial_{\mathrm{t}} \mathrm{c},-\nabla\right)=\gamma\left(\partial_{\mathrm{t}}+\mathrm{u} \cdot \nabla\right)=\gamma \mathrm{d} / \mathrm{dt}=\mathrm{d} / \mathrm{d} \tau
\end{gathered}
\]

ProperTime Differential (Lorentz 4-Scalar): \(\mathrm{d} \tau=(1 / \gamma) \mathrm{dt}\)

\section*{\(\mathrm{dR} \cdot \mathrm{dR}=(\mathrm{cd} \mathrm{\tau})^{2}\)}

4-Differential dR=(cdt,dr)


4-Velocity \(\mathbf{U}=\gamma(\mathrm{c}, \mathrm{u})=\mathrm{d} \mathbf{R} / \mathrm{d} \tau\)

Take the temporal component of the 4-Vector relation. \(\mathrm{dt}=\gamma \mathrm{d} \tau=\gamma \mathrm{dt}_{0}\)
\(\Delta \mathrm{t}=\gamma \Delta \tau=\gamma \Delta \mathrm{t}_{0}: \leftarrow\) Time Dilation \(\rightarrow\)
The coordinate time \(\Delta t\) measured by an observer is "dilated", compared to the ProperTime as measured by a clock moving with the object. This has the effect that moving objects appear to age more slowly than at-rest objects. The effect is reciprocal as well. Since velocity is relative, each observer will see the other as ageing more slowly, similarly to the effect that each will appear smaller to the other when seen at a distance.

Now multiply both sides by the moving-frame speed \(\mathbf{v}=\mid \mathbf{v}\) \(\mathrm{v} \Delta t=\gamma \mathrm{v} \Delta \tau\)
\(\mathrm{v} \Delta \mathrm{t}=\) distance \(\mathrm{L}_{\circ}\) the moving clock travels wrt. frame, which is a proper (fixed-to-frame) displacement length. \(\mathrm{L}_{0}=\gamma \mathrm{L}\)
\(L=(1 / \gamma) L_{0}: \rightarrow\) Length Contraction \(\leftarrow\{\) in spatial \(\mathbf{v}\) direction \(\}\)


SR 4-Tensor
(2,0)-Tensor T \({ }^{\mu v}\) (1,1)-Tensor \(T^{\mu}{ }_{v}\) or \(T_{\mu}\)
\((0,2)\)-Tensor \(\mathrm{T}_{\mu \nu}\)

\section*{SR 4-Vector} \((1,0)\)-Tensor \(\mathrm{V}^{\boldsymbol{\mu}}=\mathbf{V}=\left(\mathrm{v}^{0}, \mathbf{v}\right)\) SR 4-CoVector:OneForm \((0,1)\)-Tensor \(\mathrm{V}_{\mu}=\left(\mathrm{v}_{0},-\mathrm{v}\right)\)

SR 4-Scala
\((0,0)\)-Tensor \(S\) or \(S_{0}\)
Lorentz Scalar

Relativity: Time Dilation ( \(\leftarrow \mid\) clock moving \(\mid \rightarrow\) ), Length Contraction ( \(\mid \rightarrow\) ruler moving \(\leftarrow \mid\) ) Invariants: Proper Time ( | clock at rest | ) , Proper Length (| ruler at rest

\section*{SRQM Diagram:}
\begin{tabular}{|c|c|c|}
\hline \[
\begin{gathered}
\text { 4-Gradient } \\
\partial=\partial^{\mu}=\partial / \partial R_{\mu}=\left(\partial^{\mu}\right)=\left(\partial_{t} / c,-\nabla\right) \\
\rightarrow\left(\partial_{t} / c,-\partial_{x},-\partial_{y},-\partial_{z}\right) \\
=(\partial / c \partial t,-\partial / \partial x,-\partial / \partial y,-\partial / \partial z)
\end{gathered}
\] &  & \begin{tabular}{l}
Gradient 4D One-Form
\[
\begin{aligned}
\partial_{\mu}=\partial / \partial R^{\mu}=\left(\partial_{\mu}\right)=\left(\partial_{\mathrm{t}} / \mathrm{c},+\nabla\right) \\
\rightarrow\left(\partial_{\mathrm{t}} / \mathrm{c}, \partial_{x}, \partial_{y}, \partial_{z}\right)
\end{aligned}
\] \\
\(=(\partial / c \partial t, \partial / \partial x, \partial / \partial y, \partial / \partial z)\)
\end{tabular} \\
\hline
\end{tabular}

The 4-Gradient \(\left(\partial^{\mu}\right)=\left(\partial_{\mathrm{t}} / \mathrm{c},-\nabla\right)=\left(\eta^{\mu \nu} \partial_{v}\right)\) is the index-raised version of the more natural SR Gradient One-Form \(\left(\partial_{\mu}\right)=\left(\partial_{\mathrm{t}} / \mathrm{c}, \nabla\right)\). It is the 4D version of the partial derivative function of calculus one partial for each dimensional direction, just as the \(\operatorname{Del}(\nabla)\) is the 3D version of the partial derivative function.

The 4-Gradient is a 4-Vector function that can act on other 4-Scalars, 4-Vectors, or 4-Tensors. The 4-Gradient tells how things change wrt. ( 1 -time, 3 -space) \(=4 \mathrm{D}\) (Time-Space). It is instrumental in creating the ProperTime Derivative \(\mathbf{U} \cdot \partial=\gamma \mathrm{d} / \mathrm{dt}=\mathrm{d} / \mathrm{d} \tau\).

The 4-Gradient plays a major role in advanced physics, showing how SR waves are formed, creating the Hamilton-Jacobi equations, the Euler-Lagrange equations, Conservation Equations ( \(\partial \cdot[.]=\).0 ), Maxwell's Equations, the Lorenz Gauge, the d'Alembertian, etc. It gives the Dimension of SpaceTime, the Minkowski Metric,and the Lorentz Transformations.

In QM, it provides the Schrödinger relations. \(P=(E / c, p)=i \hbar \partial=i \hbar\left(\partial_{\mathrm{t}} / \mathrm{c},-\nabla\right)\)

The 4-Gradient is fundamental in connecting SR to QM.


4-TotalWaveVector \(\mathrm{K}_{\mathrm{T}}=\left(\omega_{\mathrm{T}} / \mathrm{c}, \mathrm{k}_{\mathrm{T}}\right)\)
\(=-\partial\left[\Phi_{\text {phase }}\right]\)

\(\mathbf{R} \cdot \mathbf{R}=(\mathrm{ct})^{2} \cdot \mathbf{r} \cdot \mathbf{r}=(\mathrm{c} \tau)^{2}\) \(\mathbf{R} \cdot \mathbf{R}=(\mathrm{ct})^{2}-\mathbf{r} \cdot \mathbf{r}=(\mathrm{C} \tau)^{2}\) \(d R \cdot d R=(c d t)^{2}-d r \cdot d r=(c d \tau)^{2}\)

Hamilton-Jacobi Equation: \(\mathrm{P}_{\mathrm{T}}=-\partial\left[\mathrm{S}_{\text {action }}\right]\)
SR Plane-Wave Equation: \(\mathbf{K}_{T}=-\partial\left[\Phi_{\text {phase }}\right]\)

SRQM Diagram:
The Basis of Classical SR Physics Invariant d'Alembertian Wave Equation ( \(\partial \cdot \partial\) )

The Lorentz Scalar Product Invariant of the 4-Gradient gives the Invariant d'Alembertian Wave Equation, describing SR wave motion. It is seen. for example, in the SR Maxwell Equation for EM light waves.
Lorenz Gauge \(=\)
Conservation of
EM Potential: \(\partial \cdot \mathbf{A}=0\)
 Maxwell EM Wave Eqn


4-WaveVector \(\mathbf{K}=\left(\omega_{0} / c^{2}\right) \mathbf{U}=(\omega / \mathrm{c}, \mathrm{k})=-\partial\left[\Phi_{\text {phase }}\right]=\partial[\mathbf{K} \cdot \mathbf{R}]=\) Solution to d'Alembertian
The usual mathematical (complex) plane-wave solutions apply in SR: \(f_{\text {wave }}=(a)^{*} e^{\wedge}[ \pm i(\mathbf{K} \cdot \mathbf{R})]\), with (a)mplitude possibly \(\left\{4\right.\)-Scalar S, 4-Vector \(V^{\mu}, 4\)-Tensor \(\left.T^{\text {mu }}\right\}\)



Invariant Magnitude LightSpeed

> SR is the "natural" 4 D arena for the description of waves, using the dAlembertian \(\partial \cdot \partial=\left(\partial_{\mathrm{t}} / \mathrm{c}\right)^{2}-\nabla \cdot \nabla=\left(\partial_{\tau} / c\right)^{2}\)
\((0,2)\)-Tensor \(T_{\mu v}\)

\section*{SRQM Diagram:}

\section*{The Basis of Classical SR Physics Continuity of 4-Velocity Flow ( \(\partial \cdot \mathrm{U}=0\) )}

\section*{Continuity of 4-Velocity Flow \(\partial \cdot \mathrm{U}=0\)}

This leads to all the SR Conservation Laws.

\section*{\(\partial \cdot R=4\)}
\(\mathrm{d} / \mathrm{d} \tau(\partial \cdot \mathbf{R})=\mathrm{d} / \mathrm{d} \tau(4)=0\)
\(d / d \tau(\partial \cdot \mathbf{R})=d / d \tau(\partial) \cdot \mathbf{R}+\partial \cdot d / d \tau(\mathbf{R})=0\)
\(d / d \tau(\partial \cdot R)=d / d \tau[\partial] \cdot \mathbf{R}+\partial \cdot U=0\)
\(\partial \cdot \mathbf{U}=-\mathrm{d} / \mathrm{d} \tau[\partial] \cdot \mathbf{R}\)
\(\partial \cdot \mathbf{U}=-(\mathbf{U} \cdot \partial)[\partial] \cdot \mathbf{R}\)
\(\partial \cdot U=-\left(U_{\nu} \partial^{\nu}\right)\left[\partial_{\mu}\right] R^{\mu}\)
\(\partial \cdot U=-U_{v} \partial^{\nu} \partial_{\Delta} R^{\mu}\)
\(\partial \cdot \mathrm{U}=-\mathrm{U}_{\mathrm{V}} \partial_{\mu} \partial^{2} \mathrm{R}^{\mathrm{H}}:\) I believe this is legit, partials commute
\(\partial \cdot U=-U_{v} \partial_{\mu} \eta^{v}\)
\(\partial \cdot U=-U_{v}\left(0^{v}\right)\)
\(\partial \cdot \mathbf{U}=0\)
Conservation of the 4-Velocity Flow
(4-Velocity Flow-Field)
All of the Physical Conservation Laws are in the form of a 4-Divergence ( \(\partial \cdot[\).. ] = 0 ), which is a Lorentz Invariant Scalar equation, a continuity equation.

These are local continuity equations which basically say that the temporal change of a quantity \(\partial_{\mathrm{t}}\) is balanced by the flow of that quantity \(\nabla\). in-to or out-of a local region.

\[
\begin{aligned}
& \text { Continuity of } \\
& \text { 4-Velocity Flow } \\
& \partial \cdot \mathrm{U}=0
\end{aligned}
\]

\((1,0)\)-Tensor \(\mathrm{V}^{\mathrm{J}}=\mathbf{V}=\left(\mathrm{v}^{0}, \mathrm{v}\right)\) SR 4-CoVector:OneForm \((0,1)\)-Tensor \(\mathrm{V}_{\mu}=\left(\mathrm{v}_{0},-\mathrm{v}\right)\)

\footnotetext{
Trace[TVTV \(=\eta_{\mathrm{Lv}} \mathrm{T}^{\mathrm{NV}}=\mathrm{T}^{\mu}=T\)
\(\mathbf{V} \cdot \mathbf{V}=\mathrm{V}^{\boldsymbol{V}} \eta_{\mathrm{Iv}} \mathbf{V}^{\mathrm{v}}=\left[\left(\mathrm{v}^{0}\right)^{2}-\mathbf{v} \cdot \mathbf{v}\right]=\left(\mathrm{V}_{0}^{0}\right)^{2}\)
= Lorentz Scalar Invariant
}

\section*{SRQM Diagram:}

\section*{Now focus on a few more of the main SR 4-Vectors.}
\begin{tabular}{|c|}
\hline \begin{tabular}{c} 
4-Position \(R^{\mu}\) \\
\(\mathbf{R}=(\mathrm{ct}, \mathrm{r}) \in<\) Event>
\end{tabular} \\
\hline \begin{tabular}{c} 
4-Velocity \(\mathrm{U}^{\mu}\) \\
\(\mathbf{U}=\mathrm{dR} / \mathrm{d} \tau=\gamma(\mathrm{c}, \mathrm{u})\)
\end{tabular} \\
\hline \begin{tabular}{c} 
4-Gradient \(\partial^{\mu}\) \\
\(\partial=\partial / \partial R_{\mu}=\left(\partial_{\mathrm{t}} / \mathrm{c},-\nabla\right)\)
\end{tabular} \\
\hline
\end{tabular}


4-Momentum \(\mathrm{P}^{\mu}\)
\(\mathbf{P}=(\mathrm{E} / \mathrm{c}, \mathrm{p})=(\mathrm{mc}, \mathrm{p})=(\mathrm{mc}, \mathrm{mu})\)
\(=\left(E_{0} / c^{2}\right) \mathbf{U}=\left(m_{0}\right) \mathbf{U}\)
4-WaveVector \(\mathrm{K}^{\mu}\)
\(\mathbf{K}=(\omega / c, \mathbf{k})=\left(\omega / c, \omega \hat{n} / v_{\text {phase }}\right)\)
\(=(1 / c \mp, n / A)=\left(\omega_{0} / c^{2}\right) U\)
4-CurrentDensity:ChargeFlux J
\(\mathbf{J}=(\rho \mathrm{c}, \mathrm{j})=(\mathrm{\rho c}, \mathrm{\rho u})=\left(\rho_{\mathrm{o}}\right) \gamma(\mathrm{c}, \mathbf{u})\) \(=\left(\rho_{o}\right) \mathbf{U}=\left(q n_{0}\right) \mathbf{U}=(q) \mathbf{N}\)
4-(Dust)NumberFlux \(\mathrm{N}^{\mu}\) \(\mathbf{N}=(\mathrm{nc}, \mathrm{n})=(\mathrm{nc}, \mathrm{nu})=\left(\mathrm{n}_{\mathrm{o}}\right) \gamma(\mathrm{c}, \mathrm{u})\) \(=\left(\mathrm{n}_{\mathrm{o}}\right) \mathrm{U}\) <Event> Substantiation

\section*{,}

4-Gradient
\(\partial=\left(\partial_{t} / c,-\nabla\right)=\partial / \partial R_{\mu}\)
\(\rightarrow\left(\partial_{t} / \mathrm{c},-\partial_{\mathrm{x}},-\partial_{\mathrm{y}},-\partial_{z}\right)\)
\(=(\partial / c \partial t,-\partial / \partial x,-\partial / \partial y,-\partial / \partial z)\)

These 4-Vectors give more of the main classical results of Special Relativity, including SR concepts like:
SR Particles and Waves, Matter-Wave Dispersion
Einstein's \(\mathbf{E}=\mathrm{mc}^{2}=\gamma \mathrm{m}_{0} \mathbf{C}^{2}=\gamma \mathrm{E}_{0}\), Rest Mass, Rest Energy
Conservation of Charge (Q), Conservation of Particle Number (N), Continuity Equations

SR 4-Tensor (2,0)-Tensor T \({ }^{\mu \nu}\) (1,1)-Tensor \(T^{\mu}{ }_{v}\) or \(T_{\mu}\) \((0,2)\)-Tensor \(\mathrm{T}_{\mu \mathrm{v}}\)

Lorentz Scalar
4-Position \(\mathbf{R}=(c t\),
4-Gradient \(\partial=(\partial, / c,-V)\)
4-Velocity \(\mathbf{U}=\gamma(c, u)\)

4-Momentum \(\mathbf{P}=(\Xi / \mathrm{c}, \mathrm{p})=\mathrm{m}_{0} \mathbf{U}=\gamma \mathrm{m}_{0}(\mathrm{c}, \mathrm{u})=\mathrm{m}(\mathrm{c}, \mathrm{u})=\)

Temporal part:
\{energy\}
\[
\begin{aligned}
& \begin{array}{r}
\mathrm{E}=\mathrm{m}_{0} \mathrm{c}^{2}+(\gamma-1) \mathrm{m}_{0} \mathrm{c}^{2} \\
\text { (rest) })+(\text { kinetic })
\end{array} \\
& \mathrm{p}=\mathrm{Eu} / \mathrm{c}^{2}=\gamma \mathrm{E}_{0} \mathrm{u} / \mathrm{c}^{2}=\gamma \mathrm{m}_{0} \mathrm{u}=\mathrm{mu}
\end{aligned}
\]

Spatial part: \{3-momentum\}
\begin{tabular}{c} 
4-Displacement \\
\(\Delta \mathbf{R}=(\mathrm{c} \Delta \mathrm{t}, \Delta \mathrm{r})\) \\
\(\mathbf{d R}=(\mathrm{cdt}, \mathrm{dr})\) \\
4-Position \\
\(\mathbf{R}=(\mathrm{ct}, \mathrm{r})\) \\
\hline
\end{tabular}

4-Momentum \(\mathbf{P}=(E / \mathrm{c}, \mathrm{p})=-\partial\left[\mathrm{S}_{\text {action,free }}\right]=-(\partial / \mathrm{c},-\nabla)\left[\mathrm{S}_{\text {action,firee }}\right]\) 4-TotalMomentum \(\mathrm{P}_{\mathrm{T}}=\left(\mathrm{E}_{\mathrm{T}} / \mathrm{c}=\mathrm{H} / \mathrm{c}, \mathrm{p}_{\mathrm{T}}\right)=-\partial\left[\mathrm{S}_{\text {action }}\right]=-(\partial / \mathrm{c},-\mathrm{V})\left[\mathrm{S}_{\text {action }}\right]\)

Temporal part: \{energy\}

Spatial part: \{3-momentum\}
\(E=-\partial_{[ }\left[S_{\text {aciion,free }}\right]: E_{T}=H=-\partial_{[ }\left[S_{\text {action }}\right]\)

4-Gradient
\(\partial=\left(\partial_{t} / c,-\nabla\right)=\partial / \partial R_{\mu}\)
\(\rightarrow\left(\partial_{t} / c,-\partial_{x},-\partial_{y},-\partial_{z}\right)\)
\(=(\partial / c \partial t,-\partial / \partial x,-\partial / \partial y,-\partial / \partial z)\)
\(\left(m_{0}\right)=\left(E_{d} / c^{2}\right)\) \(=[\mathrm{P} \cdot \mathrm{U}] / \mathrm{U} \cdot \mathrm{U}]=\mathrm{E}_{d} / \mathrm{C}^{2}\) \(=[P \cdot R] /[U \cdot R]=-S_{a c} / C^{2} \tau\)

\section*{which matches:}
\(S_{\text {act }}=--m_{0} c^{2} d \tau\)
\(S_{\text {act }}=-\int E_{0} \mathrm{~d} \tau\)
for a free particle
\(S_{\text {act }}=-\left(\left(m_{0} c^{2}+V\right) d \tau\right.\)
\(S_{\text {act }}=-\int\left(E_{0}+V\right) d \tau\) in a potential
\(=|p|^{2} c^{2}+E_{0}{ }^{2}\)
\(=\mathrm{m}^{2}|\mathbf{u}|^{2} \mathbf{c}^{2}+\mathrm{E}_{0}{ }^{2}\)
\(=E^{2}|\beta|^{2}+E_{0}{ }^{2}\)
\(=E_{0}{ }^{2} /\left(1-|\beta|^{2}\right)\)
\[
(P \cdot P)=(E / c)^{2}-(p \cdot p)=\left(m_{0} c\right)^{2}
\]
\[
E^{2}=(|p| c)^{2}+\left(m_{0} c^{2}\right)^{2}
\]
\begin{tabular}{|c|}
\hline \multirow[t]{2}{*}{} \\
\hline \\
\hline
\end{tabular}
\[
\mathrm{E}=\gamma \mathrm{E}_{0}
\]
\[
E^{2}=(|p| c)^{2}+\left(E_{o}\right)^{2}: \text { Einstein Mass:Energy }
\]
\(\left(E_{0}\right): M a s s\left(m_{0}\right)\)

\[
\left|u^{*} \mathrm{~V}_{\text {phase }}\right|=\mathrm{c}^{2}=\left|\mathrm{V}_{\text {group }} * \mathrm{~V}_{\text {phase }}\right|
\]
\(\omega=\gamma \omega_{0}\) \{angular frequency\}

Spatial part:
\{3-wavevector\} \(\quad\left|u^{*} v_{\text {phase }}\right|=c^{2}=\left|v_{\text {group }}{ }^{*} v_{\text {phase }}\right|\)
\(\omega^{2}=(|\mathbf{k}| \mathbf{c})^{2}+\left(\omega_{0}\right)^{2}:\) Matter-Wave Dispersion Relation Relativistic AngFreq( \(\omega\) ) vs Invariant Rest AngFreq( \(\omega_{0}\) )
\(\omega=-\partial_{\mathrm{t}}\left[\Phi_{\text {phase,free }}\right]: \omega_{T}=-\partial_{\mathrm{t}}\left[\Phi_{\text {phase }}\right]\)
Temporal part: \{angular frequency\}

Spatial part:
\{3-wavevector\}
\(\mathbf{k}=+\nabla\left[\Phi_{\text {phase,free }}\right]: \mathbf{k}_{\mathrm{T}}=+\nabla\left[\Phi_{\text {phase }}\right]\)

4-WaveVector K = ( \(\omega / \mathrm{c}, \mathrm{k})=-\partial\left[\Phi_{\text {phase,free }}\right]=-\left(\partial_{t} / \mathrm{c},-\nabla\right)\left[\Phi_{\text {phase,free }}\right]\)
4-TotalWaveVector \(K_{T}=\left(\omega_{T} / \mathrm{c}, \mathrm{k}_{\mathrm{T}}\right)=-\partial\left[\Phi_{\text {phase }}\right]=-(\partial / \mathrm{c},-\nabla)\left[\Phi_{\text {phase }}\right]\)

SR 4-Tensor (2,0)-Tensor T \({ }^{\mu \nu}\) \((1,1)\)-Tensor \(T^{\mu}{ }_{v}\) or \(T_{\mu}{ }^{v}\) \((0,2)\)-Tensor \(T_{\mu}\)

SR 4-Vector (1,0)-Tensor \(\mathrm{V}^{\mu}=\mathbf{V}=\left(\mathrm{v}^{0}, \mathrm{v}\right)\) SR 4-CoVector:OneForm \((0,1)\)-Tensor \(V_{\mu}=\left(v_{0},-v\right)\)

\section*{SRQM Diagram:}

\section*{The Basis of Classical SR Physics 4-CurrentDensity, Charge Conservation}

4-Position \(\mathbf{R}=\) (ct, )
4-Gradient \(\partial=\left(\partial_{/} / \mathrm{c},-\nabla\right)\)
4-Velocity U = \(\gamma(\mathrm{c}, \mathrm{u})\)
4-CurrentDensity \(\mathbf{J}=(\rho c, \dot{)})=\rho_{o} \mathbf{U}=\gamma \rho_{\mathrm{o}}(\mathrm{c}, \mathrm{u})=\rho(\mathrm{c}, \mathrm{u})\) 4-ChargeFlux J

Temporal part: \{charge-density\}

Spatial part: \{3-current-density\}

Conservation of Charge (Q)

\(\partial \cdot \mathbf{J}=(\partial / \mathrm{c},-\nabla) \cdot(\rho \mathrm{c}, \mathrm{j})=\left(\partial_{\mathrm{t}} \rho+\nabla \cdot \mathrm{j}\right)=0\) Continuity Equation:Noether's Theorem The temporal change in charge density is balanced by the spatial change in current density. Charge is neither created nor destroyed It just moves around as charge currents.



4-CurrentDensity
4-ChargeFlux \(\mathbf{J}=(\rho \mathrm{p}, \mathrm{j})=(\mathrm{\rho c}, \mathrm{pu})=\rho_{0} \mathbf{U}\) \(\mathbf{j}=\gamma \rho_{o} \mathbf{u}=\rho \mathbf{u}\)

4-Position \(\mathbf{R}=\) (ct, )
4-Gradient \(\partial=\left(\partial_{/} / \mathrm{c},-\nabla\right)\)
4-Velocity U = \(\gamma(\mathrm{c}, \mathrm{u})\)
4-NumberFlux \(\mathbf{N}=(n c, n)=\mathrm{n}_{0} \mathbf{U}=\gamma \mathrm{n}_{0}(\mathrm{c}, \mathrm{u})=\mathrm{n}(\mathrm{c}, \mathrm{u})\) aka. 4-ParticleFlux:4-DustFlux

Temporal part: \{number-density\}

Spatial part:

Conservation of Particle \# (N)



4-NumberFlux
\(\mathbf{N}=(\mathrm{nc}, \mathrm{n})=(\mathrm{nc}, \mathrm{nu})=\mathrm{n}_{0} \mathbf{U}\)


4-Gradient
\(\partial=\left(\partial_{t} / c,-\nabla\right)=\partial / \partial R_{\mu}\)
\(\rightarrow\left(\partial_{t} / c,-\partial_{x},-\partial_{y},-\partial_{z}\right)\)
\(=(\partial / c \partial t,-\partial / \partial x,-\partial / \partial y,-\partial / \partial z)\)
( \(\mathrm{n}_{0}\) )
\(=[\mathrm{N} \cdot \mathrm{U}] /[\mathrm{U} \cdot \mathrm{U}]=\left(\mathrm{n}_{0} \mathrm{c}^{2}\right) / \mathrm{c}^{2}\)
\(=[\mathrm{N} \cdot \mathrm{N}] /[\mathrm{N} \cdot \mathrm{U}]=\left(\mathrm{n}_{0} \mathrm{C}\right)^{2} /\left(\mathrm{n}_{0} \mathrm{c}^{2}\right)\) \{3-number-flux\}
\[
\partial \cdot \mathbf{N}=(\partial / \mathrm{c},-\nabla) \cdot(\mathrm{nc}, \mathrm{n})=\left(\partial_{\mathrm{t}} \mathrm{n}+\nabla \cdot \mathbf{n}\right)=0
\]

Continuity Equation:Noether's Theorem The temporal change in number density is balanced by the spatial change in number-flux. Particle \# is neither created nor destroyed It just moves around as number currents.
\(\mathrm{d} T \cdot \mathrm{~N}=-\mathrm{cN} / \mathrm{V}_{0}\)
\(\mathrm{n}^{2}\)
\(=|n|^{2} / \mathrm{c}^{2}+\mathrm{n}_{0}{ }^{2}\)
\(=n^{2} \mid u^{2} / c^{2}+n_{0}^{2}\)
\(=n^{2} \mid \beta \beta^{2}+n_{0}^{2}\)
\(=n_{0}^{2}\left(1-|\beta|^{2}\right)\)
\(=\gamma^{2} \mathrm{n}_{0}^{2}\)
\[
(N \cdot N)=(n c)^{2}-(n \cdot n)=\left(n_{0} c\right)^{2}
\]
\[
n^{2}=(|n| / c)^{2}+\left(n_{0}\right)^{2}
\]

Relativistic NumberDensity(n) vs Invariant Rest NumberDensity(no

\section*{Lorentz Transforms \(\wedge^{\mu_{v}^{\prime}}=\partial_{v}\left[X^{\mu^{\prime}}\right]\) (Continuous) vs (Discrete) (Proper Det=+1) vs (Improper Det=-1)}

4-Vector SRQM Interpretation of QM The main idea that makes a generic 4-Vector into an SR 4-Vector is that it must transform correctly according to an SR Lorentz Transformation \(\left\{\Lambda_{v} \mu_{v}^{\prime}=\partial X^{\prime} / \partial X^{v}=\partial_{v}\left[X^{\mu}\right]\right\}\), which is basically any linear, unitary or antiunitary, transform (Determinant \(\left[\wedge \omega_{v}{ }_{v}\right]= \pm 1\) ) which leaves the Invariant Interval unchanged. The SR continuous transforms (variable with some parameter) have \{Det = +1 , Proper\} and include: "Rotation" \{a mixing of space-space coordinates\} and "(Velocity) Boost" \{a mixing of time-space coordinates\}. The SR discrete transforms can be \{Det = +1, Proper\} or \{Det = -1, Improper\} and include: "Space Parity-Inversion" \{reversal of the all space coordinates\} , "Time-Reversal" \{reversal of the temporal coordinate\}, "Identity" \{no change\}, various single dimension "Flips", "Fixed Rotations", and combinations of all of these discrete transforms.

Typical Lorentz Boost Transformation, for a linear-velocity frame-shift \(\hat{x}\)-Boost:
\(A^{v}=\left(a^{t}, a^{x}, a^{y}, a^{z}\right)\)
\(A^{\mu^{\prime}}=\left(a^{\mathrm{t}}, \mathrm{a}^{\mathrm{x}}, \mathrm{a}^{\mathrm{y}}, \mathrm{a}^{\mathrm{z}}\right){ }^{\prime}\)
\(=B^{r^{\prime}} \mathrm{A}^{v}\)
\(=\left(\gamma a^{t}-\gamma \beta a^{x},-\gamma \beta a^{t}+\gamma a^{x}, a^{y}, a^{2}\right)\)

Lorentz Parity-Inversion Transformation:
\[
\begin{aligned}
& A^{v}=\left(a^{t}, a^{x}, a^{y}, a^{z}\right) \\
& A^{u^{\prime}}=\left(a^{t}, a^{x}, a^{y}, a^{z}\right)^{\prime} \\
& =P P_{v} A^{v} \\
& =\left(a^{\prime},-a^{x},-a^{y},-a^{z}\right)
\end{aligned}
\]

Continuous: Boost depends on variable parameter \(\beta\), with \(\gamma=1 / \sqrt{ }\left[1-\beta^{2}\right]\)


Discrete: Parity has no variable parameters
\(\hat{\mathbf{x}}\)-Boosted 4-Vector \(A^{\prime}=A^{\mu^{\prime}}=\Lambda^{\mu^{\prime}}{ }_{v} A^{v} \rightarrow B^{\mu^{\prime}}{ }^{\prime} A^{v}=\left(a^{0^{\prime}}, a^{\prime}\right)\)
\(\rightarrow\left(\gamma a^{t}-\gamma \beta a^{x},-\gamma \beta a^{t}+\gamma a^{x}, a^{y}, a^{z}\right)\)
Proper: preserves orientation of basis
\(t \quad x \quad v \quad \operatorname{Det}\left[P^{\mu^{\prime}}\right]=-1\), Improper of Physical 4-Vectors
\(\beta=v / c\) : dimensionless Velocity Beta Factor \(\{\beta=(0 . .1)\), with speed-of-light (c) at \((\beta=1)\}\) \(\gamma=1 / \sqrt{ }\left[1-\beta^{2}\right]=1 / \sqrt{ }[1-\beta \cdot \beta]\) : dimensionless Lorentz Relativistic Gamma Factor \(\{\gamma=(1 . . \infty)\}\)

Typical Lorentz Boost Transform (symmetric):
for a linear-velocity frame-shift (x,t)-Boost in the \(\hat{x}\)-direction: \(\Lambda \nu_{v}^{\prime} \rightarrow B^{\mu^{\prime}}[\zeta]=e^{\wedge}-(\zeta \cdot K)=\)

\(A^{v}=\left(a^{t}, a^{x}, a^{y}, a^{z}\right)\)
\(A^{u^{\prime}}=\left(a^{t}, a^{x}, a^{y}, a^{z}\right)^{\prime}=B^{\mu^{\prime}}{ }^{\prime} A^{v}=\left(\gamma a^{t}-\gamma \beta a^{x},-\gamma \beta a^{t}+\gamma a^{x}, a^{y}, a^{z}\right)\)

Typical Lorentz Rotation Transform (non-symmetric): for an angular-displacement frame-shift ( \(\mathrm{x}, \mathrm{y}\) )-Rotation about the \(\hat{z}\)-direction: \(\Lambda \mu_{v}^{\prime} \rightarrow R^{\mu}{ }_{v}[\theta]=e^{\wedge}(\boldsymbol{\theta} \cdot \mathbf{J})=\)
10000
\(\left.\begin{array}{cccc}\Lambda_{v} \rightarrow R^{\mu}[\theta]=e^{\wedge}(\theta \cdot J) & 0 & 0 & 0 \\ 0 & \cos [\theta] & -\sin [\theta] & 0 \\ 0 & \sin [\theta] & \cos [\theta] & 0 \\ 0 & 0 & 0 & 1\end{array}\right)=\left(\begin{array}{c} \\ 0\end{array}\left(\begin{array}{cccc}0 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right)\right.\)
\(A^{v}=\left(a^{t}, a^{x}, a^{y}, a^{z}\right)\)
\(A^{u^{\prime}}=\left(a^{t}, a^{x}, a^{y}, a^{z}\right)^{\prime}=R^{\mu^{\prime}}{ }^{\prime} A^{v}=\left(a^{t}, \cos [\theta] a^{x}-\sin [\theta] a^{y}, \sin [\theta] a^{x}+\cos [\theta] a^{y}, a^{z}\right)\)

Lorentz Transforms: Lambda ( \(\wedge\) ) for Lorentz "B" (B) for Boost "R" (R) for Rotation

Proper Transforms Determinant \(=+1\)
\(\left\{\cos ^{2}+\sin ^{2}=+1\right\}\)
\(\left\{\gamma^{2}-\beta^{2} \gamma^{2}=+1\right\}\)
\(\left\{\cosh ^{2}-\sinh ^{2}=+1\right\}\)

\(\zeta=\) rapiaity \(=\) hyperbo
\(\gamma=\cosh [\zeta]=1 / N[1-\beta]\)
\(\beta \gamma=\sinh [\zeta]\)
\(\beta=\tanh [\zeta]\)

\((0,2)\)-Tensor \(T_{\mu v}\)

General Lorentz Boost Transform (symmetric,continuous): for a linear-velocity frame-shift (Boost) in the \(v / c=\beta=\left(\beta^{1}, \beta^{2}, \beta^{3}\right)\)-direction: \(\wedge_{v}{ }_{v} \rightarrow B{ }^{\prime \prime}{ }_{v}=\)
\begin{tabular}{|cc|}
\hline\(\gamma\) & \(-\gamma \beta_{j}\) \\
\(-\gamma \beta^{i}\) & \((\gamma-1) \beta^{i} \beta_{j} /\left(\beta^{2} \cdot \beta\right)+\delta_{j}^{i}\) \\
\hline
\end{tabular}

General Lorentz Rotation Transform (non-symmetric,continuous): for an angular-displacement frame-shift (Rotation) angle \(\theta\) about the \(\hat{n}=\left(n^{1}, n^{2}, n^{3}\right)\)-direction:
\(\Lambda_{v}{ }_{v} \rightarrow R^{w_{v}}=\)
\begin{tabular}{|cc|}
\hline 1 & \(0_{j}\) \\
\(0^{i}\) & \(\left(\delta_{j}^{i}-n^{i} n_{j}\right) \cos (\theta)-\left(\varepsilon_{j k}^{j} n^{k}\right) \sin (\theta)+n^{i} n_{j}\) \\
\hline
\end{tabular}

Lorentz Identity Transform (symmetric,"discrete:continuous"): for a non-frame-shift (Identity) in any direction \(\Lambda_{v}^{\prime} \rightarrow \eta^{\mu_{v}^{\prime}}=\delta^{u_{v}^{\prime}}=\operatorname{Diag}\left[1, \delta_{i}^{\prime}\right]=I_{(4)}=\)
\begin{tabular}{|cc}
1 & \(0_{j}\) \\
\(0^{i}\) & \(\delta^{i}\)
\end{tabular} \(\operatorname{Tr}\left[\Lambda^{\mu}{ }_{v}\right]=\{-\infty . .+\infty\}\)

Identical 4-Vector
Un-Rotated
\(A^{\prime}=A^{\mu^{\prime}}=\eta^{\mu^{\prime}}{ }^{v} A^{v}=\left(a^{0}, a^{\prime}\right)=A\)

\section*{Rotated 4-Vector} Circularly-Rotated \(A^{\prime}=A^{\mu^{\prime}}=R^{\mu^{\prime}}{ }^{\prime} A^{v}=\left(a^{0^{\prime}}, a^{\prime}\right)\)
The Lorentz Identity Transform is the limit of both the Rotation and Boost Transfoms when the respective "rotation angle" is 0

\section*{SR:Lorentz Transform \(\partial_{v}\left[R^{\mu^{\prime}}\right]=\partial R^{\mu^{\prime}} \partial R^{v}=\Lambda^{\mu^{\prime}}{ }_{v}\)} \(\Lambda^{\mu}{ }_{v}=\left(\Lambda^{-1}\right) v^{\mu}: \Lambda^{\mu}{ }_{a}\left(\Lambda^{-1}\right)^{\alpha}{ }_{v}=\eta^{\mu}{ }_{v}=\delta^{\mu}{ }_{v}\)
 \(\beta=\mathrm{v} / \mathrm{c}\) : dimensionless Velocity Beta Factor \(\{\beta=(0 . .1)\), with speed-of-light (c) at \((\beta=1)\}\) \(\gamma=1 / \sqrt{ }\left[1-\beta^{2}\right]=1 / \sqrt{ }[1-\beta \cdot \beta]\) : dimensionless Lorentz Relativistic Gamma Factor \(\{\gamma=(1 . . \infty)\}\) Identity transformation for zero relative motion:boost/rotation: \(\mathrm{B}[0]=\mathrm{R}[0]=\mathrm{I}_{(4)}\) Proper Transformation \(=\) positive unit determinant: \(\operatorname{det}[B]=\operatorname{det}[\mathrm{R}]=\operatorname{det}[\eta]=+1\). Inverses: \(\mathrm{B}(\mathrm{v})^{-1}=\mathrm{B}(-\mathrm{v})\) (relative motion in the opposite direction), and \(\mathrm{R}(\theta, \hat{n})^{-1}=\mathrm{R}(-\theta, \hat{n})\) (rotation in the opposte sense about the sathe axis) Matrix symmetry: \(B\) is symmetric (equals transpose, \(B=B^{\top}\) ), while \(R\) is nonsymmetric but orthogonal (transpose equals inverse, \(R^{\top}=R^{-1}\) )

\section*{SR 4-Tensor} (2,0)-Tensor T \({ }^{\mu v}\) (1,1)-Tensor \(T^{\mu}{ }_{v}\) or \(T_{\mu}\) \((0,2)\)-Tensor \(\mathrm{T}_{\mu v}\)

SR 4-Scalar
( 0,0 )-Tensor S or So
Lorentz Scalar

The Lorentz Rotation \(R^{\mu^{\prime}}{ }_{v}(\operatorname{Tr}=\{0 . .4\})\) meets the Lorentz Boost \(B^{\mu^{\prime}}{ }_{v}(\operatorname{Tr}=\{4 . . \infty\})\) at the 4D Identity \(\mathrm{I}_{(4)}=\delta^{\mu^{\prime}}{ }_{v}(\operatorname{Tr}=\{4\})\)
 \(\mathbf{V} \cdot \mathbf{V}=V^{\mu} \eta_{\mu \mathrm{v}} V^{\mathrm{V}}=\left[\left(\mathrm{v}^{0}\right)^{2}-\mathbf{v} \cdot \mathbf{v}\right]=\left(\mathrm{v}^{0}{ }_{\mathrm{o}}\right)^{2}\)
= Lorentz Scalar Invariant

General Lorentz Parity-Inversion (Space-Reversal) Transform: \(\lambda_{v}^{\Gamma_{v}^{\prime} \rightarrow P_{v}}\) (Improper,symmetric, discrete)
\(=\)\begin{tabular}{|c}
1 \\
1 \\
\(0_{j}\) \\
\(0^{i}\) \\
\hline
\end{tabular}\(\delta_{j}^{i}\)

General Lorentz Time-Reversal Transform: \(\lambda_{v}^{\prime} \rightarrow T_{v}^{w_{v}}\) (Improper,symmetric, discrete)
\(=\)\begin{tabular}{cc}
-1 & \(0_{j}\) \\
\(0^{\mathrm{i}}\) & \(\delta_{j}^{i}\)
\end{tabular}


General Lorentz Identity Transform: \(\Lambda^{\mu_{v}} \rightarrow \eta^{\mu_{v}}=\delta^{\mu_{v}}=\mathrm{I}_{(4)}\) (Proper,symmetric, discrete)
\(=\)\begin{tabular}{ll}
\hline 1 & \(0_{j}\) \\
\(0^{i}\) & \(\delta_{j}^{i}\) \\
\hline
\end{tabular}
SR:Lorentz Transform
\[
\begin{aligned}
& \Lambda^{\mu}{ }_{v}=\left(\Lambda^{-1}\right)_{v}{ }^{\mu}: \Lambda^{\mu}{ }_{a}\left(\Lambda^{-1}\right)^{\alpha}{ }_{v}=\eta^{\mu}{ }_{v}=\delta^{\mu}{ }_{v} \\
& \eta_{\mu v} \wedge^{\mu}{ }_{\alpha} \Lambda_{\beta}{ }_{\beta}=\eta_{\alpha \beta} \\
& \operatorname{Det}\left[\Lambda_{v}{ }_{v}\right]= \pm D \quad \Lambda_{u v} \Lambda^{\mu v}=4=\Lambda^{\mu}{ }_{v} \Lambda
\end{aligned}
\]

Time-Reversed 4-Vector
\(A^{\prime}=A^{\mu^{\prime}}=T^{\mu^{\prime}}{ }^{\prime} A^{v}=\left(a^{0}, a^{\prime}\right)\)
\(=\left(-\mathrm{a}^{0}, \mathrm{a}\right)\)


Identical 4-Vector
\(A^{\prime}=A^{\mu^{\prime}}=\eta^{\mu^{\prime}}{ }^{\prime} A^{v}=\left(a^{0}, a^{\prime}\right)\)
\(=\left(\mathrm{a}^{0}, \mathrm{a}\right)=\mathbf{A}\)

Lorentz Identity Transform
\[
\Lambda_{v}{ }_{v} \rightarrow \eta^{\mu_{v}}{ }_{v} \delta^{\mu^{\prime}}{ }_{v}=I_{(4)}
\]
 Discrete (non-continuous)


SR 4-Scalar \((0,1)\)-Tensor \(\mathrm{V}_{\mu}=\left(\mathrm{V}_{0},-\mathrm{v}\right)\) hint for SR antimatter and CPT Symmetry.
 \(\mathbf{V} \cdot \mathbf{V}=\mathrm{V}^{\mathrm{V}} \eta_{\mathrm{lv}} \mathrm{V}^{\mathrm{N}}=\left[\left(\mathrm{v}^{0}\right)^{2}-\mathbf{v} \cdot \mathbf{v}\right]=\left(\mathrm{v}_{0}^{0}\right)^{2}\) = Lorentz Scalar Invariant

SRQM Lorentz Transforms \(\wedge \mu^{\mu^{\prime}}=\partial_{v}\left[X^{\mu}\right]\)
Discrete \& Fixed Rotation \(\rightarrow\) Particle Exchange Lorentz Coordinate-Flip Transforms
 Physics

A Tensor Study of Physical 4-Vectors

4-Vector SRQM Interpretation SRQM Lorentz Transforms \(\wedge \mu_{v}^{\prime}=\partial_{v}\left[X^{\mu}\right]\) Lorentz Transform Connection Map


\title{
Lorentz Transform Connection Map - Discrete Transforms CPT, Big-Bang, (Matter \(\leftrightarrow\) AntiMatter), Arrow(s)-of-Time
}

\section*{Examine all possible combinations of Discrete Lorentz Transformations which are Linear (Determinant of \(\pm 1\) ).}

A lot of the standard SR texts only mention (P)arity-Inverse and (T)ime-Reversal. However, there are many others, including (F)lips and (R)otations of a fixed amount. However, the (T)imeReversal and Combo(P)arity(T)ime take one into a separate section of the chart. Taking into account all possible discrete Lorentz Transformations fills in the rest of the chart. The resulting interpretation is that there is CPT Symmetry (Charge:Parity:Time) and Dual Time-Space (with reversed timeflow). In other words, one can go from the Identity Transform (all +1 ) to the Negative Identity Transform (all -1 ) by doing a Combo PT Lorentz Transform or by Negating the Charge (Matter \(\leftrightarrow\) Antimatter). The Feynman-Stueckelberg CPT Interpretation (AntiMatter moving spacetimebackward = NormalMatter moving spacetime-forward) aligns with this as a Dual-Universe "AntiMatter" Side.

This is similar to Dirac's prediction of AntiMatter, but without the formal need of Quantum Mechanics, or Spin. In fact, it is more general than Dirac's work, which was about the electron. This is from general Lorentz Transforms for any kind of particle:event.

\begin{tabular}{|c|c|c|c|}
\hline\(\frac{t}{+1}\) & \(\frac{x}{+1}\) & \(\frac{y}{+1}\) & \(\frac{z}{+1}\) \\
+1 & +1 & +1 & -1 \\
+1 & +1 & -1 & +1 \\
+1 & +1 & -1 & -1 \\
+1 & -1 & +1 & +1 \\
+1 & -1 & +1 & -1 \\
+1 & -1 & -1 & +1 \\
+1 & -1 & -1 & -1 \\
\hline-1 & +1 & +1 & +1 \\
-1 & +1 & +1 & -1 \\
-1 & +1 & -1 & +1 \\
-1 & +1 & -1 & -1 \\
-1 & -1 & +1 & +1 \\
-1 & -1 & +1 & -1 \\
-1 & -1 & -1 & +1 \\
\(\frac{-1}{t}\) & \(\frac{-1}{x}\) & \(\frac{-1}{y}\) & -1 \\
\hline\(z\) & \\
\hline
\end{tabular}
```

Discrete NormalMatter (NM) Lorentz Transform Type
NM-Minkowski-Identity : AM-Flip-txyz=AM-ComboPT
NM-Flip-z
NM-Flip-y
NM-Flip-yz=NM-Rotate-yz(\pi)
NM-Flip-x
NM-Flip-xz=NM-Rotate-xz(\pi)
NM-Flip-xy=NM-Rotate-xy(\pi)
NM-Flip-xyz=NM-Paritylnverse:AM-Flip-t=AM-TimeReversal
AM-Flip-xyz=AM-ParityInverse:NM-Flip-t=NM-TimeReversa
AM-Flip-xy=AM-Rotate-xy(\pi)
AM-Flip-xz=AM-Rotate-xz(\pi)
AM-Flip-x
AM-Flip-yz=AM-Rotate-yz(\pi)
AM-Flip-y
AM-Flip-z
AM-Minkowski-Identity : NM-Flip-txyz=NM-ComboPT
Discrete AntiMatter (AM) Lorentz TransformType

```
\begin{tabular}{|c|c|}
\hline Trace & Determinant \\
\hline Tr \(=+4\) & Det = +1 Proper \\
\hline Tr \(=+2\) & Det = -1 Improper \\
\hline Tr \(=+2\) & Det \(=-1\) Improper \\
\hline \(\mathrm{Tr}=0\) & Det = +1 Proper \\
\hline \(\mathrm{Tr}=+2\) & Det = -1 Improper \\
\hline Tr \(=0\) & Det = +1 Proper \\
\hline \(\mathrm{Tr}=0\) & Det = +1 Proper \\
\hline \(\mathrm{Tr}=-2\) & Det = -1 Improper \\
\hline \(\mathrm{Tr}=+2\) & Det \(=-1\) Improper \\
\hline \(\mathrm{Tr}=0\) & Det = +1 Proper \\
\hline Tr \(=0\) & Det \(=+1\) Proper \\
\hline \(\operatorname{Tr}=-2\) & Det \(=-1\) Improper \\
\hline \(\operatorname{Tr}=0\) & Det \(=+1\) Proper \\
\hline Tr \(=-2\) & Det \(=-1\) Improper \\
\hline Tr = -2 & Det \(=-1\) Improper \\
\hline \(\mathrm{Tr}=-4\) & Det = +1 Proper \\
\hline Trace & Determinant \\
\hline
\end{tabular}

Combo (P)aritylnverse \& (T)imeReversal
take
NormalMatter \(\uparrow \uparrow\) AntiMatter

\section*{Lorentz Transform Connection Map - Discrete Transforms CPI, Big-Bang, (Matter \(\leftrightarrow\) AntiMatter), Arrow(s)-of-Time}

I ran across another variation of the YinYang symbol © also known as the T'ai chi symbol, on the internet. I like the \(\{1+3=4\}\)-level symmetries.
There are 8 total circles,
with an overall even balance of \(\{\) white:black \(\},\{+:-\}\), so 4D in the two dual realms.

It also reminds me a bit of a Penrose Diagram, which is an extension of the Minkowski Diagram.

\section*{Tao - I Ching - YinYang} fantastic metaphors for SR SpaceTime... ao: "Flow of the Universe" "way, path, route, road" Ching "Book of Changes "Transformations"

SRQM Lorentz Transforms \(\Lambda \wedge_{v}{ }_{v}=\partial_{v}\left[X^{\nu}\right]\)

\title{
Lorentz Transform Connection Map - Trace Identification CPT, Big-Bang, (Matter \(\rightarrow\) AntiMatter), Arrow(s)-of-Time
}

All Lorentz Transforms have Tensor Invariants: Determinant \(= \pm 1\) and InnerProduct \(=4\). However, one can use the Tensor Invariant Trace to Identify CPT Symmetry \& AntiMatter
```

Tr[NM-Rotate] ={0···+4} Tr[NM-Identity] = +4 Tr[NM-Boost] ={+4···+\infty}
Tr[AM-Rotate] ={0···..4} Tr[AM-Identity] =-4 位[AM-Boost] ={-4···...-\infty}

```

Line up by Trace Invariant values

Discrete NormalMatter (NM) Lorentz Transform Type
NM-Minkowski-Identity : AM-Flip-txyz=AM-ComboPT=AM-Negateldentity
NM-Flip-t=NM-TimeReversal, NM-Flip-x, NM-Flip-y, NM-Flip-z
AM-Flip-xyz=AM-Paritylnverse
NM-Flip-xy=NM-Rotate-xy( \(\pi\) ),NM-Flip-xz=NM-Rotate-xz( \(\pi\) ),NM-Flip-yz=NM-Rotate-yz( \(\pi\) )
AM-Flip-xy=AM-Rotate-xy( \(\pi\) ), AM-Flip-xz=AM-Rotate-xz( \(\pi\) ), AM-Flip-yz=AM-Rotate-yz( \(\pi\) )
NM-Flip-xyz=NM-ParityInverse
AM-Flip-t=AM-TimeReversal, AM-Flip-x, AM-Flip-y, AM-Flip-z
AM-Minkowski-Identity : NM-Flip-txyz=NM-ComboPT=NM-Negateldentity Discrete AntiMatter (AM) Lorentz TransformType
\[
\begin{array}{|l|}
\hline \text { Trace : Determinant } \\
\mathrm{Tr}=+4: \text { Det }=+1 \text { Proper } \\
\mathrm{Tr}=+2: \text { Det }=-1 \text { Improper } \\
\mathrm{Tr}=0: \text { Det }=+1 \text { Proper } \\
\hline \mathrm{Tr}=0: \text { Det }=+1 \text { Proper } \\
\mathrm{Tr}=-2: \text { Det }=-1 \text { Improper } \\
\frac{\mathrm{Tr}=-4: \text { Det }=+1 \text { Proper }}{\text { Trace }: \text { Determinant }}
\end{array}
\]

Two interesting properties of (1,1)-Tensors, of which the Lorentz Transform is an example: Trace \(=\operatorname{Sum}(\Sigma)\) of EigenValues : Determinant \(=\) Product \((\Pi)\) of EigenValues As 4D Tensors, each Lorentz Transform has 4 EigenValues (EV's). Create an Anti-Transform which has all EigenValue Tensor Invariants negated. \(\Sigma[-(E V ' s)]=-\Sigma[E V\) 's]: The Anti-Transform has negative Trace of the Transform. \(\Pi[-(E V ' s)]=(-1)^{4} \Pi[E V ' s]=\Pi[E V ' s]\) : The Anti-Transform has equal Determinant.

NormalMatter Boosts Det \(=+1\) Proper \(\operatorname{Tr}=\{+4 . .+\infty\}\)
NormalMatter Identity
Det = +1 Proper NormalMatter


Det = +1 Prop
AntiMatter Boosts
\(\mathrm{Tr}=-4\)

SR:Lorentz Transform \(\partial_{v}\left[R^{\mu^{\prime}}\right]=\partial R^{\mu^{\prime}} / \partial R^{v}=\Lambda^{\mu^{\prime}}\) \(\Lambda^{\mu}{ }_{v}=\left(\Lambda^{-1}\right)_{v}{ }^{\mu}: \Lambda^{\mu}{ }_{a}\left(\Lambda^{-1}\right)^{\alpha}{ }_{v}=\eta^{\mu}{ }_{v}=\delta^{\mu}{ }_{v}\) \(\eta_{\mu \nu} \wedge^{\mu}{ }_{a} \Lambda^{\nu}{ }_{\beta}=\eta_{\alpha \beta}\)

\(\operatorname{Tr}\left[\bigwedge_{\mathrm{v}}^{\mu_{\mathrm{v}}}\right]=\{-\infty . .+\infty\}=\) Lorentz Transform Type

Based on the Lorentz Transform properties of the last few pages, here is interesting observation about Lorentz Transforms: They all have Determinant of \(\{ \pm 1\}\), and Inner Product of \(\{+4=4 D\}\), but the Trace varies depending on the particular Transform.

The Trace of the Identity is at \(\{+4\}\). Assume this applies to normal matter particles.
The Trace of normal-matter particle Rotations varies continuously from \(\{0 . .+4\}\)
The Trace of the normal-matter particle Boosts varies continuously from \(\{+4 . .+\) Infinity \((+\infty)\}\)
So, one can think of Trace \(=\{+4\}\) being the connection point between normal-matter Rotations and Boosts.
Now, various Flip Transforms (inc. the Time Reversal and Parity Transforms, and their combination as PT transform), take the Trace in discrete steps from \(\{-4,-2,0,+2,+4\}\). Applying a bit of symmetry:

The Trace of the Negative Identity is at \{-4\}. Assume this applies to anti-matter particles.
The Trace of anti-matter particle Rotations varies continuously from \{0..-4\}
The Trace of the anti-matter particle Boosts varies continuously from \{-4..-Infinity \((-\infty)\}\)
So, one can think of Trace \(=\{-4\}\) being the connection point between anti-matter Rotations and Boosts.
This observation would be in agreement with the CPT Theorem:(Feynman-Stueckelberg) idea that (normal/anti)-matter particles moving backward in SpaceTime are CPT symmetrically equivalent to (anti/normal)-matter particles moving forward in SpaceTime

Now, scale this up to Universe size: The Baryon Asymmetry problem (aka. The Matter-AntiMatter Asymmetry Problem). If the Universe was created as a huge chunk of energy, and matter-creating energy is always transformed into matter-antimatter mirrored pairs, then where is all the antimatter? Turns out this is directly related to the Arrow-of-Time Problem as well.

Answer: It is temporally on the "Other/Dual-Side" of the Big-Bang! The antimatter created at the Big-Bang is travelling in the negative-time (-t) direction from the Big-Bang creation point, and the normal matter is travelling in the positive-time direction ( +t ). Universal CPT Symmetry. So, what happened "before" the Big-Bang? It "is" the AntiMatter Dual to our normal matter universe! Pair-production is creation of AM-NM mirrored pairs within SpaceTime. The Big-Bang is the creation of SpaceTime itself.
This also resolves the Arrow-of-Time Problem. If all known physical microscopic processes are time-symmetric, why is the flow of Time experienced as uni-directional??? \{see Wikipedia "CPT Symmetry","CP Violation","Andrei Sakharov"\}

Answer: Time flow on This-Side of the Universe is (+t) direction, while time flow on the Dual-Side of the Universe is (-t) direction. The math all works out. Time flow is bi-directional, but on opposite sides of the BB/Origin-Singularity. Universal CPT Symmetry!

\section*{This gives total CPT Symmetry to all of the possible Lorentz Transforms (AM=AntiMatter , NM=NormalMatter): \\ Trace Various (AM_Flips) : Trace Various (NM_Flips)}
 "properly".


NormalMatter
This-Side of Universe

Pair-Production in This side
CPT Symmetry: each side follows it's own time-arrow with "matter" acting

\section*{Pair-Production}
in Dual side


Dual-Side of Universe AntiMatter

This solves the:
Baryon (Matter-AntiMatter) Asymmetry Problem \& Arrow(s)-of-Time Problem ( +t / -t )
\((+,-,-,-) S R \rightarrow Q M\)
SRQM Lorentz Transforms \(\wedge^{\mu_{v}^{\prime}}=\partial_{v}\left[X^{\mu}\right]\) Lorentz Transform Connection Map - Interpretations 2 CPT, Big-Bang, (Matter AntiMatter), Arrow(s)-of-Time of Physical 4-Vectors Black Holes \(\leftrightarrow\) White Holes

This idea of Universal CPT Symmetry also gives a Universal Dimensional Symmetry as well.
Consider the well-known "balloon" analogy of the universe expansion. The "spatial" coordinates are on the surface of the balloon and the expansion is in the \((+\mathrm{t})\) direction. There is symmetry in the \((+/-)\) directions of the spatial coordinates, but the time flow is always uni-directional, \((+\mathrm{t})\), as the balloon gets bigger \(\rightarrow\) inflates.

By allowing a "Dual-Side", it provides a universal dimensional symmetry. One now has (+/-) symmetry for temporal (t) directions.
The "center" of the Universe is, literally, the Big Bang Singularity. It is the "center = zero = origin" point of both time and space directions. There are some people who prefer to say the BB is after inflation, but I am simply referring the "Origin:Singularity".

The expansion gives time-flow always AWAY FROM the Big Bang singularity in both the Normal-Side \((+\mathrm{t})\) and the Dual-Side ( -t ) All spatial coordinates expand in both the (+/-) directions on both temporal sides of the singularity.

Note that this gives an unusual interpretation of what came "before" the Big Bang The "past" on either side extends only to the BB singularity, not beyond. Time flow is always away from this creation singularity.

This is also in accord with known black hole physics, in that all matter entering a BH event horizon ends at the BH singularity. Time and space coordinates both come to a stop at either type of singularity, from the point of view of an observer that is in the spacetime but not at one of these singularities.

So, the Big Bang is a "starting" singularity, and black holes are "ending" singularities. This also provides for idea of "white holes" actually just being black holes on the Dual-Side. White hole = time-reversed black hole. Always confusion about stuff coming out This way, the mass is still attractive. Time-flow is simply reversed on the alternate side so stuff still goes INTO the hole.. which makes way more sense than stuff that can only come out of the "massive \(\rightarrow\) attractive" white hole.

So, Universal CPT Symmetry = Universal Dimensional Symmetry
And, going even further, I suspect this is the reason there is a duality in Metric conventions
In other words, physicists have wondered why one can use Metric signature \(\{+,-,-,-\}\) or \(\{-,+,+,+\}\) I submit that one of these metrics applies to the Normal Matter side, while the other complementarily applies to the Dual side. This would allow correct causality conditions to apply on either side
Again, this is similar to the Dirac prediction of antimatter based on a duality of possible solutions

This gives total CPT Symmetry to all of the possible Lorentz Transforms (AM=AntiMatter, NM=NormalMatter):
Trace Various (AM_Flips) : Trace Various (NM_Flips)
-Infinity...(AM_Boosts)...(AM_Identity=-4)...(AM_Rotations)...0...(NM_Rotations)...(+4=NM_Identity) ...(NM_Boosts)...+Infinity


Pair-Production in This side
CPT Symmetry: each side follows it's own time-arrow with "matter" acting "properly". Pair-Production in Dual side


NormalMatter This-Side of Universe


This solves the:
Baryon (Matter-AntiMatter) Asymmetry Problem \& Arrow(s)-of-Time Problem ( +t / -t )
\((+,-,-,-)\) SR \(\rightarrow\) QM Physics

\section*{SRQM Study: Model SpaceTimes} of Physical 4-Vectors
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
Model \\
SpaceTimes
\end{tabular} & \(\Lambda<0\) & \(\Lambda=0\) & \(\Lambda>0\) \\
\hline \multicolumn{4}{|l|}{Klein Geometry G/H} \\
\hline Lorentzian pseudo-Riemannian & Anti de Sitter
\[
\mathrm{SO}(3,2) / \mathrm{SO}(3,1)
\] & \begin{tabular}{l}
Minkowski \\
ISO(3,1)/SO(3,1) \\
\(\mathrm{ds}^{2}=(\mathrm{cdt})^{2}-\mathrm{dx} \cdot \mathrm{dx}\)
\end{tabular} & \[
\begin{aligned}
& \text { De Sitter } \\
& \text { SO(4,1)/SO(3,1) }
\end{aligned}
\] \\
\hline Riemannian & Hyperbolic
\[
\mathrm{SO}(4,1) / \mathrm{SO}(4)
\] & \begin{tabular}{l}
Euclidean \\
ISO(4)/SO(4) \\
\(\mathrm{ds}^{2}=(\mathrm{cdt})^{2}+\mathbf{d x} \cdot \mathbf{d x}\)
\end{tabular} & Spherical
\[
\mathrm{SO}(5) / \mathrm{SO}(4)
\] \\
\hline
\end{tabular}

A Klein geometry is a pair \((\mathrm{G}, \mathrm{H})\) where G is a Lie group and H is a closed Lie subgroup of G such that the (left) coset space \(\mathrm{X}:=\mathrm{G} / \mathrm{H}\) is connected.

G acts transitively on the homogeneous space X .
We may think of \(\mathrm{H} \rightarrow \mathrm{G}\) as the stabilizer subgroup of a point in X .
\(d\) is the dimension of the SpaceTime, which is 4D for our universe.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Geometric Context & Gauge Group & Stabilizer Subgroup & Local Model Space & Local Geometry & Global Geometry & Differential Cohomology & First Order Formulation of Gravity \\
\hline Differential geometry & Lie group/algebraic group G & subgroup (monomorphism) \(\mathrm{H} \rightarrow \mathrm{G}\) & ```
quotient ("coset space")
G/H
``` & Klein geometry & Cartan geometry & Cartan connection & \\
\hline Examples: & Euclidean group Iso(d) & rotation group
\[
\mathrm{O}(\mathrm{~d})
\] & Cartesian space \(\mathbb{R}^{\text {d }}\) & Euclidean geometry & Riemannian geometry & Affine connection & Euclidean gravity \\
\hline \multirow[t]{5}{*}{********Fits known observational data} & Poincaré group Iso(d-1,1) & Lorentz group
\[
O(d-1,1)
\] & Minkowski spacetime \(\mathbb{R}^{\mathrm{d}-1,1}\) & Lorentzian geometry & Pseudo-Riemannian geometry & Spin connection & Einstein gravity \\
\hline & anti de Sitter group
\[
\mathrm{O}(\mathrm{~d}-1,2)
\] & \(\mathrm{O}(\mathrm{d}-1,1)\) & anti de Sitter spacetime AdS \({ }^{\text {d }}\) & & & & AdS gravity \\
\hline & de Sitter group O(d,1) & \(\mathrm{O}(\mathrm{d}-1,1)\) & de Sitter spacetime dS \({ }^{\text {d }}\) & & & & de Sitter gravity \\
\hline & linear algebraic group & parabolic subgroup/ Borel subgroup & flag variety & Parabolic geometry & & & \\
\hline & conformal group
\[
O(d, t+1)
\] & conformal parabolic subgroup & Möbius space \(S^{\mathrm{d}, \mathrm{t}}\) & & Conformal geometry & Conformal connection & Conformal gravity \\
\hline
\end{tabular}

\section*{Transformations}
(\# of independent parameters = \# continuous symmetries = \# Lie Dimensions)
Galilean Transformation Group aka. Inhomogeneous Galilean Transformation
Lie group of all affine isometries of Classical:Euclidean Time + Space (preserve quadratic form \(\delta_{\mu v}\))
General Linear,Affine Transform \(X^{\mu^{\prime}}=G^{\mu^{\prime}}{ }_{v} X^{v}+\Delta X^{\mu^{\prime}}\) with \(\operatorname{Det}\left[G^{{ }^{\prime}}{ }_{v}\right]= \pm 1\)
(6+4=10)

\section*{SRQM Transforms: Venn Diagram Poincaré = Lorentz + Translations (10)}

\section*{Transformations}
(\# of independent parameters = \# continuous symmetries = \# Lie Dimensions)
Poincaré Transformation Group aka. Inhomogeneous Lorentz Transformation Lie group of all affine isometries of SR:Minkowski Time-Space (preserve quadratic form \(\eta_{\mu v}\)) General Linear,Affine Transform \(X^{\mu^{\prime}}=\Lambda^{\mu^{\prime}} \mathrm{V}^{v}+\Delta X^{\mu}\) with \(\operatorname{Det}\left[\Lambda^{\mu^{\prime}}{ }_{v}\right]= \pm 1\)
\((6+4=10)\)

\author{
Stress-Energy(Density)-Tensor T \({ }^{\text {pv }}\) (symmetric) Covariant Decomposition \\ Tensor Invariants: Symmetry, AntiSymmetry, \\ Trace \(\rightarrow\) Isotropy, Anisotropy \\ \(\mathrm{T}_{\mathrm{uV}}=\) flux of \(\hat{\mathrm{e}}_{\mu}\)-component of 4-Momentum along \(\hat{\mathrm{e}}_{\mathrm{V}}\) \\ (temporal:mixed: \\ \section*{) splitting} \\ Temporal:Temporal EnergyDensity \(\left(\rho_{e o}\right)=\mathrm{V}_{\mathrm{LV}} \mathrm{T}^{\mu v}\) \\ 3 Temporal:Spatial HeatEnergy Flux \(\left(Q^{\mu}\right)=c T_{v} T^{\mu v}\) \\ Spatial:Spatial Isotropic Pressure (\(p_{o}\)) \(=(-1 / 3) H_{\mu v} T^{\mathrm{uv}}\) \\ Spatial:Spatial Anisotropic Stress \(\left(\Pi^{\mu v}\right)=H^{\mu}{ }_{a} H^{v}{ }^{\wedge} T^{\alpha \beta}+\left(p_{0}\right) H^{\mu v}\) \\ 10 Total Independent components
}

Poincaré Transformation Group = 10 Invariances
The group of all isometries of SR:Minkowski Spacetime (\(6+4=10\))
(preserve quadratic form)
General Linear,Affine Transform \(X^{\mu^{\prime}}=\Lambda^{u^{\prime}} X^{v}+\Delta X^{\mu^{\prime}}\) with Det[\(\left.\Lambda \wedge^{\prime}{ }_{v}\right]= \pm 1\)
4-AngularMomentum \(\mathrm{M}^{\mu \mathrm{v}}=\mathrm{X}^{\wedge} \mathrm{P}=\mathrm{X}^{\mu} \mathrm{P}^{\mathrm{v}}-\mathrm{X}^{\mathrm{v}} \mathrm{P}^{\mu}\)
\(=\) Generator of Lorentz Transformations (6)
\(=\left\{\Lambda \nu_{v}^{\prime} \rightarrow R^{\mu_{v}}\right.\) Rotations (3) \(+\Lambda^{\mu^{\prime}}{ }_{v} \rightarrow B^{\mu_{v}}\) Boosts (3) \(\}\)
4-LinearMomentum \(\mathbf{P}^{\mu}=\mathbf{P}\)
= Generator of Translation Transformations (4)
\(=\left\{\Delta X^{\prime} \rightarrow(c \Delta t, \mathbf{0})\right.\) Time \((1)+\Delta X^{\prime} \rightarrow(0, \Delta x)\) Space (3) \(\}\)

\footnotetext{
\(\left[\left(R \rightarrow-R^{*}\right)\right]\) or \(\left[\left(t \rightarrow-t^{*}\right) \&(r \rightarrow-r)\right]\) imply \(q \rightarrow-q\) Feynman-Stueckelberg Interpretation Amusingly, Inhomogeneous Lorentz adds homogeneity.
}

\section*{SRQM Study:}

Lie Groups and Generators

\section*{Lie Groups}
de Sitter Group SO(1,4)
de Sitter invariant relativity
(?maybe?)
Poincaré Group ISO \((1,3)\) \(\left\{r \ll r_{d s}=\right.\) de Sitter Radius \(\}\)
\(r_{d S}=\sqrt{ }[3 / \Lambda]=L_{H} / \sqrt{ }\left[\Omega_{\Lambda}\right]\)
SR \& GR Physics
(** currently thought correct **)
\(\Lambda^{u_{v}^{\prime}} \rightarrow B^{\mu_{v}^{\prime}}=\)
Lorentz
Boost

Galilei Group
\(\{|\mathbf{v}| \ll c\) \}
Classical Physics
\(\mathrm{G}^{\mu^{\prime}{ }_{v} \rightarrow S^{\mu_{v}}=}\)
Motion:Shear

SRQM: Lorentz Boost
\(\mathrm{ct}^{\prime}=(\gamma) \mathrm{ct}-(\beta)(\gamma) \mathrm{x} \quad \mathrm{y}^{\prime}=\mathrm{y}\)
\(x^{\prime}=-(\beta)(\gamma) \mathrm{ct}+(\gamma) \mathrm{x} \quad \mathrm{z}^{\prime}=\mathrm{z}\)
\(t^{\prime}=\gamma t-\beta \gamma x / c\)
\(x^{\prime}=\gamma x-\beta \gamma c t\)

Classical: Galilean Motion Shear
take limit of \(|\mathbf{v}| \ll \mathrm{c},\{\gamma \rightarrow 1, \mathrm{c} \beta \rightarrow \mathrm{v}, \mathrm{v} / \mathrm{c}=\beta \rightarrow 0\}\)
\begin{tabular}{ll}
\(c^{\prime}=(1) c t-(\beta)(1) x\) & \(y^{\prime}=y\) \\
\(x^{\prime}=-(\beta)(1) c t+(1) x\) & \(z^{\prime}=z\)
\end{tabular}
\(x^{\prime}=-(\beta)(1) c t+(1) x \quad z^{\prime}=z\)
ct' \(=(1) \mathrm{ct}-(0)(1) \mathrm{x}\)
\(x^{\prime}=-(v) t+(1) x\)
ct' \(=c t\)
\(\mathrm{x}^{\prime}=\mathrm{x}-\mathrm{vt}\)
\(\mathrm{t}^{\prime}=\mathrm{t}\)
\(\mathrm{x}^{\prime}=\mathrm{x}-\mathrm{vt}\)
\begin{tabular}{|l|l|l|l|l|l|}
\hline & \(M^{01}\) & \(M^{02}\) & \(M^{03}\) & \(P^{0}\) \\
\hline\(M^{10}\) & & \(M^{12}\) & \(M^{13}\) & \(P^{1}\) \\
\hline\(M^{20}\) & \(M^{21}\) & & \(M^{23}\) & \(P^{2}\) \\
\hline\(M^{30}\) & \(M^{31}\) & \(M^{32}\) & & \(P^{3}\) \\
\hline
\end{tabular}

4-AngularMomentum \(\mathrm{M}^{\mathrm{Pv}}=\mathrm{X}^{\mathrm{\mu}} \wedge \mathrm{P}^{\mathrm{v}}=\mathrm{X}^{\mathrm{P}} \mathrm{P}^{\mathrm{v}}-\mathrm{X}^{\mathrm{V}} \mathrm{P}^{\mathrm{N}}\) \(=\) Generator of Lorentz Transformations (6) \(=\left\{\Lambda v_{v}{ }_{v} \rightarrow R^{u^{\prime}}{ }_{v}\right.\) Rotations (3) \(+\Lambda^{\nu^{\prime}}{ }_{v} \rightarrow B^{\mu^{\prime}}{ }_{v}\) Boosts (3) \(\}\)

4-LinearMomentum \(\mathrm{P}^{\mu}\)
\(=\) Generator of Translation Transformations (4)
\(=\left\{\Delta X^{\prime} \rightarrow(c \Delta t, 0)\right.\) Time (1) \(+\Delta X^{\prime} \rightarrow(0, \Delta x)\) Space (3)
\(\operatorname{Det}\left[\wedge \sim_{v}{ }^{\prime}\right]=+1\) for Proper Lorentz Transforms Det \(\left[\Lambda^{\mu^{\prime}}{ }_{v}\right.\)] \(=-1\) for Improper Lorentz Transforms

Lorentz Matrices can be generated by a matrix M with \(\operatorname{Tr}[\mathrm{M}]=0\) which gives:
\(\left\{\Lambda=e^{\wedge} \mathrm{M}=\mathrm{e}^{\wedge}(+\theta \cdot \mathrm{J}-\boldsymbol{\zeta} \cdot \mathrm{K})\right\}\)
\(\left\{\wedge^{\top}=\left(e^{\wedge} M\right)^{\top}=e^{\wedge} M^{\top}\right\}\)
\(\left\{\Lambda^{-1}=\left(e^{\wedge} M\right)^{-1}=e^{\wedge}-M\right\}\)
SR:Lorentz Transform \(\partial_{v}\left[R^{\mu^{\prime}}\right]=\partial R^{\mu^{\prime}} / \partial R^{v}=\Lambda^{\mu^{\prime}}{ }_{v}\)
\(\mathrm{M}=+\boldsymbol{\theta} \cdot \mathrm{J}-\boldsymbol{\zeta} \cdot \mathrm{K}\)
\(B[\zeta]=e^{\wedge}(-\zeta \cdot K)\)
\(R[\theta]=e^{\wedge}(+\theta \cdot \mathrm{J})\)
\(\Lambda^{\mu}{ }_{v}=\left(\Lambda^{-1}\right)_{v}{ }^{\mu}: \Lambda_{a}{ }_{a}\left(\Lambda^{-1}\right)^{\alpha}{ }_{v}=\eta^{\mu}{ }_{v}=\delta^{\mu}\)
\(\eta_{u v} \wedge^{\mu}{ }_{\alpha} \Lambda_{\beta}=\eta_{\alpha \beta}\)
\(\wedge=\mathrm{e}^{\wedge} \mathrm{M}=\mathrm{e}^{\wedge}(+\boldsymbol{\theta} \cdot \mathrm{J}-\boldsymbol{\zeta} \cdot \mathrm{K})\)

\section*{\(\operatorname{Det}\left[\wedge_{v}{ }_{v}\right]= \pm 1 \quad \Lambda_{u v} \wedge^{\mu v}=4\)}

Rotations \(\mathrm{J}_{\mathrm{i}}=-\varepsilon_{\mathrm{imn}} \mathrm{M}^{\mathrm{mn}} / 2\), Boosts \(\mathrm{K}_{\mathrm{i}}=\mathrm{M}_{\mathrm{i} 0}\)

\section*{Review of SR Transforms}

\section*{10 Poincaré Symmetries, 10 Conservation Laws}
smana 10 Generators : Noether's Theorem

4-Displacement \(\Delta X=(c \Delta t, \Delta x)\) \(\Delta\) Time Transform \(\Delta \mathrm{XH}^{\prime} \rightarrow(c \Delta t, \mathbf{0})\) Generated by energy \(E=c p^{0}\)

Translation Transform
Generated \(\Delta X^{\prime}(t, \mathbf{x})=\exp [\mathbf{X} \cdot \mathbf{P} / \hbar]^{\mu^{\prime}}\) \(\Delta\) Space Transform \(\Delta X^{\top} \rightarrow(0, \Delta x)\)
Generated by 3-momentum \(p=p^{\prime}\)
\(\partial \cdot X=4\)

(temporal

Conservation of linear 3-momentum (spatial)

Lagrange "Shift Operator" version of Taylor's Theorem: \(e^{e\left(d d^{\prime} x x\right.} f(x)=f(x+a)\) Bloch Theorem:Translation Operator: \(\mathrm{e}^{\mathrm{i}(\mathrm{R})} \psi(\mathbf{X})=\psi(\mathbf{X}+\mathrm{R})\), with K as reciprocal lattice

\section*{Lorentz General Time-Space \\ Boost \\ Transform \\ \(\lambda \dot{v}_{v} \rightarrow B^{r_{v}}=\) \\ Generated by relativistic massmoment 3 -vector on}

Lorentz Transform \(\partial_{v}\left[X^{\mu}\right]=\partial X^{\prime} / \partial X^{v}=\Lambda^{\mu_{v}}\) Generated \(\wedge^{\mu}{ }_{v}(\boldsymbol{\zeta}, \boldsymbol{\theta})=\exp \left[1 / 2 \omega_{\alpha \beta} M^{\alpha \beta}\right]^{\mu_{v}}=\exp [\zeta \cdot \mathbf{K}+\boldsymbol{\theta} \cdot \boldsymbol{J}]^{\mu_{v}}\) Lorentz General Space-Space

\section*{Conservation of}
relativistic 3-mass-moment (temporal-spatial

Conservation of 4-AngularMomentum \((3+3)=(6)\) Laws

Conservation of angular 3-momentum (spatial-spatia
Poincaré Transformation Group aka. Inhomogeneous Lorentz Transformation
The group of all isometries of SR:Minkowski Spacetime (\(6+4=10\))
(preserve quadratic form)
General Linear,Affine Transform \(X^{\mu^{\prime}}=\Lambda_{\mu^{\prime}}{ }_{v} X^{v}+\Delta X^{\mu^{\prime}}\) with \(\operatorname{Det}\left[\Lambda^{\mu^{\prime}}{ }_{v}\right]= \pm 1\)

\section*{4-Gradient}
\(\partial=\left(\partial_{\mathrm{t}} / \mathrm{c},-\nabla\right)\)

4-Momentum
\(P^{\mu}=P=(m c, p)=(E / c, p)\)
Jacobi's Formula for Complex Square Matrix A: \(\operatorname{Det}(\operatorname{Exp}[A])=\operatorname{Exp}(\operatorname{Tr}[A])\)
\(=(6) \quad \operatorname{Det}(\mathrm{A})_{4 \mathrm{D}}=\left[(\operatorname{tr} \mathrm{A})^{4}-6 \operatorname{tr}\left(\mathrm{~A}^{2}\right)(\operatorname{tr} \mathrm{A})^{2}+3\left(\operatorname{tr}\left(\mathrm{~A}^{2}\right)\right)^{2}+8 \operatorname{tr}\left(\mathrm{~A}^{3}\right) \operatorname{tr} \mathrm{A}-6 \operatorname{tr}\left(\mathrm{~A}^{4}\right)\right] / 4!\)
\(=10\) Symmetries \(=10\) Generators \(=10\) Conservation Laws : Noether's Theorem
\(=10\) Independent Components of Symmetric 4D (2,0)-Tensor \{ Relativistic Fluid Stress-EnergyDensity = \([1\) temporal +3 mixed \(+(1+5)\) spatial \(]\}\)

\section*{Review of SR Transforms} Poincaré Algebra \& Generators

Poincaré Algebra is the Lie Algebra of the Poincaré Group.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{generators:} & \multicolumn{5}{|c|}{Poincaré Algebra is the Lie Algebra of the} \\
\hline & & \(\mathrm{M}^{01}=-\mathrm{cn}^{1}\) & \(\mathrm{M}^{02}=-\mathrm{cn}^{2}\) & \(\mathrm{M}^{03}=-\mathrm{cn}^{3}\) & \(\mathrm{P}^{0}\) \\
\hline & \(\mathrm{M}^{10}=\mathrm{cn}^{1}\) & & \(M^{12}=1^{3}\) & \(M^{13}=-1^{2}\) & \(\mathrm{P}^{1}\) \\
\hline & \(\mathrm{M}^{20}=\mathrm{cn}^{2}\) & \(M^{21}=-\left.\right|^{3}\) & & \(M^{23}=1^{1}\) & \(\mathrm{P}^{2}\) \\
\hline try & \(\mathrm{M}^{30}=\mathrm{cn}^{3}\) & \(\mathrm{M}^{31}=\mathrm{I}^{2}\) & \(M^{32}=-1^{1}\) & & \(\mathrm{P}^{3}\) \\
\hline
\end{tabular}

The (10) one-parameter groups can be expressed directly as exponentials of the generators:
\(\mathrm{U}\left[\mathrm{I},\left(\mathrm{a}^{0}, 0\right)\right]=\mathrm{e}^{\wedge}\left(\mathrm{ia} a^{0} \cdot \mathrm{H}\right)=\mathrm{e}^{\wedge}\left(\mathrm{ia}^{0} \cdot \mathrm{p}^{0}\right):\)
(1) Hamiltonian (Energy) = Temporal Momentum H
\(U[1,(0, \lambda \hat{a})]=e^{\wedge}(-i \lambda a ̂ \cdot p):\)
(3) Linear Momentum p
(3) Angular Momentum \(\mathrm{j}=1\)
\([\Lambda(i \lambda \Theta / 2), 0]=e^{\wedge}\left(i \lambda \theta^{\prime} \cdot \mathrm{j}\right):\)
(3) Dynamic Mass Moment \(\mathrm{k}=\mathrm{n}\)
\(U\left[\Lambda\left(\lambda \varphi^{\wedge} / 2\right), 0\right]=e^{\wedge}\left(i \lambda \varphi^{\wedge} \cdot k\right):\)
The Poincaré Algebra is the Lie Algebra of the Poincaré Group:
Total of \(\{1+3+3+3=(1+3)+(3+3)=4+6=10\}\) Invariances from Poincaré Symmetry
Covariant form:
These are the commutators of the the Poincaré Algebra :
\(\left[X^{\mu}, X^{V}\right]=0^{\mu v}\)
\(\left[P^{\mu}, P^{v}\right]=-i \hbar q\left(F^{\mu v}\right)\) if interacting with EM field; otherwise \(=0^{\mu v}\) for free particles
\(M^{\mu v}=\left(X^{\mu} P^{v}-X^{v} P^{\mu}\right)=i \hbar\left(X^{\mu} \partial^{v}-X^{v} \partial^{\mu}\right)\)
\(\left[M^{\mu v}, P^{\rho}\right]=i \hbar\left(\eta^{\rho v} P^{\mu}-\eta^{\rho \mu} P^{v}\right)\)
\(\left[M^{\mu v}, M^{\rho \sigma}\right]=i \hbar\left(\eta^{v \rho} M^{\mu \sigma}+\eta^{\mu \sigma} M^{v \rho}+\eta^{\sigma v} M^{\rho \mu}+\eta^{\rho \mu} M^{\sigma v}\right)\)
Component form: Rotations \(\mathrm{J}_{\mathrm{i}}=-\varepsilon_{i m n} \mathrm{M}^{m n} / 2\), Boosts \(\mathrm{K}_{\mathrm{i}}=\mathrm{M}_{\mathrm{io}}\)
\(\left[\mathrm{J}_{\mathrm{m}}, \mathrm{P}_{\mathrm{n}}\right]=\mathrm{i} \varepsilon_{\mathrm{mnk}} \mathrm{P}^{\mathrm{k}}\)
\(\left[\mathrm{J}_{\mathrm{m}}, \mathrm{P}_{\mathrm{o}}\right]=0\)
\(\left[K_{j}, P_{k}\right]=i \eta_{j k} \mathrm{P}^{0}\)
\(\left[K_{j}, P_{0}\right]=-i P_{j}\)
\(\left[\mathrm{J}_{\mathrm{m}}, \mathrm{J}_{n}\right]=\mathrm{i} \varepsilon_{\mathrm{mnk}} \mathrm{J}^{\mathrm{k}}\)
\(\left[J_{m}, K_{n}\right]=i \varepsilon_{m n k} K^{k}\)
\(\left[\mathrm{K}_{\mathrm{m}}, \mathrm{K}_{\mathrm{n}}\right]=-\mathrm{i} \varepsilon_{\mathrm{mnk}} \mathrm{J}^{\mathrm{k}}\), a Wigner Rotation resulting from consecutive boosts \(\left[\mathrm{J}_{\mathrm{m}}+\mathrm{iK}_{\mathrm{m}}, \mathrm{J}_{\mathrm{n}}-\mathrm{iK}_{\mathrm{n}}\right]=0\)
\(M^{\mu v}=X^{\wedge} P=X^{v} P^{v}-X^{v} P^{\mu}\) \(\mathrm{P}^{\mu}=\mathrm{P}\)

\section*{\(M=\) Generator of Lorentz Transformations (6) = \{ Rotations (3) + Boosts (3) \}}
\(\mathrm{P}=\) Generator of Translation Transformations (4) = \{Time-Move (1) + Space-Moves (3) \}
Rotations \(\mathrm{J}_{\mathrm{i}}=-\varepsilon_{\mathrm{imn}} \mathrm{M}^{\mathrm{mn}} / 2\), Boosts \(\mathrm{K}_{\mathrm{i}}=\mathrm{M}_{\mathrm{i} 0}\)
The set of all Lorentz Generators \(\mathrm{V}=\{\zeta \cdot \mathrm{K}+\boldsymbol{\theta} \cdot \mathrm{J}\}\) forms a vector space over the real numbers. The generators \(\left\{\mathrm{J}_{\mathrm{x}}, \mathrm{J}_{\mathrm{y}}, \mathrm{J}_{\mathrm{z}}, \mathrm{K}_{\mathrm{x}}, \mathrm{K}_{\mathrm{y}}, \mathrm{K}_{z}\right\}\) form a basis set of V . The components of the axis-angle vector and rapidity vector \(\left\{\theta_{x}, \theta_{y}, \theta_{z}, \zeta_{x}, \zeta_{y}, \zeta_{z}\right\}\) are the coordinates of a Lorentz generator wrt. this basis.
Very importantly, the Poincaré group has Casimir Invariant Eigenvalues = \(\{\) Mass m, Spin j\(\}\), hence Mass *and* Spin are purely SR phenomena, no QM axioms required!

This Representation of the Poincaré Group or Representation of the Lorentz Group is known as Wigner's Classification in Representation Theory of Particle Physics

Poincaré Algebra has 2 Casimir Invariants = Operators that commute with all of the Poincaré Generators
These are \(\left\{P^{2}=P^{\mu} P_{\mu}=\left(m_{0} c\right)^{2}, W^{2}=W^{\mu} W_{\mu}=-\left(m_{0} c\right)^{2} j(j+1)\right\}\), with \(W^{\mu}=(-1 / 2) \varepsilon^{\mu v \rho \sigma} J_{v \rho} P_{\sigma}\) as the Pauli-Lubanski Pseudovector

Space Translation:
Let \(\mathbf{X}_{\mathrm{S}}=(\mathrm{ct}, \mathrm{x}+\Delta \mathrm{x})\), then \(\partial\left[\mathbf{X}_{\mathrm{S}}\right]=\left(\partial_{\mathrm{t}} / \mathrm{c},-\nabla\right)(\mathrm{ct}, \mathrm{x}+\Delta \mathrm{x})=\operatorname{Diag}[1,-1]=\partial[\mathbf{X}]=\boldsymbol{\eta}^{\mu \nu}\)
so \(\partial\left[\mathbf{X}_{s}\right]=\partial[\mathbf{X}]\) and \(\partial[K]=[[0]]\)
\((\partial \cdot \partial)\left[\mathbf{K} \cdot \mathbf{X}_{\mathrm{s}}\right]=\partial \cdot\left(\partial\left[\mathbf{K} \cdot \mathbf{X}_{\mathrm{s}}\right]\right)=\partial[\mathbf{K}] \cdot \mathbf{X}_{\mathrm{s}}+\mathbf{K} \cdot \partial\left[\mathbf{X}_{\mathrm{s}}\right]=0+\mathbf{K} \cdot \partial[\mathbf{X}]=\partial[\mathbf{K}] \cdot \mathbf{X}+\mathbf{K} \cdot \partial[\mathbf{X}]=\partial \cdot(\partial[\mathbf{K} \cdot \mathbf{X}])=(\partial \cdot \partial)[\mathbf{K} \cdot \mathbf{X}]:\)
Lorentz Space-Space Rotation:
Let \(\mathbf{X}_{R}=(c t, R[\mathbf{x}])\), then \(\partial\left[\mathbf{X}_{R}\right]=(\partial / / c,-\nabla)(c t, R[x])=\operatorname{Diag}[1,-1]=\partial[\mathbf{X}]=\eta^{\mu \nu}\)
so \(\partial\left[\mathbf{X}_{R}\right]=\partial[\mathbf{X}]\) and \(\partial[\mathbf{K}]=[[0]]\)
\((\partial \cdot \partial)\left[\mathbf{K} \cdot \mathbf{X}_{R}\right]=\partial \cdot\left(\partial\left[\mathbf{K} \cdot \mathbf{X}_{R}\right]\right)=\partial[\mathbf{K}] \cdot \mathbf{X}_{R}+\mathbf{K} \cdot \partial\left[\mathbf{X}_{R}\right]=0+\mathbf{K} \cdot \partial[\mathbf{X}]=\partial[\mathbf{K}] \cdot \mathbf{X}+\mathbf{K} \cdot \partial[\mathbf{X}]=\partial \cdot(\partial[\mathbf{K} \cdot \mathbf{X}])=(\partial \cdot \partial)[\mathbf{K} \cdot \mathbf{X}]:\)
Lorentz Time-Space Boost:
Let \(\mathbf{X}_{\mathrm{B}}=\gamma(\mathrm{ct}-\beta \cdot \mathbf{x},-\beta \mathrm{ct}+\mathrm{x})\), then \(\partial\left[\mathbf{X}_{\mathrm{B}}\right]=\left(\partial_{\mathrm{t}} / \mathrm{c},-\nabla\right) \gamma(\mathrm{ct}-\beta \cdot \mathbf{x},-\beta \mathrm{ct}+\mathbf{x})=[[\gamma,-\gamma \boldsymbol{\beta}],[-\gamma \boldsymbol{\beta}, \gamma]]=\boldsymbol{\Lambda}^{\mu v}\)
\(\partial\left[K \cdot \mathbf{X}_{B}\right]=\partial[K] \cdot \mathbf{X}_{\mathrm{B}}+\mathrm{K} \cdot \partial\left[\mathbf{X}_{\mathrm{B}}\right]=\Lambda^{\mu v} \mathrm{~K}=\mathrm{K}_{\mathrm{B}}=\) a Lorentz Boosted K, as expected \(\partial \cdot \mathbf{K}_{\mathrm{B}}=\partial \cdot \boldsymbol{\Lambda}^{\mathrm{p} \mathrm{K}}=\boldsymbol{\Lambda}_{\mathrm{pv}}(\partial \cdot \mathbf{K})=\boldsymbol{\Lambda}^{\mu \mathrm{v}}(0)=0=\partial \cdot \mathrm{K}=\) Divergence of \(\mathrm{K}=0\), as expected \((\partial \cdot \partial)\left[\mathbf{K} \cdot \mathbf{X}_{\mathrm{B}}\right]=\partial \cdot\left(\partial\left[\mathbf{K} \cdot \mathbf{X}_{\mathrm{B}}\right]\right)=\partial \cdot \mathbf{K}_{\mathrm{B}}=\partial \cdot \mathbf{K}=\partial \cdot(\partial[\mathbf{K} \cdot \mathbf{X}])=(\partial \cdot \partial)[\mathbf{K} \cdot \mathbf{X}]:\)

SR Waves:
Let \(\Psi=a e^{\wedge}-i(\mathbf{K} \cdot \mathbf{X}), \Psi_{\mathrm{T}}=a e^{\wedge}-i\left(\mathbf{K} \cdot \mathbf{X}_{\mathrm{T}}\right), \Psi_{\mathrm{S}}=a e^{\wedge}-\mathrm{i}\left(\mathbf{K} \cdot \mathbf{X}_{\mathrm{S}}\right), \Psi_{\mathrm{R}}=a \mathrm{e}^{\wedge}-i\left(\mathbf{K} \cdot \mathbf{X}_{\mathrm{R}}\right), \Psi_{\mathrm{B}}=a e^{\wedge}-i\left(\mathbf{K} \cdot \mathbf{X}_{\mathrm{B}}\right)\)
\((\partial \cdot \partial)\left[\mathbf{K} \cdot \mathbf{X}_{\mathrm{T}}\right]=(\partial \cdot \partial)\left[\mathbf{K} \cdot \mathbf{X}_{\mathrm{S}}\right]=(\partial \cdot \partial)\left[\mathbf{K} \cdot \mathbf{X}_{\mathrm{R}}\right]=(\partial \cdot \partial)\left[\mathbf{K} \cdot \mathbf{X}_{\mathrm{B}}\right]=(\partial \cdot \partial)[\mathbf{K} \cdot \mathbf{X}]:\) Wave Equation Invariant under all Poincaré transforms
Total of \((1+3+3+3=10)\) Invariances from Poincaré Symmetry

SR 4-Tensor
(2,0)-Tensor T \({ }^{\text {vv }}\) 1,1)-Tensor \(T^{\mu}{ }_{v}\) or \(T_{\mu}{ }^{\nu}\)
\((0,2)\)-Tensor \(T_{\mu}\)

SR 4-Scalar
(0,0)-Tensor S or S
Lorentz Scalar

A Tensor Stud)
Noether's Theorem: 10 SR Conservation Laws

\section*{SRQM Study: 4-Vector Operations Lorentz Scalar Product A•B = \(A_{\mu} B^{\mu}\) Exterior Product \(A^{\wedge} B=A^{\nu} B^{V}-A^{v} B^{\mu}\)}

There are at least three 4-Vector relations which use the Exterior (Wedge=^) Product.
\(\partial^{\wedge} A=\partial^{\mu} \wedge A^{v}=\partial^{\mu} A^{v}-\partial^{v} A^{\mu}=F^{\mu v}\) : the Faraday EM 4-Tensor \(R^{\wedge} P=R^{\mu \wedge} P^{v}=R^{\mu} P^{v}-R^{v} P^{\mu}=M^{\mu v}\) : the 4-Angular-Momentum Tensor \(R^{\wedge} F=R^{\mu \wedge} F^{v}=R^{\mu} F^{v}-R^{v} F^{\mu}=T^{\mu v}\) : the 4-(Angular-)Torque Tensor

This gives the components of each remarkably similar properties. Likewise, each of these has a physical (Dot=-) Product relation as well.
\(\partial \cdot A=\partial_{\mu} A^{\mu}=0\) : the Lorenz Gauge, a conservation of 4-EMVectorPotential \(R \cdot P=R_{\mu} P^{\mu}=-S_{\text {action,free }}\) : the Action Scalar
\(\mathbf{R} \cdot \mathbf{F}=\mathbf{R}_{\mu} \mathrm{F}^{\mu}=(\mathrm{ct}, \mathrm{r}) \cdot \gamma(\dot{\mathrm{E}} / \mathrm{c}, \mathrm{f}=\dot{\mathrm{p}})=\gamma\left(\dot{\text { Ét-r} \cdot \mathbf{f})}=\mathrm{W}_{o}:\right.\) Work \(\mathbf{W}_{o}=\) power \(_{\text {relativistic }}{ }^{*}\) time-distance \(\cdot\) force \(_{\text {relativistic }}\)
\[
E_{0}+W_{0}
\]
\(\mathrm{d}(\mathbf{R} \cdot \mathbf{P}) / \mathrm{d} \tau=\mathrm{dR} / \mathrm{d} \tau \cdot \mathbf{P}+\mathbf{R} \cdot \mathrm{dP} / \mathrm{d} \tau=\mathbf{U} \cdot \mathbf{P}+\mathbf{R} \cdot \mathbf{F}=\mathrm{d}\left(-\mathrm{S}_{\text {action,free }}\right) / \mathrm{d} \tau=\mathrm{H}_{0}=-\mathrm{L}_{0}\)

4-ChargeFlux 4-CurrentDensity
\(\mathrm{J}=(\rho \mathrm{c}, \mathrm{j})=\rho(\mathrm{c}, \mathbf{u})\)

Electric:Magnetic \(1 /\left(\varepsilon_{0} \mu_{0}\right)=c^{2}\)

\section*{SRQM Study:}

\section*{4-AngularMomentum \(\rightarrow\) 4-Torque}

\(\mathrm{d} / \mathrm{d} \tau\left[\mathrm{M}^{\mathrm{LV} \mathrm{V}}\right]=\mathrm{d} / \mathrm{d} \tau\left[\mathbf{X}^{\wedge} \mathbf{P}\right]=\left(\mathbf{F} \cdot \partial_{\mathrm{P}}\right)\left[\mathbf{X}^{\wedge} \mathbf{P}\right]\)
\[
=\mathrm{d} / \mathrm{d} \tau\left[X^{\mu} \mathrm{P}^{v}-\mathrm{X}^{\mathrm{v}} \mathrm{P}^{\mu}\right]
\]
\[
=\left[U^{\mu} P^{v}+X^{\mu} F^{v}-U^{v} P^{\mu}-X^{v} F^{\mu}\right]
\]
\[
=\left[U^{\mu} m_{0} U^{v}+X^{\mu} F^{v}-U^{v} m_{o} U^{\mu}-X^{v} F^{\mu}\right]
\]
\[
=\left[U^{\prime} m_{0} U^{v}-U^{v} m_{0} U^{U}+X^{V} F^{v}-X^{v} F^{\mu}\right]
\]
\[
=\left[m_{0}\left(U^{\mu} U^{v}-U^{\vee} U^{\mu}\right)+X^{\mu} F^{\vee}-X^{\nu} F^{\mu}\right]
\]
\[
=\left[m_{o}\left(O^{\mu v}\right)+X^{\mu} F^{v}-X^{v} F^{\mu}\right]
\]
\[
=\left[X^{\mu} F^{v}-X^{v} F^{\mu}\right]
\]
\(\mathrm{d} / \mathrm{d} \tau\left[\mathrm{M}^{\mathrm{Lv}}\right]=\mathrm{T}^{\mathrm{Lv}}=\left[\mathrm{X}^{\mathrm{P} \mathrm{F}^{\mathrm{v}}}-\mathrm{XV}^{\mathrm{V}} \mathrm{F}^{\mu}\right]=\mathbf{X}^{\wedge} \mathrm{F}\)

\section*{SR 4-Tensor}
(2,0)-Tensor T \({ }^{\text {uv }}\) (1,1)-Tensor \(T^{\mu}{ }_{v}\) or \(T^{\prime}\)
\((0,2)\)-Tensor \(T_{\mu \nu}\) Invariants: Similarities

All \{4-Vectors:4-Tensors\} have an associated \{Lorentz Scalar Product:Trace\}
Lorentz Scalar Invariant
\(\mathbf{V} \cdot \mathbf{V}=\mathrm{V}^{\mathrm{N}} \mathrm{V}_{\mathrm{H}}=\left(\mathbf{v}^{0} \mathrm{v}^{0}-\mathbf{v} \cdot \mathbf{v}\right)=\left(\mathbf{v}^{0}{ }_{0}\right)^{2}\)
Each 4-Vector has a "magnitude" given by taking the Lorentz Scalar Product of itself.
\(\mathbf{V} \cdot \mathbf{V}=V^{\mu} \eta_{\mu v} V^{V}=V^{\mu} V_{\mu}=V_{v} V^{v}=\left(V_{0} V^{0}+V_{1} V^{1}+V_{2} V^{2}+V_{3} V^{3}\right)=\left(v^{0} v^{0}-\mathbf{V} \cdot \mathbf{v}\right)=\left(v^{0}\right)^{2}\)
4-Vector
\(\mathbf{V}=\mathrm{V}^{\mu}=\left(\mathrm{v}^{0}, \mathrm{v}\right)\)
The magnitude \({ }^{2}\) of \(\mathbf{V}\) is \(\mathbf{V} \cdot \mathbf{V}\), which can be (\(+/ 0 /-\))
Trace Tensor Invariant
Each 4-Tensor has a "magnitude" given by taking the Tensor Trace of itself.
\(\operatorname{Tr}\left[T^{+10}\right]=T_{\mu}=\left(T^{000}-T^{11}-T^{22}-T^{33}\right)=T\)
Trace \(\left[T^{\mu \mathrm{V}}\right]=\operatorname{Tr}\left[T^{\mu \mathrm{v}}\right]=\eta_{\mu v} T^{\mu v}=T_{\mu}=\mathrm{T}_{\mathrm{v}}{ }^{\mathrm{v}}=\left(\mathrm{T}_{0}{ }^{0}+\mathrm{T}_{1}{ }^{1}+\mathrm{T}_{2}{ }^{2}+\mathrm{T}_{3}{ }^{3}\right)=\left(\mathrm{T}^{00}-\mathrm{T}^{11}-\mathrm{T}^{22}-\mathrm{T}^{33}\right)=\mathrm{T}\) Note that the Trace runs down the diagonal of the 4 -Tensor.

Notice the similarities. In both cases there is a tensor contraction with the Minkowski Metric Tensor \(\eta_{\text {Iv }} \rightarrow\) Diag[\(+1,-1,-1,-1\)] ccaresian basis) with result (+/0/-)
ex. \(P \cdot P=(E / c)^{2}-p \cdot p=\left(E_{o} / c\right)^{2}=\left(m_{0} c\right)^{2}\)
which says that the "magnitude" of the 4-Momentum is the RestEnergy/c = RestMass* c

ex. Trace \(\left[\eta^{\mu V}\right]=\left(\eta^{00}-\eta^{11}-\eta^{22}-\eta^{33}\right)=1-(-1)-(-1)-(-1)=1+1+1+1=4\) which says that the "magnitude" of the Minkowski Metric = SpaceTime Dimension = 4

Some other SR Invariants include:

Lorentz Scalar Invariant
\(\mathbf{V} \cdot \mathbf{V}=\mathrm{V}^{\mu} \mathrm{V}_{\mu}=\left(\mathrm{v}^{0} \mathrm{v}^{0}-\mathbf{v} \cdot \mathbf{v}\right)=\left(\mathrm{v}^{0}\right)^{2}\)
4-Vector
\(\mathbf{V}=\mathrm{V}^{\mu}=\left(\mathrm{v}^{0}, \mathrm{v}\right)\)
\(\mathrm{d} \mathbf{v} / \mathrm{v}^{0}=\mathrm{d}^{3} \mathbf{v} / \mathrm{v}^{0}{ }_{\text {if }} \mathbf{v} \cdot \mathbf{v}=\) (constant)
Phase Space Invariant

\[
=\int n d^{3} \mathbf{x}=\int \gamma n_{0} d^{3} \mathbf{x}
\]

\(\rightarrow \mathrm{n}_{0} \mathrm{~V}_{\text {。 }}\)

EM Charge
\(Q=\left(-V_{0} / c\right) \int d T \cdot J\)
\(=\int \rho d^{3} \mathbf{x}=\int \gamma \rho_{o} d^{3} \mathbf{x}\)

Rest Volume \(\mathrm{V}_{0}=\int \gamma \mathrm{dV}=\int \gamma \mathrm{d}^{3} \mathbf{x}\) \(=-c \mathrm{~N} / \int \mathrm{d} \mathrm{T} \cdot \mathrm{N}=-\mathrm{cQ} / \int \mathbf{d T} \cdot \mathrm{J}\)

\section*{\(d^{4} \mathbf{X}\) \\ \(=c d t \cdot d x \cdot d y \cdot d z\) \(=\mathrm{c} \gamma \mathrm{d} \tau \cdot \mathrm{dx} \cdot \mathrm{dy} \cdot \mathrm{dz}\) \(=c d \tau \cdot \gamma \mathrm{~d}^{3} \mathbf{x}\) \(=\mathrm{cdt} \cdot \mathrm{d}^{3} \mathbf{x}\)}

\(d^{3} p d^{3} \mathbf{x}\)

\section*{\(=d p^{x} d p^{y} d p^{z} d x d y d z\)}
\(=d k^{x} \mathrm{dk}^{y} \mathrm{dk}^{z} \mathrm{dx} d y \mathrm{dz}\)
\((0,1)\)-Tensor \(\mathrm{V}_{\mu}=\left(\mathrm{V}_{0},-\mathrm{v}\right)\)
```

If $\mathbf{V} \cdot \mathbf{V}=$ (constant): , with $\mathbf{V}=\left(\mathrm{V}^{0}, \mathrm{v}\right)$
then $\mathrm{d}(\mathbf{V} \cdot \mathbf{V})=2^{*}(\mathbf{V} \cdot \mathrm{~d} \mathbf{V})=\mathrm{d}($ constant $)=0$
hence $(\mathbf{V} \cdot d \mathbf{V})=0=v^{0} d v^{0}-\mathbf{v} \cdot \mathrm{dv}$
$\mathrm{d} \mathrm{v}^{0}=\mathbf{v} \cdot \mathrm{d} \mathbf{v} / \mathrm{v}^{0}$

```
Some 4-Vectors have an alternate form of Tensor Invariant: \(\left(d v^{9} / v^{0}=d v / v^{0}\right)\) or \(\left(d^{3} v^{\prime} / v^{0^{0}}=d^{3} v / v^{0}\right)\)
in addition to the standard Lorentz Invariant \(\left.\mathbf{V} \cdot \mathbf{V}=V^{\mathcal{H}} \mathbf{V}_{\mu}=\left(\mathrm{v}^{0} \mathbf{v}^{0}-\mathbf{V} \cdot \mathbf{v}\right)=\left(\mathrm{v}^{0}\right)^{2}\right)^{2}\)
Generally: with \(\Lambda=\Lambda^{\mu^{\prime}}=\) Lorentz Boost Transform in the \(\beta\)-direction
\(\mathbf{V}^{\prime}=\Lambda \mathbf{V}\) : from which the temporal component \(\mathbf{v}^{0}=\left(\gamma \mathbf{v}^{0}-\gamma \boldsymbol{\beta} \cdot \mathbf{v}\right)\)
\(\mathrm{d}^{\prime} \mathbf{}^{\prime}=\Lambda \mathrm{d} \mathbf{V}\) : from which the spatial component \(\mathrm{d} \mathbf{v}^{\prime}=\left(\gamma \mathrm{dv}-\gamma \beta \mathrm{d} \mathrm{v}^{0}\right)\)
Combining:
\(\mathrm{d} \mathbf{v}^{\prime}=\left(\gamma \mathrm{d} \mathbf{v}-\gamma \boldsymbol{\beta}\left(\mathbf{v} \cdot \mathrm{d} \mathbf{v} / \mathrm{v}^{0}\right)\right)\)
\(d \mathbf{v}^{\prime}=\left(1 / \mathbf{v}^{0}\right)^{*}\left(\gamma \mathbf{v}^{0} \mathrm{~d} \mathbf{v}-\gamma \boldsymbol{\beta}(\mathbf{v} \cdot \mathrm{d} \mathbf{v})\right)\)
\(d \mathbf{v}^{\prime}=\left(1 / v^{0}\right)^{*}\left(\gamma v^{0}-\gamma \boldsymbol{\beta} \cdot \mathbf{v}\right) \mathrm{d} \mathbf{v}\)
\(d \mathbf{v}^{\prime}=\left(\gamma \mathbf{v}^{0}-\gamma \boldsymbol{\beta} \cdot \mathbf{v}\right)^{*}\left(1 / \mathbf{v}^{0}\right)^{*} d \mathbf{v}\)
\(d v^{\prime}=\left(v^{0} / v^{0}\right) d v\)
\(\mathrm{d} \mathbf{v}^{\prime} / \mathrm{V}^{0}=\mathrm{dv} / \mathrm{v}^{0}=\) Invariant of \(\mathbf{V}=\left(\mathrm{v}^{0}, \mathrm{v}\right)\) for \(\mathbf{V} \cdot \mathbf{V}=\) (constant)
So, for example:
P.P \(=\left(m_{0} c\right)^{2}=\) (constant, assuming rest mass doesn't change)
Thus, \(d p^{\prime} /\left(E^{\prime} / c\right)=d p /(E / c)=\) Invariant
Or: \(d p^{3} / E^{\prime}=d p / E \rightarrow d^{3} p / E=d p^{x} d p^{y} d p^{z} / E=\) Invariant, usually seen as \(\int F(\text { various invariants })^{*} d^{3} p / E=\operatorname{Invariant}\)

Lorentz Scalar Invariant
\(\mathbf{V} \cdot \mathbf{V}=V^{\mu} V_{\mu}=\left(\mathbf{v}^{0} v^{0}-\mathbf{v} \cdot \mathbf{v}\right)=\left(\mathbf{v}^{0}{ }_{o}\right)^{2}\)

\section*{4-Vector \\ \(\mathbf{V}=\mathrm{V}^{\mu}=\left(\mathrm{v}^{0}, \mathbf{v}\right)\)}

\section*{\(\mathrm{d} \mathbf{v} / \mathrm{v}^{0} \rightarrow \mathrm{~d}^{3} \mathrm{v} / \mathrm{v}^{0}{ }_{\text {if }} \mathbf{v} \cdot \mathbf{v}=\) (constant}

Phase Space Invariant

\section*{\(\mathbf{P} \cdot \mathbf{P}=\left(m_{0} \mathrm{C}\right)^{2}=\left(\mathrm{E}_{\mathrm{o}} / \mathrm{c}\right)^{2}\)}

4-Momentum \(P=(m c, p)=(E / c, p)\) \(d^{3} p / E\)

Invariant \(\mathrm{d}^{4} \mathrm{X}=-\left(\mathrm{V}_{\mathrm{o}}\right) \mathrm{dT} \cdot \mathrm{d} \mathbf{X}=-\left(\mathrm{dV} \mathrm{V}_{\mathrm{o}}\right) \mathrm{T} \cdot \mathrm{dX}=\mathrm{cdt} \mathrm{d}^{3} \mathrm{x}=\mathrm{cdt} \cdot \mathrm{dx} \cdot \mathrm{dy} \cdot \mathrm{dz}\) The 4D Position coords that are integrated to give a 4D volume: SI units [\(\mathrm{m}^{4}\)]

4-Differential dX = (cdt,dx); dR = (cdt, dr);
4-UnitTemporal \(\mathbf{T}=\gamma(1, \beta)=(\gamma, \gamma \beta)\)
4-UnitTemporalDifferential \(\mathbf{d T}=\mathrm{d}[(\gamma, \gamma \beta)]=(\mathrm{d}[\gamma], \mathrm{d}[\gamma \beta])\)
\(V=\int d V=\int d x \int d y \int d z=\iiint d x d y d z=\int d^{3} x\)
\(\mathrm{V}=\mathrm{V}_{\mathrm{o}} / \gamma=3 \mathrm{D}\) Spatial Volume: SI units \(\left[\mathrm{m}^{3}\right]\)
\(d V=d^{3} x=3 D\) Spatial Volume Element
\(\gamma=\mathrm{V}_{\mathrm{o}} \mathrm{N}\)
\(\mathrm{d} \gamma=-\left(\mathrm{V}_{\mathrm{o}} / \mathrm{V}^{2}\right) \mathrm{d} V\)
\(-\left(\mathrm{V}_{\mathrm{o}}\right) \mathrm{dT} \cdot \mathrm{dX}=\) Invariant, because (Rest Scalar * Lorentz Scalar Product) = Invariant
\(=-\left(\mathrm{V}_{\mathrm{o}}\right)(\mathrm{d}[\gamma], \mathrm{d}[\gamma \beta]) \cdot(\mathrm{cdt}, \mathrm{dx})\)
\(=-\left(\mathrm{V}_{\mathrm{o}}\right)(\mathrm{d}[\gamma] c \mathrm{dt}-\mathrm{d}[\gamma \beta] \cdot \mathrm{d} \mathbf{x})\)
\(=-\left(\mathrm{V}_{0}\right)\left(-\left(\mathrm{V}_{0} \mathrm{~V}^{2}\right) \mathrm{dVcdt}-\mathrm{d}[\gamma \beta] \cdot \mathrm{dx}\right)\)
\(=-\left(V_{0}\right)\left(-\left(V_{0} / V_{0}{ }^{2}\right) d V c d t-d[(1)(0)] \cdot d x\right)\) by taking the usual rest-case
\(=-\left(V_{0}\right)\left(-\left(V_{0} / V_{0}^{2}\right) d V c d t\right)\)
\(=-\left(\mathrm{V}_{\mathrm{o}}\right)\left(-\left(1 / \mathrm{V}_{\mathrm{o}}\right) \mathrm{dVcdt}\right)\)
\(=\mathrm{dVcdt}\)
= cdt dV
\(=\mathrm{cdt} \cdot \mathrm{dx} \cdot \mathrm{dy} \cdot \mathrm{dz}\)
\(=\operatorname{cdt} \mathrm{d}^{3} \mathbf{x}\)
\(=\mathrm{d}^{4} \mathbf{X}=\) Invariant
And, this makes sense.
T is a temporal 4-Vector with fixed magnitude: \(\mathbf{T} \cdot \mathbf{T}=1 . \mathrm{d}(\mathrm{T} \cdot \mathbf{T})=\mathrm{d}(1)=0=2(\mathrm{dT} \cdot \mathbf{T})\)
Since \((\mathrm{dT} \cdot \mathrm{T})=0\), dT must orthogonal to T and thus must be a spatial 4 -Vector

If dX is also spatial, then the Lorentz scalar product \(\{(\mathrm{dT} \cdot \mathrm{dX})=-\) magnitude \(\}\) will be negative with this choice of Minkowski Metric.
Thus, multiplying by -(\(\mathrm{V}_{0}\)) gives a positive volume element \(\left\{\mathrm{cdt} \mathrm{dx} \mathrm{dy} \mathrm{dz}=\mathrm{d}^{4} \mathbf{X}\right\}\)
It is sort of quirky though, that the temporal (cdt) comes from the \(\mathbf{d X}\) part, and the spatial (\(\mathrm{d}^{3} \mathbf{x}\)) comes from the \(\mathbf{d T}\) part.
\(\rho d^{3} \mathbf{x}=\rho^{\prime} d^{3} \mathbf{x}^{\prime}=\left(-V_{0} / c\right) d T \cdot J=\) Lorentz Scalar Invariant \(n d^{3} \mathbf{x}=n^{\prime} d^{3} \mathbf{x}^{\prime}=\left(-V_{0} / c\right) d T \cdot N=\) Lorentz Scalar Invariant

4-CurrentDensity \(\mathbf{J}=(\rho c, j)=\rho_{0} \mathbf{U}\)
4-NumberFlux \(\mathbf{N}=(\mathrm{nc}, \mathrm{n})=\mathrm{n}_{0} \mathbf{U}\)
4-UnitTemporal \(\mathbf{T}=\gamma(1, \beta)=(\gamma, \gamma \beta)\)
4-UnitTemporalDifferential \(\mathbf{d T}=\mathrm{d}[(\gamma, \gamma \beta)]=(\mathrm{d}[\gamma], \mathrm{d}[\gamma \beta])\)
\[
\begin{aligned}
& \mathrm{V}=\mathrm{V}_{\mathrm{o}} / \gamma \\
& \mathrm{d} \gamma=-\left(\mathrm{V}_{0} / \mathrm{V}^{2}\right) \mathrm{dV}
\end{aligned}
\]
\(\left(-V_{\mathrm{o}} / \mathrm{c}\right) \mathrm{dT} \cdot \mathrm{J}=\) Invariant, because (Rest Scalar * Lorentz Scalar Product) \(=\) Invariant \(=\left(-V_{0} / c\right)(d[\gamma], d[\gamma \beta]) \cdot(\rho c, j)\)
\(=\left(-V_{0} / c\right)(\mathrm{d}[\gamma] \rho c-\mathrm{d}[\gamma \beta] \cdot \mathrm{j})\)
\(=\left(-V_{/} c\right)\left(-\left(V^{\prime} / V^{2}\right)(d V)(\rho c)-d[\gamma \beta] \cdot j\right)\)
\(=\left(-\mathrm{V}_{\mathrm{V}} / \mathrm{c}\right)\left(-\left(\mathrm{V}_{\mathrm{N}} \mathrm{N}_{\mathrm{o}}{ }^{2}\right)(\mathrm{dV})(\mathrm{\rho c})-\mathrm{d}[(1) 0] \cdot \mathrm{j}\right)\)
\(=\left(-V_{0} / c\right)\left(-\left(V_{0} / V_{0}{ }^{2}\right)(d V)(\rho c)\right)\)
\(=(\mathrm{dV} / \mathrm{c})(\mathrm{pc})\)
\(=(\rho c)(d V / c)\)
\(=(\rho)(d V)\)
\(=\rho d^{3} \mathbf{x}\)
Total Charge \(\quad Q=\int \gamma \rho_{o} d^{3} x=\int \rho d^{3} x=\) Lorentz Scalar Invariant Total Particle \# \(\quad N=\int_{\gamma n_{0}} d^{3} \mathbf{x}=\int n d^{3} \mathbf{x}=\) Lorentz Scalar Invariant Total RestVolume \(\mathrm{V}_{0}=\int \gamma(1) \mathrm{d}^{3} \mathbf{x} \quad=\) Lorentz Scalar Invariant

This also gives an alternate way to define the RestVolume Invariant \(\mathrm{V}_{\mathrm{o}}\). \(\left(-V_{o} / c\right) d T \cdot N=n d^{3} \mathbf{X}\)
\(\mathbf{N}=\int n d^{3} \mathbf{x}=\int\left(-V_{0} / c\right) d T \cdot \mathbf{N}\)
\(\mathrm{cN} / \mathrm{V}_{0}=-\int \mathrm{dT} \cdot \mathbf{N}\)
\(\mathrm{V}_{\mathrm{o}}=-\mathrm{cN} / \int \mathrm{dT} \cdot \mathbf{N}\)

\(d^{4} P=\left(V_{\left.P_{0}\right)}\right) d T \cdot d P=(d E / c) d^{3} p=(d E / c) d^{x} d^{y} d p^{2}\)
\(\mathrm{d}^{4} \mathrm{~K}=\left(\mathrm{V}_{\mathrm{K}}\right) \mathrm{dT} \cdot \mathrm{dK}=(\mathrm{d} \omega / \mathrm{c}) \mathrm{d}^{\mathrm{s}} \mathrm{k}=(\mathrm{d} \omega / \mathrm{c}) \mathrm{dk}^{x} \mathrm{dk}^{y} \mathrm{dk}^{2}\)
The 4D Momentum coords that are integrated to give a 4D Momentum Volume: SI Units \(\left[(\mathrm{kg} \cdot \mathrm{m} / \mathrm{s})^{4}\right]\) The 4D WaveVector coords that are integrated to give a 4D WaveVector Volume: SI Units [(1/m) \(\left.)^{4}\right]\)

4-DifferentialMomentum dP = (dE/c,dp)
4-DifferentialWaveVector \(\mathrm{dK}=(\mathrm{d} \omega / \mathrm{c}, \mathrm{dk})\)
4-UnitTemporal \(\mathbf{T}=\gamma(1, \beta)=(\gamma, \gamma \beta)\)
4-Unit TemporalDifferential \(\mathrm{dT}=\mathrm{d}[(\gamma, \gamma \beta)]=(\mathrm{d}[\gamma], \mathrm{d}[\gamma \beta])\)

\(\mathrm{V}_{\mathrm{P}}=\gamma\left(\mathrm{V}_{\mathrm{P}_{\mathrm{o}}}\right)=3 \mathrm{D}\) Volume in Momentum Space: SI Units \(\left[(\mathrm{kg} \cdot \mathrm{m} / \mathrm{s})^{3}\right]\)
\(\mathrm{dV}_{\mathrm{P}}=\mathrm{d} \gamma\left(\mathrm{V}_{\mathrm{P}_{0}}\right)=3 \mathrm{D}\) Volume Element in Momentum Space
\(\gamma=\left(V_{P}\right) /\left(V_{P_{0}}\right)\)
\(\mathrm{d} \gamma=\left(\mathrm{dV} \mathrm{V}_{\mathrm{P}}\right) /\left(\mathrm{V}_{\mathrm{P}_{0}}\right)\)
\(\left(\mathrm{V}_{\mathrm{Po}}\right) \mathrm{dT} \cdot \mathrm{dP}=\) Invariant, because Rest Scalar * Lorentz Scalar Product
\(\left.=\left(V_{P_{o}}\right)\right)(\mathrm{d}[\gamma], \mathrm{d}[\gamma \beta]) \cdot(\mathrm{dE} / \mathrm{c}, \mathrm{dp})\)
\(=\left(V_{P_{o}}\right)(d[\gamma] d E / c-d[\gamma \beta] \cdot d p)\)
\(=\left(V_{P_{o}}\right)\left(\left(d V_{P} / V_{P_{o}}\right) d E / c-d[\gamma \beta] \cdot d p\right)\)
\(\left.=\left(\mathrm{V}_{\mathrm{Po}}\right)\right)\left(\left(\mathrm{d} \mathrm{V}_{\mathrm{P}} / \mathrm{V}_{\mathrm{PP}}\right) \mathrm{dE} / \mathrm{c}-\mathrm{d}[(1)(\mathbf{0})] \cdot \mathrm{dp}\right)\) by taking the usual rest-case
\(\left.=\left(\mathrm{V}_{\mathrm{PO}}\right)\right)\left(\left(\mathrm{d} \mathrm{V}_{\mathrm{P}} / \mathrm{VPO}_{\mathrm{Po}}\right) \mathrm{dE} / \mathrm{c}\right)\)
\(=\left(\mathrm{d} \mathrm{V}_{\mathrm{P}}\right)(\mathrm{dE} / \mathrm{c})\)
\(=d^{3} \mathrm{p}(\mathrm{dE} / \mathrm{c})\)
\(=(\mathrm{dE} / \mathrm{c}) \mathrm{d}^{3} \mathrm{p}\)
\(=(\mathrm{dE} / \mathrm{c}) \mathrm{dp} \mathrm{p}^{\mathrm{d}} \mathrm{p}^{\mathrm{y}} \mathrm{dp} \mathrm{p}^{\mathrm{x}}\)
\(=d^{4} \mathbf{P}=\) Invariant
Likewise, \(\mathrm{d}^{4} \mathrm{~K}=\) Invariant
(0,0)-Tensor S or So
Lorentz Scalar
\(=\left(V_{P_{0} 0}\right) d V\left(d V_{P} /\left(V_{P_{0}}\right)\right)\)
\(=d V d V_{p}\)
\(=d V_{p} d V\)
\(=\mathrm{d}^{3} \mathrm{p} \mathrm{d}^{3} \mathrm{x}=\) Invariant
Likewise, \(d^{3} k d^{3} \mathbf{x}=\) Invariant

\(\int F\left[\right.\) various Invariants]d \({ }^{3} \mathbf{k} \mathrm{~d}^{3} \mathbf{x}\)
\((0,1)\)-Tensor \(V_{\mu}=\left(v_{0}-\mathrm{v}\right)\)

Any SR Tensor \(T^{\mu v}=\left(S^{\mu v}+A^{\mu v}\right)\) can be decomposed into parts:
Symmetric \(\quad S^{\mu v}=T^{(\mu v)}=\left(T^{\mu v}+T^{v \mu}\right) / 2 \quad\) with \(S^{\mu v}=+S^{v \mu}\)

Anti-Symmetric \(\quad A^{\mu v}=T^{[\mathrm{Nv}]}=\left(T^{\mathrm{pv}}-\mathrm{T}^{\mathrm{vv}}\right) / 2 \quad\) with \(A^{\mu v}=-\mathrm{A}^{\mathrm{vN}}\)
\(S^{\mu v}+A^{\mu v}=\left(T^{\mu v}+T^{v \mu}\right) / 2+\left(T^{\mu v}-T^{v \mu}\right) / 2=T^{\mu v} / 2+T^{\mu v} / 2+T^{v \mu} / 2-T^{v \mu} / 2=T^{\mu v}+0=T^{\mu v}\)

Independent components: \(\left\{4^{2}=16=10+6\right\}\)
Max 16 possible

Importantly, the Contraction of any
Symmetric tensor
with any
Anti-Symmetric tensor
on the same pair of indices is always 0 .
Note These don't have to be composed from a single general tensor.
\(S^{\mu v} A_{\mu v}=0\)
Proof:
\(S^{\mu v} A_{\mu v}\)
\(=S^{v u} A_{v u}:\) because we can switch dummy indices
\(=\left(+S^{\mu v}\right) A_{\mathrm{vu}}\) : because of symmetry
\(=S^{\mu v}\left(-A_{\mu v}\right)\) : because of anti-symmetry
\(=-S^{\mu v} A_{\mu v}\)
\(=0\) : because the only solution of \(\{c=-c\}\) is 0
Physically, the anti-symmetric part contains rotational information and the symmetric part contains information about isotropic scaling and anisotropic shear.

SR 4-Tensor
(2,0)-Tensor T \({ }^{\mu \nu}\) (1,1)-Tensor \(\mathrm{T}^{\mu}{ }_{v}\) or \(\mathrm{T}_{\mu}\)
(0,2)-Tensor \(T_{\text {uv }}\)
\((0,1)\)-Tensor \(\mathrm{V}_{\mu}=\left(\mathrm{v}_{0},-\mathrm{v}\right)\)

\footnotetext{
Trace \(\left[T^{\mu \mathrm{v}}\right]=\eta_{\mu \mathrm{v}} T^{\mu \mathrm{v}}=\mathrm{T}_{\mu}{ }_{\mu}=T\)
\(\mathbf{V} \cdot \mathbf{V}=\mathrm{V}^{\mu} \eta_{\mu \mathrm{v}} \mathrm{V}^{\mathrm{V}}=\left[\left(\mathrm{v}^{0}\right)^{2}-\mathbf{v} \cdot \mathbf{v}\right]=\left(\mathrm{v}^{0}{ }_{\mathrm{o}}\right)^{2}\)
= Lorentz Scalar Invariant
}

Any Symmetric SR Tensor Siv \(^{\mu \mathrm{c}}=\left(\mathrm{T}_{\text {iso }}{ }^{\mathrm{kv}}+\mathrm{T}_{\text {aniso }}{ }^{\mathrm{kv}}\right)\) can be decomposed into parts:
Isotropic \(\quad T_{i \text { iso }}{ }^{\mu \mathrm{VV}}=(1 / 4)\) Trace[S \(\mathrm{S}^{\mathrm{\mu V}]} \eta^{\mu \mathrm{VV}}=(\mathrm{T}) \eta^{\mu \mathrm{VV}}\)
Anisotropic \(\mathrm{T}_{\text {aniso }}{ }^{\mu \mathrm{Vv}}=\mathrm{S}^{\mu \mathrm{Vv}}-\mathrm{T}_{\text {iso }}{ }^{\mu \mathrm{Vv}}\)
The Anisotropic part is Traceless by construction, and the Isotropic part has the same Trace as the original Symmetric Tensor. The Minkowski Metric is a symmetric, isotropic 4-tensor with \(\mathrm{T}=1\).

Independent components:
Max 10 possible

Importantly, the Contraction of any
Symmetric tensor with any
Anti-Symmetric tensor on the same index is always 0 .
Note These don't have to be composed from a single general tensor.
\(S^{\mu v} A_{\mu v}=0\)

\section*{Proof:}
\(S^{\mu v} A_{\mu v}\)
\(=S^{v u} A_{v y}\) : because we can switch dummy indices \(=\left(+S^{\mu v}\right) A_{y u}\) : because of symmetry
\(=\operatorname{Siv}^{\text {Iv }}\left(-A_{\text {IV }}\right)\) : because of anti-symmetry
\(=-S^{\mu v} A_{\mu v}\)
\(=0\) : because the only solution of \(\{c=-c\}\) is 0
Physically, the isotropic part represents a direction independent transformation (e.g., a uniform scaling or uniform pressure); the deviatoric part represents the distortion

An Isotropic Tensor has the same components in all possible coordinate-frames.

Rank 0: All Scalars are isotropic
Rank 1: There are no non-zero isotropic vectors Rank 2: Most general isotropic \(2^{\text {nd }}\) rank tensor must equal to \(\lambda \delta^{\mu}{ }_{v}=\lambda \eta^{\mu} v\) for some scalar \(\lambda\).
Rank 3: Most general isotropic \(3^{\text {rd }}\) rank tensor must equal to \(\lambda \varepsilon^{\text {jik }}\) for some scalar \(\lambda\).
Rank 4: Most general isotropic \(4^{\text {th }}\) rank tensor must equal to \(a \delta^{\mu v} \delta^{a \beta}+b \delta^{\mu a} \delta^{v \beta}+c \delta^{\nu \beta} \delta^{v a}\) for scalars \(\{a, b, c)\).

SR 4-Tensor
(2,0)-Tensor T \({ }^{\mu v}\) (1,1)-Tensor \(\mathrm{T}^{\mu}\) or \(\mathrm{T}_{\mu}{ }^{\wedge}\)
\((0,2)\)-Tensor \(T_{\mu v}\)

\section*{(1,0)-Tensor \(\mathrm{V}^{\mu}=\mathbf{V}=\left(\mathrm{v}^{0}, \mathbf{v}\right)\)}

SR 4-CoVector:OneForm
\((0,1)\)-Tensor \(\mathrm{V}_{\mu}=\left(\mathrm{v}_{0},-\mathrm{v}\right)\)

SR 4-Scalar
\((0,0)\)-Tensor \(S\) or \(S_{0}\))
Lorentz Scalar

Maximum Degrees of Freedom (DoF) = \# of possible independent components
\(=(\text { Tensor dimension })^{\wedge}(\) Tensor rank \()\)

\section*{SRQM Study: SR 4-Tensors 4-Tensor Decomposition based on Tensor Invariants}
General (rank=2) 4-Tensor T \({ }^{\mu v}\)
\[
=\mathrm{T}_{\text {symm }}{ }^{\mu v}+\mathrm{T}_{\text {anti-symm }}^{\mu v}
\]

Maximum Degrees of Freedom (DoF) = \# of possible independent components
\(=(\text { Tensor dimension })^{\wedge}(\) Tensor rank \()\)

\footnotetext{
Trace \(T^{T v]}=\eta_{I V} T^{T v V}=T^{\nu_{\mu}}=T\)
\(\mathbf{V} \cdot \mathbf{V}=\mathrm{V}^{\mathrm{V}} \eta_{\mathrm{rv}} \mathrm{V}^{\mathrm{V}}=\left[\left(\mathrm{v}^{0}\right)^{2}-\mathbf{v} \cdot \mathbf{v}\right]=\left(\mathrm{v}_{0}^{0}\right)^{2}\)
= Lorentz Scalar Invariant
}

SR 4-Tensor
(2,0)-Tensor T \({ }^{\mu \nu}\) \((1,1)\)-Tensor \(\mathrm{T}^{\mu}{ }_{\mathrm{v}}\) or \(\mathrm{T}_{\mu}{ }^{4}\)
\((0,2)\)-Tensor \(\mathrm{T}_{\mathrm{uv}}\)

SR 4-Vector \((1,0)\)-Tensor \(\mathrm{V}^{\boldsymbol{\mu}}=\mathbf{V}=\left(\mathrm{v}^{0}, \mathbf{v}\right)\) SR 4-CoVector:OneForm \((0,1)\)-Tensor \(\mathrm{V}_{\mu}=\left(\mathrm{V}_{0},-\mathrm{v}\right)\)

Maximum Degrees of Freedom (DoF) = \# of possible independent components \(=(\text { Tensor dimension })^{\wedge}(\) Tensor rank \()\)

\footnotetext{
Trace \(\left[T^{\nu v}\right]=\eta_{I v} T^{\nu v}=T_{\mu}^{\mu_{\mu}}=T\) \(\mathbf{V} \cdot \mathbf{V}=\mathrm{V}^{\mathrm{V}} \eta_{\mathrm{rv}} \mathrm{V}^{\mathrm{V}}=\left[\left(\mathrm{v}^{0}\right)^{2}-\mathbf{v} \cdot \mathbf{v}\right]=\left(\mathrm{V}_{0}^{0}\right)^{2}\)
= Lorentz Scalar Invariant
}

Trace
Tensor Invariant
(0,0)-Tensor = Lorentz Scalar S: Has either (0) or (1) Tensor Invariant, depending on exact meaning (S) itself is Invariant
(1,0)-Tensor \(=4\)-Vector \(V^{\prime}\) : Has (1) Tensor Invariant \(=\) The Lorentz Scalar Product \(V \cdot V=V^{\top} \eta_{\mu v} V^{V}=\eta_{u v} V^{\top} V^{V}=\operatorname{Tr}\left[V^{4} V^{V}\right]=V_{v} V^{V}=\left(v_{0} v^{0}+v_{1} v^{1}+v_{2} v^{2}+v_{3} v^{3}\right)=\left(v^{0} v^{0}-v \cdot v\right)=\left(v_{0}\right)^{2}\)

\section*{\(\mathbf{V}=\mathrm{V}^{\mu}=\left(\mathrm{v}^{\mu}\right)=\left(\mathrm{v}^{0}, \mathrm{v}^{1}, \mathrm{v}^{2}, \mathrm{v}^{3}\right) \quad \mathbf{V} \cdot \mathbf{V}=\left(\mathrm{v}^{0} \mathrm{v}^{0}-\mathbf{v} \cdot \mathbf{v}\right)=\left(\mathrm{v}^{0}\right)^{2}\)}
(2,0)-Tensor \(=4\)-Tensor \(T^{p v}:\) Has (4+) Tensor Invariants (though not all independent)
a) \(\mathrm{T}_{a}{ }_{a}=\) Trace \(=\) Sum of EigenValues for (1,1)-Tensors (mixed)
b) \(\left.\mathrm{T}^{[}{ }_{[\mathrm{T}} \mathrm{T}^{\beta}{ }^{\beta}\right]=\) Asymm Bi-Product \(\rightarrow\) Inner Product
c) \(T^{\alpha}{ }_{[\alpha} T^{\beta}{ }_{\beta} T^{\gamma}{ }_{V]}=\) Asymm Tri-Product \(\rightarrow\) ?Name?
d) \(T^{\alpha}{ }_{[\alpha} T^{\beta}{ }_{\beta} T^{\gamma}{ }_{\gamma} T^{\delta}{ }_{0]}=\) Asymm Quad-Product \(\rightarrow 4 D\) Determinant \(=\) Product of EigenValues for \((1,1)\)-Tensors

 and, since linear combinations of invariants are invariant:
Examine just the \(\left(\mathrm{T}^{\mathrm{ad}} \mathrm{T}_{\mathrm{\delta a}}\right)\) part, which for symmlasymm is \((\pm)\left(\mathrm{T}^{\mathrm{a}^{8}} \mathrm{~T}_{\mathrm{ab}}\right)\) ie. the InnerProduct Invariant
a): \(\operatorname{Trace}\left[T^{\mu v}\right]=\operatorname{Tr}\left[T^{\mu v}\right]=\eta_{\mu v} T^{\mu v}=T_{\mu}{ }^{\mu}=T_{v}{ }^{v}=\left(T_{0}{ }^{0}+T_{1}{ }^{1}+T_{2}{ }^{2}+T_{3}{ }^{3}\right)=\left(T^{00}-T^{11}-T^{22}-T^{33}\right)=(T)\) for anti-symmetric: \(=0\)
b): InnerProduct \(T_{\mu v} T^{\mu v}=T_{00} T^{00}+T_{i 0} T^{i 0}+T_{0 j} T^{0 j}+T_{i j} T^{\mathrm{jj}}=\left(T^{00}\right)^{2}-\Sigma_{i}\left[T^{i 0}\right]^{2}-\Sigma_{[}\left[T^{0 j}\right]^{2}+\Sigma_{i, j}\left[T^{i j}\right]^{2}\)
for symmetric | anti-symmetric: \(=\left(T^{00}\right)^{2}-2 \Sigma_{[}\left[T^{i 0}\right]^{2}+\Sigma_{i, j}\left[T^{i j}\right]^{2}=\Sigma_{\mu=v}\left[T^{\mu v}\right]^{2}-2 \Sigma_{i}\left[T^{00}\right]^{2}+2 \Sigma_{i>j}\left[T_{i j}^{i j}\right]^{2}\)
 for anti-symmetric: = 0
d): Determinant \(\operatorname{Det}\left[T^{\mu v}\right]=?=-(1 / 2) \epsilon_{\alpha \beta v \delta} T^{\alpha \beta} T^{\nu}\)

If I got all the math right..
for anti-symmetric: Det[\(\left.T^{\text {NV }}\right]=\operatorname{Pfaffian[}\left[T^{v v}\right]^{2}\) (The Pfaffian is a special polynomial of the matrix entries)

The lowered-indices form of a tensor just negativizes the (time-space) and (space-time) sections of the upper-indices tensor

Invariants sometimes seen as
\(I_{1}=(1 / 1) \operatorname{Tr}\left[\left(T^{\text {NVV }}\right)^{1}\right]\)
\(\mathrm{I}_{2}=(1 / 2) \operatorname{Tr}\left[\left(T^{\mathrm{Tvv}}\right)^{2}\right]\)
\(I_{3}=(1 / 3) \operatorname{Tr}\left[\left(T^{\mathrm{sV}}\right)^{3}\right]\)
\(\mathrm{I}_{4}=(1 / 4) \operatorname{Tr}\left[\left(T^{\mathrm{Hv}}\right)^{4}\right]\)

SR 4-Tensor
(2,0)-Tensor T \({ }^{\mu v}\) (1,1)-Tensor \(T^{\mu}{ }_{v}\) or \(T_{\nu}\)
\((0,2)\)-Tensor \(\mathrm{T}_{\mu v}\)

SR 4-Vector
(1,0)-Tensor \(\mathrm{V}^{\mu}=\mathbf{V}=\left(\mathrm{v}^{0}, \mathbf{v}\right)\) SR 4-CoVector:OneForm \((0,1)\)-Tensor \(\mathrm{V}_{\mu}=\left(\mathrm{v}_{0},-\mathrm{v}\right)\)

SR 4-Scalar
\((0,0)\)-Tensor \(S\) or \(S_{0}\)
Lorentz Scalar

SRQM Study: SR 4-Tensors

\section*{SR Tensor Invariants Tensor Gymnastics}

\section*{\(\mathrm{A}^{\mathrm{a}} \mathrm{a}_{\mathrm{a}}=\operatorname{Tr}[\mathbf{A}]\)}
\(A^{a}{ }_{[a} A^{b}{ }_{b]}=A_{a}^{a} A_{b}{ }_{b}-A^{a}{ }_{b} A^{b}{ }_{a}=(\operatorname{Tr}[\mathbf{A}])^{2}-\operatorname{Tr}\left[A^{2}\right]\)
\[
\begin{aligned}
& \mathrm{A}^{\mathrm{a}}{ }_{[\mathrm{a}} \mathrm{A}^{\mathrm{b}}{ }_{\mathrm{b}} \mathrm{~A}^{\mathrm{c}}{ }_{\mathrm{c}]} \\
& =+A^{a}{ }_{a} A^{b}{ }_{b} A^{c}{ }_{c}-A^{a}{ }_{a} A^{b}{ }_{c} A^{c}{ }_{b}+A^{a}{ }_{b} A^{b}{ }_{c} A^{c}{ }_{a}-A^{a}{ }_{b} A^{b}{ }_{a} A^{c}{ }_{c}+A^{a}{ }_{c} A^{b}{ }_{a} A^{c}{ }_{b}-A^{a}{ }_{c} A^{b}{ }_{b} A^{c}{ }_{a} \\
& =+\left(A^{a}{ }_{a} A^{b}{ }_{b} A^{c}{ }_{c}\right)-\left(A^{a}{ }_{a} A^{b}{ }_{c} A^{c}{ }_{b}+A^{a}{ }_{b} A^{b}{ }_{a} A^{c}{ }_{c}+A^{a}{ }_{c} A^{b}{ }_{b} A^{c}{ }_{a}\right)+\left(A^{a}{ }_{b} A^{b}{ }_{c} A^{c}{ }_{a}+A^{a}{ }_{c} A^{b}{ }_{a} A^{c}{ }_{b}\right) \\
& =+\left(A^{a}{ }_{a} A^{b}{ }_{b} A^{c}{ }_{c}\right)-\left(A^{a}{ }_{a} A^{b}{ }_{c} A^{c}{ }_{b}+A^{c}{ }_{c} A^{a}{ }_{b} A^{b}{ }_{a}+A^{b}{ }_{b} A^{a}{ }_{c} A^{c}{ }_{a}\right)+\left(A^{a}{ }_{b} A^{b}{ }_{c} A^{c}{ }_{a}+A^{a}{ }_{c} A^{c}{ }_{b} A^{b}{ }_{a}\right) \\
& =+(\operatorname{Tr}[\mathbf{A}])^{3}-3^{*}(\operatorname{Tr}[\mathbf{A}])\left(\operatorname{Tr}\left[\mathbf{A}^{2}\right]\right)+2^{*}\left(\operatorname{Tr}\left[\mathbf{A}^{3}\right]\right)
\end{aligned}
\]
```

A a}\mp@subsup{}{[a}{}\mp@subsup{A}{}{b}\mp@subsup{}{b}{}\mp@subsup{A}{}{c}\mp@subsup{}{c}{}\mp@subsup{A}{}{d}\mp@subsup{}{d]}{}

```



```

=
+A A}\mp@subsup{}{a}{}\mp@subsup{A}{}{b}\mp@subsup{}{b}{}\mp@subsup{A}{}{c}\mp@subsup{}{c}{}\mp@subsup{A}{}{d}\mp@subsup{}{d}{
-A A}\mp@subsup{}{a}{}\mp@subsup{A}{}{b}\mp@subsup{}{b}{}\mp@subsup{A}{}{c}\mp@subsup{}{d}{}\mp@subsup{A}{}{d}\mp@subsup{}{c}{d}-\mp@subsup{A}{}{a}\mp@subsup{}{a}{}\mp@subsup{A}{}{b}\mp@subsup{}{d}{}\mp@subsup{A}{}{c}\mp@subsup{}{b}{}\mp@subsup{}{b}{}\mp@subsup{A}{}{d}\mp@subsup{}{d}{}-\mp@subsup{A}{}{a}\mp@subsup{}{a}{}\mp@subsup{A}{}{b}\mp@subsup{}{d}{}\mp@subsup{}{d}{}\mp@subsup{A}{}{c}\mp@subsup{}{c}{}\mp@subsup{A}{}{d}\mp@subsup{}{b}{

```



```

=
+(Tr[A])4
-6*}(\operatorname{Tr}[\mathbf{A}]\mp@subsup{)}{}{2}(\operatorname{Tr}[\mp@subsup{\mathbf{A}}{}{2}]
+8*(\operatorname{Tr}[\mathbf{A}])(\operatorname{Tr}[\mp@subsup{\mathbf{A}}{}{3}])
+3*}(\operatorname{Tr}[\mp@subsup{\mathbf{A}}{}{2}]\mp@subsup{)}{}{2
-6*(Tr[\mp@subsup{A}{}{4}])
=
+(Tr[\mathbf{A}]\mp@subsup{)}{}{4}-\mp@subsup{6}{}{*}(\operatorname{Tr}[\mathbf{A}]\mp@subsup{)}{}{2}(\operatorname{Tr}[\mp@subsup{\mathbf{A}}{}{2}])+\mp@subsup{8}{}{*}(\operatorname{Tr}[\mathbf{A}])(\operatorname{Tr}[\mp@subsup{\mathbf{A}}{}{3}])+\mp@subsup{3}{}{*}(\operatorname{Tr}[\mp@subsup{\mathbf{A}}{}{2}]\mp@subsup{)}{}{2}-\mp@subsup{6}{}{*}(\operatorname{Tr}[\mp@subsup{\mathbf{A}}{}{4}])

```

SR 4-Scalar (0,0)-Tensor S or S Lorentz Scalar
\(\operatorname{Det}\left[T^{a}{ }_{a}\right]=\Pi_{k}\left[\lambda_{k}\right]\) with \(\left\{\lambda_{k}\right\}=\) Eigenvalues Characteristic Eqns: \(\operatorname{Det}\left[T^{a}{ }_{a}-\lambda_{k} I_{4}\right]=0\)

\section*{SRQM Study: SR 4-Tensors SR Tensor Invariants}

\section*{General Cayley-Hamilton Theorem}

Characteristic Polynomial: \(p(\lambda)=\operatorname{Det}\left[A-\lambda I_{(d)}\right]\)

The following are the Principle Tensor Invariants for dimensions \(1 . .4\)
\(\operatorname{dim}=1: A^{1}+c_{0} A^{0}=0: A-I_{1} I_{(1)}=0\)
\(I_{1}=\operatorname{tr}[\mathrm{A}]=\operatorname{Det}_{10}[\mathrm{~A}]=\lambda_{1}\)
\(\operatorname{dim}=2: A^{2}+c_{1} A^{1}+c_{0} A^{0}=0: A^{2}-I_{1} A^{1}+I_{2} I_{(2)}=0\)
\(I_{1}=\operatorname{tr}[\mathrm{A}]=\Sigma[\) Eigenvalues \(]=\lambda_{1}+\lambda_{2}\)
\(I_{2}=\left(\operatorname{tr}[\mathrm{A}]^{2}-\operatorname{tr}\left[\mathrm{A}^{2}\right]\right) / 2=\operatorname{Det}_{20}[\mathrm{~A}]=\Pi[\) Eigenvalues \(]=\lambda_{1} \lambda_{2}\)
\(\operatorname{dim}=3: A^{3}+c_{2} A^{2}+c_{1} A^{1}+c_{0} A^{0}=0: A^{3}-I_{1} A^{2}+I_{2} A^{1}-I_{3} I_{(3)}=0\)
\(I_{1}=\operatorname{tr}[\mathrm{A}]=\Sigma[\) Eigenvalues \(]=\lambda_{1}+\lambda_{2}+\lambda_{3}\)
\(I_{2}=\left(\operatorname{tr}[A]^{2}-\operatorname{tr}\left[A^{2}\right]\right) / 2=\lambda_{1} \lambda_{2}+\lambda_{1} \lambda_{3}+\lambda_{2} \lambda_{3}\)
\(I_{3}=\left[(\operatorname{tr} \mathrm{A})^{3}-3 \operatorname{tr}\left(\mathrm{~A}^{2}\right)(\operatorname{tr} \mathrm{A})+2 \operatorname{tr}\left(\mathrm{~A}^{3}\right)\right] / 6=\operatorname{Det}_{3}[\mathrm{~A}]=\Pi[\) Eigenvalues \(]=\lambda_{1} \lambda_{2} \lambda_{3}\)
\(\operatorname{dim}=4: A^{4}+c_{3} A^{3}+c_{2} A^{2}+c_{1} A^{1}+c_{0} A^{0}=0: A^{4}-I_{1} A^{3}+I_{2} A^{2}-I_{3} A^{1}+I_{4} I_{(4)}=0\)
\(I_{1}=\operatorname{tr}[\mathrm{A}]=\Sigma[\) Eigenvalues \(]=\lambda_{1}+\lambda_{2}+\lambda_{3}+\lambda_{4}\)
\(I_{2}=\left(\operatorname{tr}[A]^{2}-\operatorname{tr}\left[\mathrm{A}^{2}\right]\right) / 2=\lambda_{1} \lambda_{2}+\lambda_{1} \lambda_{3}+\lambda_{1} \lambda_{4}+\lambda_{2} \lambda_{3}+\lambda_{2} \lambda_{4}+\lambda_{3} \lambda_{4}\)
\(I_{3}=\left[(\operatorname{tr} A)^{3}-3 \operatorname{tr}\left(\mathrm{~A}^{2}\right)(\operatorname{tr} \mathrm{A})+2 \operatorname{tr}\left(\mathrm{~A}^{3}\right)\right] / 6=\lambda_{1} \lambda_{2} \lambda_{3}+\lambda_{1} \lambda_{2} \lambda_{4}+\lambda_{1} \lambda_{3} \lambda_{4}+\lambda_{2} \lambda_{3} \lambda_{4}\)
\(I_{4}=\left((\operatorname{tr} \mathrm{A})^{4}-6 \operatorname{tr}\left(\mathrm{~A}^{2}\right)(\operatorname{tr} \mathrm{A})^{2}+3\left(\operatorname{tr}\left(\mathrm{~A}^{2}\right)\right)^{2}+8 \operatorname{tr}\left(\mathrm{~A}^{3}\right) \operatorname{tr} \mathrm{A}-6 \operatorname{tr}\left(\mathrm{~A}^{4}\right)\right) / 24=\operatorname{Det}_{4 \mathrm{D}}[\mathrm{A}]=\Pi[\) Eigenvalues \(]=\lambda_{1} \lambda_{2} \lambda_{3} \lambda_{4}\)

4D Invariants
\(I_{0}=\Sigma[\) Unique Eigenvalue Naughts] \(=1\)
\(I_{1}=\Sigma[\) Unique Eigenvalue Singles \(]=\lambda_{1}+\lambda_{2}+\lambda_{3}+\lambda_{4}\)
\(I_{2}=\Sigma\) [Unique Eigenvalue Doubles] \(=\lambda_{1} \lambda_{2}+\lambda_{1} \lambda_{3}+\lambda_{1} \lambda_{4}+\lambda_{2} \lambda_{3}+\lambda_{2} \lambda_{4}+\lambda_{3} \lambda_{4}\)
\(I_{3}=\Sigma\) [Unique Eigenvalue Triples] \(=\lambda_{1} \lambda_{2} \lambda_{3}+\lambda_{1} \lambda_{2} \lambda_{4}+\lambda_{1} \lambda_{3} \lambda_{4}+\lambda_{2} \lambda_{3} \lambda_{4}\)
\(I_{4}=\Sigma\) [Unique Eigenvalue Quadruples] \(=\lambda_{1} \lambda_{2} \lambda_{3} \lambda_{4}\)
Each dimension gives the number of elements from it's row in Pascal's Triangle :)

SRQM Study: SR 4-Tensors
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{l}
General Cayley-Hamilton Theorem \\
 \(\mathbf{d}=\operatorname{dimension}, \mathbf{A}^{0}=\operatorname{Identity}(\mathbf{d})=\mathbf{I}_{(\mathrm{d})}\) \(I_{0} A^{4}-I_{1} A^{3}+I_{2} A^{2}-I_{3} A^{1}+I_{4} A^{0}=0\) : for \(4 D\) Characteristic Polynomial: \(p(\lambda)=\operatorname{Det}\left[A-\lambda \mathbf{I}_{(d)}\right]\) \\
Tensor Invariants \(\boldsymbol{I}_{\boldsymbol{n}}\)
\end{tabular} & \[
\begin{aligned}
& \operatorname{Dim}=1 \\
& A=\left[\begin{array}{lll}
\mathrm{a} &]
\end{array}\right. \\
& =\mathrm{A}_{\mathrm{k}}: \mathrm{j}, \mathrm{k}=\{1\}
\end{aligned}
\] & \[
\begin{aligned}
& \operatorname{Dim}=\mathbf{2} \\
& A=\left[\begin{array}{llll}
{\left[\begin{array}{lll}
& b
\end{array}\right]} \\
{\left[\begin{array}{llll}
& d
\end{array}\right]} \\
= & A_{k}^{j}: j, k=\{1,2\}
\end{array}\right.
\end{aligned}
\] & & \\
\hline \(I_{0}=1 / 0!=1\) & \[
\begin{array}{r}
\text { (1) } \\
=1
\end{array}
\] & \[
\begin{aligned}
& \text { (1) } \\
& =1
\end{aligned}
\] & \[
\begin{aligned}
& \text { (1) } \\
& =1
\end{aligned}
\] & \[
\begin{aligned}
& \text { (1) } \\
& =1
\end{aligned}
\] \\
\hline \[
\begin{aligned}
I_{1} & =\operatorname{tr}[\mathrm{A}] / 1! \\
& =\mathrm{A}^{\alpha}{ }_{a} \\
& =\Sigma[\text { Unique Eigenvalue Singles }]
\end{aligned}
\] & \[
\begin{aligned}
& (1) \\
& =\lambda_{1} \\
& =(a) \\
& =\Sigma[\text { Eigenvalues }] \\
& =\text { Det }_{1}[\mathrm{~A}] \\
& =\Pi[\text { Eigenvalues }]
\end{aligned}
\] & \[
\begin{aligned}
& \text { (2) } \\
& =\lambda_{1}+\lambda_{2} \\
& =(a+d) \\
& =\Sigma[\text { Eigenvalues }]
\end{aligned}
\] & \[
\begin{aligned}
& \text { (3) } \\
& =\lambda_{1}+\lambda_{2}+\lambda_{3} \\
& =(a+e+i) \\
& =\sum[\text { Eigenvalues }]
\end{aligned}
\] & \[
\begin{aligned}
& \text { (4) } \\
& =\lambda_{1}+\lambda_{2}+\lambda_{3}+\lambda_{4} \\
& =(a+f+k+p) \\
& =\Sigma[\text { Eigenvalues }]
\end{aligned}
\] \\
\hline \[
\begin{aligned}
I_{2} & =\left(\operatorname{tr}[A]^{2}-\operatorname{tr}\left[A^{2}\right]\right) / 2! \\
& =A^{\alpha}{ }_{[\alpha} A^{\beta}{ }_{\beta]} / 2 \\
& =\Sigma[\text { Unique Eigenvalue Doubles }]
\end{aligned}
\] & \(=0\) & \[
\begin{aligned}
& \text { (1) } \\
& =\lambda_{1} \lambda_{2} \\
& =(a d-b c) \\
& =\operatorname{Det}_{20}[A] \\
& =\Pi[\text { Eigenvalues }]
\end{aligned}
\] & (3)
\[
\begin{aligned}
& =\lambda_{1} \lambda_{2}+\lambda_{1} \lambda_{3}+\lambda_{2} \lambda_{3} \\
& =(\mathrm{ae}-\mathrm{bd})+(\mathrm{ai}-\mathrm{cg})+(\mathrm{ei}-\mathrm{fh})
\end{aligned}
\] & \[
\begin{aligned}
& \text { (6) } \\
& =\lambda_{1} \lambda_{2}+\lambda_{1} \lambda_{3}+\lambda_{1} \lambda_{4}+\lambda_{2} \lambda_{3}+\lambda_{2} \lambda_{4}+\lambda_{3} \lambda_{4} \\
& =(\mathrm{af}-\mathrm{be})+(\mathrm{ak}-\mathrm{ci})+(\mathrm{ap}-\mathrm{dm}) \\
& +(\mathrm{fk}-\mathrm{gj})+(\mathrm{fp}-\mathrm{hn})+(\mathrm{kp}-\mathrm{lo})
\end{aligned}
\] \\
\hline \[
\begin{aligned}
I_{3} & =\left[(\operatorname{tr} A)^{3}-3 \operatorname{tr}\left(A^{2}\right)(\operatorname{tr} A)+2 \operatorname{tr}\left(A^{3}\right)\right] / 3! \\
& =A^{\alpha}{ }_{[\alpha} A^{\beta}{ }_{\beta} A^{v_{y]}} / 6 \\
& =\Sigma[\text { Unique Eigenvalue Triples }]
\end{aligned}
\] & \(=0\) & \(=0\) & \[
\begin{aligned}
& \text { (1) } \\
& =\lambda_{1} \lambda_{2} \lambda_{3} \\
& =a(e i-f h)-\mathrm{b}(\mathrm{di}-\mathrm{fg})+\mathrm{c}(\mathrm{dh}-\mathrm{eg}) \\
& =\operatorname{Det}_{30}[\mathrm{~A}] \\
& =\Pi[\text { Eigenvalues }]
\end{aligned}
\] & \[
\begin{aligned}
& \text { (4) } \\
& =\lambda_{1} \lambda_{2} \lambda_{3}+\lambda_{1} \lambda_{2} \lambda_{4}+\lambda_{1} \lambda_{3} \lambda_{4}+\lambda_{2} \lambda_{3} \lambda_{4} \\
& =\ldots
\end{aligned}
\] \\
\hline \[
\begin{aligned}
I_{4} & =\left((\operatorname{tr} A)^{4}-6 \operatorname{tr}\left(A^{2}\right)(\operatorname{tr} A)^{2}+3\left(\operatorname{tr}\left(A^{2}\right)\right)^{2}+8 \operatorname{tr}\left(A^{3}\right) \operatorname{tr} A-6 \operatorname{tr}\left(A^{4}\right)\right) / 4! \\
& =A_{[\alpha}^{\alpha} A^{\beta}{ }_{\beta} A^{v}{ }_{v} A^{\delta}{ }_{\delta]} / 24 \\
& =\Sigma[\text { Unique Eigenvalue Quadruples }]
\end{aligned}
\] & \(=0\) & \(=0\) & \(=0\) & \[
\begin{aligned}
& \text { (1) } \\
& =\lambda_{1} \lambda_{2} \lambda_{3} \lambda_{4} \\
& =\mathrm{a}(\mathrm{f}(\mathrm{kp}-\mathrm{lo}))+\ldots \\
& =\operatorname{Det} \\
& =\text { [A }[\mathrm{A}] \\
& =\Pi[\text { Eigenvalues }]
\end{aligned}
\] \\
\hline
\end{tabular}

A Tensor Study of Physical 4-Vectors

\section*{SRQM Study: SR 4-Tensors SR Tensor Invariants} for Faraday EM Tensor

The Faraday EM Tensor \(F^{\alpha \beta}=\partial^{\alpha} A^{\beta}-\partial^{\beta} A^{\alpha}=\partial^{\wedge} A\) is an anti-symmetric tensor that contains the Electric and Magnetic Fields, defined by the Exterior "Wedge" Product (\(\wedge\)). The 3-electric components (\(\mathrm{e}=\mathrm{e}^{\mathrm{j}}=\mathrm{cF}^{0 j}\)) are in the temporal-spatial sections. The 3-magnetic components \(\left(b=b^{k}=-(1 / 2) \varepsilon_{i j}{ }^{k} F^{i j}\right)\) are in the only-spatial section.
(2,0)-Tensor \(=4\)-Tensor Tuv: Has (4+) Tensor Invariants (though not all independent) a) \(\mathrm{T}^{\mathrm{a}}{ }_{a}=\) Trace \(=\) Sum of EigenValues for (1,1)-Tensors (mixed)
b) \(T^{[}{ }_{[\mathrm{c}} \mathrm{T}^{\beta}{ }_{\beta]}=\) Asymm Bi-Product \(\rightarrow\) Inner Product
c) \(T^{\alpha}{ }_{[a} T^{\beta} T_{\beta} T_{v]}=\) Asymm Tri-Product \(\rightarrow\) ?Name?
d) \(T^{\alpha}{ }_{[a} T^{\beta}{ }_{\beta} T^{v}{ }_{y} T^{\delta}{ }_{\delta]}=\) Asymm Quad-Product \(\rightarrow\) 4D Determinant \(=\) Product of EigenValues for (1,1)-Tensors
a): Faraday Trace \(\left[F^{p v}\right]=F_{v}{ }^{v}=\left(F^{00}-F^{11}-F^{22}-F^{33}\right)=(0-0-0-0)=0\)
b): Faraday Inner Product \(F_{\mu v} F^{\mu v}=\Sigma_{\mu v v}\left[F^{\mu v}\right]^{2}-2 \Sigma_{[}\left[F^{i 0}\right]^{2}+2 \Sigma_{i>j}\left[F^{i j}\right]^{2}=(0)-2\left(e \cdot e / c^{2}\right)+2(b \cdot b)=2\left\{(b \cdot b)-\left(e \cdot e / c^{2}\right)\right\}\)

d): Faraday Det[anti-symmetric F \(\left.{ }^{\mu v}\right]=\) Pfaffian[F \(\left.F^{\mu v}\right]^{2}=\left[\left(-e^{x} / c\right)\left(-b^{x}\right)-\left(-e^{y} / c\right)\left(b^{y}\right)+\left(-e^{z} / c\right)\left(-b^{z}\right)\right]^{2}=\left[\left(e^{x} b^{x} / c\right)+\left(e^{y} b^{y} / c\right)+\left(e^{z} b^{z} / c\right)\right]^{2}=\{(e \cdot b) / c\}^{2}\)

Importantly, the Faraday EM Tensor has only (2) linearly-independent Lorentz invariants:
b) \(\quad 2\left\{(\mathrm{~b} \cdot \mathrm{~b})-\left(\mathrm{e} \cdot \mathrm{e} / \mathrm{c}^{2}\right)\right\}\)
d) \(\{(\mathrm{b} \cdot \mathrm{e}) / \mathrm{c}\}^{2}\)
a) \& c) give \(0=0\), and do not provide additional constraints

The 4-Gradient and 4-EMVectorPotential have (4) independent components each, for total of (8). Subtract (2) due to the invariants which provide constraints to get a total of (6) independent components \(=(6)\) independent components of a \(4 \times 4\) anti-symmetric tensor
\(=(3) 3\)-electric \(\mathbf{e}+(3) 3\)-magnetic \(\mathbf{b}=(6)\) independent EM field components
Note: It is possible to have non-zero \(\mathbf{e}\) and \(\mathbf{b}\), yet still have zeroes in the Tensor Invariants. If \(\mathbf{e}\) is orthogonal to \(\mathbf{b}\), then \(\operatorname{Det}\left[F^{a \beta}\right]=\{(\mathbf{b} \cdot \mathbf{e}) / c\}^{2}=0\). If \((\mathbf{b} \cdot \mathbf{b})=\left(\mathrm{e} \cdot \mathrm{e} / \mathrm{c}^{2}\right)\), then InnerProd \([\mathrm{F} \cdot \mathrm{\beta}]=2\left\{(\mathrm{~b} \cdot \mathbf{b})-\left(\mathrm{e} \cdot \mathrm{e} / \mathrm{c}^{2}\right)\right\}=0\). These conditions lead to the properties of EM waves = photons = null 4-vectors, which have fields \(|\mathbf{b}|=|\mathbf{e}| / \mathrm{c}\) and \(\mathbf{b}\) orthogonal to \(\mathbf{e}\), travelling at velocity c .
\(c^{2}=1 / \varepsilon_{0} \mu_{0}\)

Asymm Tri-Product Tensor Invariant

Determinant Tensor Invarian
4-(EM)VectorPotential \(A=A^{\mu}=(\varphi / c, a)\)

\section*{Fundamental EM Invariants:}
\(\mathrm{P}=(1 / 2) \mathrm{F}_{\mathrm{vv}} \mathrm{F}^{\mathrm{pv}}=(-1 / 2)^{*} \mathrm{~F}_{\mathrm{Lv}}{ }^{*} \mathrm{~F}^{\mathrm{pv}}=\left\{(\mathbf{b} \cdot \mathbf{b})-\left(\mathbf{e} \cdot \mathbf{e} / \mathbf{c}^{2}\right)\right\}\)

\section*{ial \\ \(\qquad\)}

\footnotetext{
Trace \(\left[T^{\mu \mathrm{v}}\right]=\eta_{\mu \mathrm{v}} \mathrm{V}^{\mu \mathrm{v}}=\mathrm{T}_{\mu}{ }_{\mu}=\mathrm{T}\) \(\mathbf{V} \cdot \mathbf{V}=V^{\mu} \eta_{\mu v} V^{v}=\left[\left(v^{0}\right)^{2}-\mathbf{v} \cdot \mathbf{v}\right]=\left(v^{0}{ }_{0}\right)^{2}\)
= Lorentz Scalar Invariant
}
raday EM
Tensor
\(F^{\alpha \beta}=\partial^{\alpha} A^{\beta}-\partial^{\beta} A^{\alpha}=\partial^{\wedge} A\) \(=-F^{\beta a}\) (anti-symmetric)
[\(F^{\mathrm{tt}} \mathrm{F}^{\mathrm{t}} \mathrm{F}^{\mathrm{ty}} \mathrm{F}^{\mathrm{t}}\)] [\(\left.F^{x t} F^{x x} F^{x y} F^{x z}\right]\)
[\(\mathrm{Fy}^{y t} \mathrm{Fyx}^{y x} \mathrm{~F}^{y y} \mathrm{~F}^{y z}\)]
[\(\left.F^{z t} F^{z x} F^{z y} F^{z z}\right]\)
=
\(=\)
\(\left.0 \quad\left(\partial^{\prime} a^{x}+\nabla^{x} \varphi\right) / c \quad\left(\partial^{\prime} a^{\gamma}+\nabla^{\gamma} \varphi\right) / c \quad\left(\partial^{\prime} a^{2}+\nabla^{2} \varphi\right) / c\right]\) \(\left[\begin{array}{lll}\left.-\nabla^{x} \varphi-\partial^{\mathrm{t}} a^{x} / c\right) & 0 & -\nabla^{\mathrm{x}} a^{y}+\nabla^{\mathrm{y}} a^{\mathrm{x}} \\ -\nabla^{x} a^{z}+\nabla^{\mathrm{z}} a^{\mathrm{x}}\end{array}\right]\) \(\left[\left(\left[-\nabla^{y} \varphi-\partial^{\prime} a^{y} y c\right)-\nabla^{y} a^{x}+\nabla^{x} a^{y} \quad 0 \quad-\nabla^{y} a^{2}+\nabla^{2} a^{2}\right]\right.\) \(\left(-\nabla^{2} \varphi-\partial^{2} a^{2} c\right)-\nabla^{2} a^{x}+\nabla^{x} a^{2}-\nabla^{2} a^{y}+\nabla^{y} a^{2}\) \(=\)
\(\left.\begin{array}{llll}{[0} & -e^{x} / c & -e^{y} / c & -e^{z} / c\end{array}\right]\)
\(=\)
[0 , -ei/c] \(\left[+e^{i / c},-\varepsilon_{k}^{i j} b^{k}\right]\) = [0, ee/c] [\(+\mathbf{e}^{\mathrm{T}} / \mathrm{c},-\nabla^{\wedge} \mathrm{a}\)]

SR 4 Vector:OneForm \((0,1)\)-Tensor \(\mathrm{V}_{\mu}=\left(\mathrm{v}_{0},-\mathrm{v}\right)\)

SR 4-Scalar
SR 4-Scalar
\((0,0)\)-Tensor \(S\) or \(S\) 。
Lorentz Scalar
(+,-,-,-) SR \(\rightarrow \mathrm{QM}\)

A Tensor Study of Physical 4-Vectors

\section*{SRQM Study: SR 4-Tensors SR Tensor Invariants}

The 4-AngularMomentum Tensor \(M^{\alpha \beta}=X^{\alpha} P^{\beta}-X^{\beta} P^{\alpha}=X^{\alpha} P\) is an anti-symmetric tensor The 3-mass-moment components (\(\left.n=n^{j}=M^{0 j} / c\right)\) are in the temporal-spatial sections. The 3-angular-momentum components (\(I=I^{k}=+(1 / 2) \varepsilon_{i j}{ }^{\mathrm{k}} \mathrm{M}^{\mathrm{ij}}\)) are in the only-spatial section.
(2,0)-Tensor \(=4\)-Tensor Tiv: Has (4+) Tensor Invariants (though not all independent)
a) \(\mathrm{T}^{\mathrm{a}}{ }_{\mathrm{a}}=\) Trace \(=\) Sum of EigenValues for (1,1)-Tensors (mixed)
b) \(\mathrm{T}^{\mathrm{a}}{ }_{[\mathrm{a}}{ }^{\beta}{ }_{\beta \beta]}=\) Asymm Bi-Product \(\rightarrow\) Inner Product
c) \(T^{\alpha}{ }_{[\alpha} T^{\beta}{ }_{\beta} T^{1}{ }_{v]}=\) Asymm Tri-Product \(\rightarrow\) ?Name?
d) \(T^{\alpha}{ }_{[T}{ }^{\beta}{ }_{\beta}{ }_{\beta} T T_{V} T^{\delta}{ }_{\delta]}=\) Asymm Quad-Product \(\rightarrow 4 D\) Determinant = Product of EigenValues for (1,1)-Tensors
a): 4-AngMom Trace[\(\left.\mathrm{M}^{\mu \mathrm{v}}\right]=\mathrm{M}_{\mathrm{v}}{ }^{\mathrm{v}}=\left(\mathrm{M}^{00}-\mathrm{M}^{11}-\mathrm{M}^{22}-\mathrm{M}^{33}\right)=(0-0-0-0)=0\)
b): 4-AngMom Inner Product \(M_{\nu v} M^{\mu v}=\Sigma_{\mu=v}\left[M^{\mu v}\right]^{2}-2 \Sigma_{[}\left[M^{i 0}\right]^{2}+2 \Sigma_{i \gg}\left[M^{i j}\right]^{2}=(0)-2\left(c^{2} n \cdot n\right)+2(I \cdot I)=2\left\{(I \cdot I)-\left(c^{2} n \cdot n\right)\right\}\)

Importantly, the 4-AngularMomentum Tensor has only (2) linearly-independent Lorentz Invariants: b) \(2\left\{(I \cdot I)-\left(c^{2} n \cdot n\right)\right\}\) : see Wikipedia Laplace-Runge-Lenz_vector, sec. Casimir Invariants d) \(\quad\{c(l \cdot n)\}^{2}\)
a) \& c) give \(0=0\), and do not provide additional constraints

The 4-Position and 4-Momentum have (4) independent components each, for total of (8).
Subtract (2) due to the invariants which provide constraints to get a total of (6) independent components \(=(6)\) independent components of a \(4 \times 4\) anti-symmetric tensor
\[
\text { = (3) 3-mass-moment } \boldsymbol{n}+(3) 3 \text {-angular-momentum I = (6) independent 4-AngularMomentum components }
\]

3-massmoment \(\mathbf{n}=\mathbf{x m}-\mathbf{t p}=\mathrm{m}(\mathbf{x}-\mathbf{t u})=\mathrm{m}(\mathbf{r}-\mathbf{t u})=\mathrm{m}(\mathbf{r}-\mathrm{t}(\boldsymbol{\omega} \mathbf{x} \mathbf{r}))\) : Tangential velocity \(\mathbf{u}_{\mathrm{T}}=(\boldsymbol{\omega} \mathbf{x} \mathbf{r})\)
\((-k / r) n=-m k(\hat{\mathbf{r}}-\mathrm{t}(\boldsymbol{\omega} \times \hat{\mathbf{r}}))=m k t(\boldsymbol{\omega} \times \hat{\mathbf{r}})-m k \hat{r}=\mathrm{t} * \mathrm{~d} / \mathrm{dt}(\mathbf{p}) \times \mathrm{L}-m k \hat{r}: \mathrm{d} / \mathrm{dt}(\mathbf{p}) \times \mathrm{L}=m k(\boldsymbol{\omega} \times \hat{\mathbf{r}})\) n is related to the LRL = Laplace-Runge-Lenz 3-vector: \(\mathbf{A}=\mathrm{p} \times \mathrm{L}-\mathrm{mk} \hat{\mathrm{r}}\) which is another classical conserved vector. The invariance is shown here to be relativistic in origin Wikipedia article: Laplace-Runge-Lenz vector shows these as Casimir Invariants. See Also: Relativistic Angular Momentum.

4-Momentum \(\mathbf{P}=P^{\mu}=(m \mathrm{c}, \mathrm{p})=(\mathrm{E} / \mathrm{c}, \mathrm{p})\)

SR 4-Tensor
(2,0)-Tensor T \({ }^{\mu v}\) (1,1)-Tensor \(\mathrm{T}^{\mu}{ }_{v}\) or \(\mathrm{T}_{\mu}\)
\((0,2)\)-Tensor \(\mathrm{T}_{\mu v}\)

Trace[\(\left.T^{\mu v}\right]=\eta_{\mu v} T^{\mu v}=T_{\mu}^{\mu}=T\)
\(\mathbf{V} \cdot \mathbf{V}=V^{\wedge} \eta_{\mu \mathrm{v}} \mathrm{V}^{\mathrm{V}}=\left[\left(\mathrm{V}^{0}\right)^{2}-\mathbf{V} \cdot \mathbf{v}\right]=\left(\mathrm{V}^{0}{ }_{\mathrm{o}}\right)^{2}\)
= Lorentz Scalar Invariant

4-AngularMomentum
Tensor \(M^{\alpha \beta}=X^{\alpha} P^{\beta}-X^{\beta} P^{\alpha}=X^{\wedge} \mathbf{P}\)
\(\left[\mathrm{M}^{\mathrm{t}} \mathrm{M}^{\mathrm{tx}} \mathrm{M}^{\mathrm{ty}} \mathrm{M}^{\mathrm{tz}}\right]\)
\(\left[\mathrm{M}^{\mathrm{xt}} \mathrm{M}^{\mathrm{xx}} \mathrm{M}^{\mathrm{xy}} \mathrm{M}^{\mathrm{xz}}\right]\)
\(\left[M^{y t} M^{y x} M^{y y} M^{y z}\right]\)
\(\left[M^{2 t} M^{2 x} M^{z y} M^{z z}\right]\)
\(=\)
\(\left.\left.\begin{array}{cccc}{\left[\begin{array}{cccc}0 & x^{0} p^{1}-x^{1} p^{0} & x^{0} p^{2}-x^{2} p^{0} & x^{0} p^{3}-x^{3} p^{0}\end{array}\right]} \\ {\left[\begin{array}{cccc}x^{1} p^{0}-x^{0} p^{1} & 0 & x^{1} p^{2}-x^{2} p^{1} & x^{1} p^{3}-x^{3} p^{1}\end{array}\right]} \\ {\left[x^{2} p^{0}-x^{0} p^{2}\right.} & x^{2} p^{1}-x^{1} p^{2} & 0 & x^{2} p^{3}-x^{3} p^{2}\end{array}\right]\right]\)
\begin{tabular}{|c|c|}
\hline \(0 \quad \operatorname{ctp}^{\mathrm{x}}-x \mathrm{E} / \mathrm{c}\) & \(\left.\operatorname{ctp}^{y}-y E / c \quad \operatorname{ctp}^{2}-z E / c\right]\) \\
\hline [xE/c-ctp \({ }^{\text {x }} 0\) & \(\left.x p^{y}-y p^{x} \quad x p^{z}-z p^{x}\right]\) \\
\hline [yE/c-ctp \({ }^{\text {y }}\) yp \(p^{x}-x^{\text {y }}\) & \(\left.0 \quad y p^{z}-z p^{y}\right]\) \\
\hline [zE/c-ctp \({ }^{2} \mathrm{zp}^{\mathrm{x}}-\mathrm{xp}^{2}\) & \(\left.z p^{y}-y p^{z} 00\right]\) \\
\hline
\end{tabular}

Asymm Tri-Product Tensor Invariant

\section*{\(\operatorname{Det}\left[\mathrm{M}^{\text {HeV }}\right]\)}
\(=\{c(n \cdot l)\}^{2}\)
Determinant Tensor Invariant

\(=\)
\begin{tabular}{|c|c|c|c|}
\hline [0 & \(-\mathrm{Cn}^{\text {x }}\) & -Cn & \(\left.-\mathrm{Cn}^{2}\right]\) \\
\hline \(\left[+n^{x}\right.\) & 0 & & \(-{ }^{\mathrm{y}}\)] \\
\hline \(\left[+c n^{y}\right.\) & \(-l^{z}\) & 0 & \(+{ }^{\mathrm{x}}\)] \\
\hline \(\left[+\mathrm{cn}^{\text {z }}\right.\) & \(+{ }^{\text {y }}\) & \(-\left.\right|^{x}\) & 0] \\
\hline \multicolumn{4}{|c|}{[\(0,-\mathrm{Cn}\)]} \\
\hline & +cni & \(\varepsilon_{k}^{i j}{ }^{1 /}\) & \\
\hline
\end{tabular}

SRQM Study: SR 4-Tensors

A Tensor Study of Physical 4-Vectors

The Minkowksi Metric Tensor \(\eta^{\mu \mathrm{V}}\) is the tensor all SR 4-Vectors are measured by.
(2,0)-Tensor \(=4\)-Tensor Tuv: Has (4+) Tensor Invariants (though not all independent)
a) \(\mathrm{T}^{{ }^{\alpha}}{ }_{a}=\) Trace \(=\) Sum of EigenValues for (1,1)-Tensors (mixed)
b) \(\mathrm{T}^{\mathrm{c}}{ }_{[\mathrm{a}} \mathrm{T}^{\mathrm{\beta}}{ }_{\beta]}=\) Asymm Bi-Product \(\rightarrow\) Inner Product
c) \(T^{{ }^{a}}{ }_{[a}{ }^{\beta}{ }_{\beta}{ }^{3}{ }^{V}{ }_{V]}=\) Asymm Tri-Product \(\rightarrow\) ? Name?

a): Minkowksi Trace[\(\left.\eta^{\mu \mathrm{V}}\right]=4\)
b): Minkowksi Inner Product \(\eta_{ı v} \eta^{\mu v}=4\)
c): Minkowksi AsymmTri[\(\left.n^{1 V]}\right]=24=4\) !
d): Minkowksi Det \(\left[\eta^{\nu v}\right]=-1\)
a) \(\mathrm{T}^{\mathrm{a}}{ }_{a}=\operatorname{Tr}[\mathrm{A}]=4\)
b) \(\operatorname{Ta}_{[\alpha}{ }_{[\alpha} T^{\beta}{ }_{\beta]}=(\operatorname{Tr}[\mathbf{A}])^{2}-\operatorname{Tr}\left[\mathbf{A}^{2}\right]=4^{2}-4=12\)
c) \(\operatorname{Ta}^{\alpha}{ }_{[a} \operatorname{Ta}_{\beta}{ }^{3} \operatorname{TV}^{\mathrm{V}]}=+(\operatorname{Tr}[\mathbf{A}])^{3}-3^{*}(\operatorname{Tr}[\mathbf{A}])\left(\operatorname{Tr}\left[\mathbf{A}^{2}\right]\right)+2^{*}\left(\operatorname{Tr}\left[\mathbf{A}^{3}\right]\right)=4^{3}-3^{*} 4^{*} 4+2^{*} 4=64-48+8=24\)
 \(4^{4}-6^{*} 4^{2 *} 4+8^{*} 4^{*} 4+3^{*} 4^{2}-6^{*} 4=256-384+128+48-24=24\)
\(\Lambda^{\alpha} \wedge_{\mu}^{\beta} \eta_{\alpha \beta}=\eta_{\mu v}\)
a) \(\mathrm{T}_{\mathrm{a}}{ }_{a} / 1!=4 / 1=4\)
b) \(T^{\mathrm{a}}{ }_{[\mathrm{a}} \mathrm{T}^{\mathrm{\beta}}{ }_{\mathrm{\beta}]} / 2!=12 / 2=6\)
\(\operatorname{Det}(\operatorname{Exp}[A])=\operatorname{Exp}(\operatorname{Tr}[A])\)
c) \(T^{\alpha}{ }_{[a} T^{\beta}{ }_{\beta} T^{\gamma}{ }_{V]} / 3!=24 / 6=4\)

\(\operatorname{Det}_{4 \mathrm{D}}(\mathrm{A})=\left((\operatorname{tr} \mathrm{A})^{4}-6 \operatorname{tr}\left(\mathrm{~A}^{2}\right)(\operatorname{tr} \mathrm{A})^{2}+3\left(\operatorname{tr}\left(\mathrm{~A}^{2}\right)\right)^{2}+8 \operatorname{tr}\left(\mathrm{~A}^{3}\right) \operatorname{tr} \mathrm{A}-6 \operatorname{tr}\left(\mathrm{~A}^{4}\right)\right) / 24\)

Trace Tensor Invariant
 \(=\{1,3,0\} \rightarrow(1-3)=-2\)

\[
\begin{aligned}
\operatorname{Tr}\left[\eta^{\mu \nu}\right] & =(1)-(-1)-(-1)-(-1)=4 \\
\eta_{\mu \nu} \eta^{\mu \nu} & =\eta^{\mu}{ }_{\mu}=\delta_{\mu}^{\mu}=1+1+1+1
\end{aligned}
\]
\[
\partial[R]=\partial^{\mu} R^{v}=\eta^{\mu \nu}
\]
\(\rightarrow\)
Diag[1,-1,-1,-1]
\[
\left[\begin{array}{llll}
+1 & 0 & 0 & 0
\end{array}\right]
\]
\[
\left[\begin{array}{llll}
0 & -1 & 0 & 0
\end{array}\right]
\]
\[
\left[\begin{array}{llll}
0 & 0 & -1 & 0
\end{array}\right]
\]
\[
\left[\begin{array}{llll}
0 & 0 & 0 & -1
\end{array}\right]
\]
\{in Cartesian form\}
\[
\left[\eta_{\mu}\right]=1 /\left[\eta^{\mu \mu}\right]: \eta_{\mu}{ }^{v}=\delta_{\mu}{ }^{\nu}
\]
"Particle Physics" Convention
Determinant Tensor Invariant

EigenValues not defined for the standard Minkowski Metric Tensor since it is a type (2,0)-Tensor, all upper indices. However, they are defined for the mixed form (1,1)-Tensor EigenValues are defined for the Lorentz Transforms since they are type (1,1)-Tensors, mixed indices
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
SR 4-Tensor (2,0)-Tensor T \({ }^{\mu v}\) \\
(1,1)-Tensor \(\mathrm{T}_{\mathrm{v}}\) or \(\mathrm{T}_{\mu}{ }^{v}\) \((0,2)\)-Tensor \(\mathrm{T}_{\mathrm{uv}}\)
\end{tabular} & \begin{tabular}{l}
SR 4-Vector \\
(1,0)-Tensor \(\mathrm{V}^{\mu}=\mathbf{V}=\left(\mathrm{v}^{0}, \mathrm{v}\right)\) SR 4-CoVector:OneForm \((0,1)\)-Tensor \(\mathrm{V}_{\mu}=\left(\mathrm{V}_{0},-\mathrm{v}\right)\)
\end{tabular} & (0,0)-Tensor S or Lorentz Scalar & \(\operatorname{Det}\left[T^{\mathrm{a}}{ }_{\mathrm{a}}\right]=\Pi_{k}\left[\lambda_{\mathrm{k}}\right]\); with \(\left\{\lambda_{k}\right\}=\) EigenValues Characteristic Eqns: \(\operatorname{Det}\left[T^{a}{ }_{a}-\lambda_{k} I_{4}\right]=0\) \\
\hline
\end{tabular}

\section*{SRQM Study: SR 4-Tensors} SR Tensor Invariants

The Perfect Fluid Stress-EnergyTensor \(T^{\text {wv }}\) is the tensor of a non-torsional relativistic fluid
(2,0)-Tensor \(=4\)-Tensor Tuv: Has (4+) Tensor Invariants (though not all independent)
a) \(\mathrm{T}^{\mathrm{a}}{ }_{\mathrm{a}}=\) Trace \(=\) Sum of EigenValues for (1,1)-Tensors (mixed)
b) \(\left.{ }^{\alpha}{ }_{[a}{ }^{[a}{ }^{\beta}{ }^{\beta}\right]=\) Asymm Bi-Product \(\rightarrow\) Inner Product
c) \(\mathrm{T}^{\mathrm{q}} \mathrm{T}^{\beta}{ }^{\beta}{ }_{\beta} \mathrm{T}^{\mathrm{V}}{ }^{\mathrm{d}}=\) Asymm Tri-Product \(\rightarrow\) ? Name?
d) \(T_{[G T}{ }_{[G} \bar{\beta}_{\beta}{ }_{\beta} T V_{V}{ }^{\top}{ }^{\mathrm{\delta}}{ }_{\delta]}=\) Asymm Quad-Product \(\rightarrow\) 4D Determinant \(=\) Product of EigenValues for (1,1)-Tensors
a): PerfectFluid Trace[T/V] \(=\rho_{\mathrm{eo}}-3 p_{0}\)
b): PerfectFluid Inner Product \(T_{\mu v} T^{\text {vVV }}=\left(\rho_{\mathrm{eo}}\right)^{2}+3\left(\mathrm{p}_{\mathrm{o}}\right)^{2}\)
c): PerfectFluid AsymmTri[TTV] =
d): PerfectFluid Det[TTV] \(=\rho_{\mathrm{eo}}\left(\mathrm{p}_{\mathrm{o}}\right)^{3}\)

4-ForceDensity \(\mathbf{F}_{\text {density }}\) \(-\partial \cdot T^{\mu v}=F_{\text {density }}{ }^{\mu}\)

SR Conservation of StressEnergy \(T^{\mu \nu}\) if \(\mathrm{F}_{\text {density }}{ }^{4}=0^{\text {r }}\)
\(\Lambda^{\alpha} \Lambda^{\alpha} \lambda_{v}^{\beta} \eta_{\alpha \beta}=\eta_{\text {Iv }}\)
\(\operatorname{Det}(\operatorname{Exp}[A])=\operatorname{Exp}(\operatorname{Tr}[A])\)

\(\operatorname{Det}_{40}(A)=\left((\operatorname{tr} A)^{4}-6 \operatorname{tr}\left(A^{2}\right)(\operatorname{tr} A)^{2}+3\left(\operatorname{tr}\left(\mathrm{~A}^{2}\right)\right)^{2}+8 \operatorname{tr}\left(\mathrm{~A}^{3}\right) \operatorname{tr} \mathrm{A}-6 \operatorname{tr}\left(\mathrm{~A}^{4}\right)\right) / 24\)

\(\operatorname{Det}\left[T^{{ }^{a}}{ }_{a}\right]=\Pi_{k}\left[\lambda_{k}\right]\); with \(\left\{\lambda_{k}\right\}=\) EigenValues
Characteristic Eqns: \(\operatorname{Det}\left[T^{\alpha}{ }_{a}-\lambda_{k} I_{4}\right]=0\) of Physical 4-Vectors

SRQM Study: SR 4-Tensors SR Tensor Invariants for Maxwell 4D EM Stress-Energy Tensor

SR Perfect Fluid 4-Tensor
\(\mathrm{T}_{\text {perfectiluid }}{ }^{\mu \mathrm{V}}=\left(\rho_{\mathrm{eo}}\right) \mathrm{V}^{\mu \mathrm{V}}+\left(-\mathrm{p}_{\mathrm{o}}\right) \mathrm{H}^{\mu \mathrm{V}} \rightarrow\)
\(\left.\begin{array}{cccc}\underline{\mathrm{t}} & \underline{\mathrm{x}} & \underline{\mathrm{y}} & \underline{\underline{z}} \\ \mathrm{t}\left[\rho_{\mathrm{e}}=\rho_{\mathrm{m}} \mathrm{C}^{2}\right. & 0 & 0 & 0\end{array}\right]\)

Units of Symmetric [EnergyDensity=Pressure]

\(T r\left[T^{\omega \nu}\right]=\rho_{e o}-3 p_{0}\)

4-ForceDensity \(\mathbf{F}_{\text {density }}\) EM \(-\partial \cdot T^{\mu v}=F_{\text {density }}{ }^{\mu} M^{\mu}\) \(=(j \cdot e / c, p e+j \times b)\)
SR Conservation of StressEnergy \(\mathrm{T}^{\mathrm{uv}}\) if \(\mathrm{F}_{\text {density }}{ }^{\mu}=0^{\mu}\)

The Maxwell 4D EM Stress-EnergyTensor \(T^{\mu v}\) is the tensor of an EM field.

4-Tensor

> Eigenvalues Tensor
> \(\operatorname{Tr}\left[T_{\text {EM }}{ }^{\mathrm{LV}}\right]=0=\left(\eta_{\mu v}\right)\left[T_{E M}{ }^{\mathrm{LV}]}\right]\)
> \(=\left(\eta_{\mu v}\right)\left(1 / \mu_{o}\right)\left[F^{\mu \alpha} F^{v}{ }^{v}-(1 / 4) \eta^{\mu \nu} F_{\alpha \beta} F^{\alpha \beta}\right]\)
> \(=\left(1 / \mu_{o}\right)\left[F^{\mu \alpha}\left(\eta_{\mu v}\right) F_{\alpha}^{v}-(1 / 4)\left(\eta_{\mu v}\right) \eta^{\mu \nu} F_{\alpha \beta} F^{\alpha \beta}\right]\) \(=\left(1 / \mu_{o}\right)\left[F^{\mu \alpha} F_{\mu \alpha}-(1 / 4)(4) F_{\alpha \beta} F^{\alpha \beta}\right]\)
> \(=\left(1 / \mu_{o}\right)\left[F^{\mu \alpha} F_{\mu \alpha}-F_{\alpha \beta} F^{\alpha \beta}\right]=0\)
> Maxwell 4D EM Stress-Energy Tensor Invariants
\(\mathrm{T}_{\mathrm{EM}}{ }^{\mu \nu}=-\left(1 / \mu_{o}\right)\left[F^{\mu \alpha} \mathrm{F}^{\mathrm{v}}{ }_{\alpha}-(1 / 4) \eta^{\mu \nu} \mathrm{F}_{\alpha \beta} \mathrm{F}^{\alpha \beta}\right] \rightarrow_{\{\text {No RestFrame,Light-Like, Null }\}}\)

\(\operatorname{Det}\left[F^{\mu \mathrm{V}}\right]\)
\(=\{(\mathbf{e} \cdot \mathbf{b}) / \mathrm{c}\}^{2}\)

Trace Tensor Invariant
Note: this is positive-definite
\(\operatorname{Tr}\left[\mathrm{T}^{\mu \mathrm{v}}\right]=0\)
\(=\mathrm{T}^{00}-\mathrm{T}^{11}-\mathrm{T}^{22}-\mathrm{T}^{33}\)
from \(\left.\delta^{i i}\right)+\left(2^{*} T^{00}\right.\) from \(\left.T^{x x}+T^{y y}+T^{z z}\right)\)
\(=T^{00}-3 T^{00}+2^{*} T^{00}\)
\(=0\)
\(=\) Sum of EigenValues
\(\mathrm{T}_{\text {Maxwellem }}{ }^{\mu \mathrm{V}}\)
EigenValues \(\left[T^{\mu v}\right]=\) Set of 4 values \(=\)
\(\left.\left\{ \pm 1 / 2\left(\varepsilon_{o} \mathrm{e}^{2}+\mathrm{b}^{2} / \mu_{o}\right), \pm \sqrt{[1 / 4}\left(\varepsilon_{0} \mathrm{e}^{2}-\mathrm{b}^{2} / \mu_{o}\right)^{2}+\left(\varepsilon_{0} / \mu_{o}\right)(\mathbf{e} \cdot \mathbf{b})^{2}\right]\right\}\)

SR 4-Tensor
(2,0)-Tensor T \({ }^{\text {uv }}\) \((1,1)\)-Tensor \(\mathrm{T}^{\mu}{ }_{v}\) or \(\mathrm{T}_{\mu}\)
\((0,2)\)-Tensor \(\mathrm{T}_{\mu v}\) \((0,1)\)-Tensor \(\mathrm{V}_{\mu}=\left(\mathrm{v}_{0},-\mathrm{v}\right)\)
SR 4-Scalar
(0,0)-Tensor S or So
Lorentz Scalar
\(\operatorname{Det}\left[T^{a}{ }_{\mathrm{c}}\right]=\Pi_{k}\left[\lambda_{k}\right]\); with \(\left\{\lambda_{k}\right\}=\) EigenValues
Characteristic Eqns: \(\operatorname{Det}\left[T^{a_{a}}-\lambda_{k} I_{4}\right]=0\)

\section*{\(\operatorname{Det}\left[F^{\mu v}\right]\) \(=\{(\mathbf{e} \cdot \mathbf{b}) / \mathbf{c}\}\) \\ \(T^{00}=1 / 2\left(\varepsilon_{0} e^{2}+b^{2} / \mu_{0}\right)=1 / 2\left(\varepsilon_{0} e \cdot e+b \cdot b / \mu_{0}\right)\) Note this is positive-definite}
```

Tr[F\nuv]=0

```

\((|\mathbf{e} \times \mathbf{b}|)^{2}+(\mathbf{e} \cdot \mathbf{b})^{2}=\mathbf{e}^{2} \mathbf{b}^{2}\) \((|\mathbf{e}||\mathbf{b}| \sin)^{2}+(|\mathbf{e}||\mathbf{b}| \cos)^{2}=(|\mathbf{e}||\mathbf{b}|)^{2}\) \(\sin ^{2}+\cos ^{2}=1\)
> \(\gamma=1 / \sqrt[N]{\left[1-(u \cdot u) / c^{2}\right]}\)
> \(\gamma^{\prime}=\mathrm{d} \gamma / \mathrm{dt}=\gamma^{3}(\mathrm{u} \cdot \mathrm{a}) / \mathrm{c}^{2}\)
> \((\gamma \beta)^{2}=\gamma^{2}-1\) \(\beta=u / c\)
\(00^{\text {th }}\) comp \(=\left(-1 / \mu_{0}\right)\left\{F^{00} \mathrm{~F}^{0}{ }_{0}+\mathrm{F}^{01} \mathrm{~F}^{0}+\mathrm{F}^{02} \mathrm{~F}_{2}{ }_{2}+\mathrm{F}^{03} \mathrm{~F}^{0}\right\}+\eta^{00}(1 / 2)\left\{(\mathbf{b} \cdot \mathbf{b}) / \mu_{0}-\varepsilon_{0}(\mathbf{e} \cdot \mathbf{e})\right\}\)
\(=\left(-1 / \mu_{0}\right)\left\{0+\left(-\mathbf{e} \cdot \mathbf{e} / \mathbf{c}^{2}\right)\right\}+(1)(1 / 2)\left\{(\mathbf{b} \cdot \mathbf{b}) / \mu_{0}-\varepsilon_{0}(\mathbf{e} \cdot \mathbf{e})\right\}\)
\(=\left\{\left(\varepsilon_{0} \mathbf{e} \cdot \mathbf{e}\right)\right\}+(1 / 2)\left\{(\mathbf{b} \cdot \mathbf{b}) / \mu_{\mathrm{o}}-\varepsilon_{0}(\mathbf{e} \cdot \mathbf{e})\right\}\)
\(=+(1 / 2)\left\{\varepsilon_{0}(\mathbf{e} \cdot \mathbf{e})+(\mathbf{b} \cdot \mathbf{b}) / \mu_{0}\right\}\)
\[
\begin{aligned}
& 01^{\text {th }} \text { comp }=\left(-1 / \mu_{o}\right)\left\{F^{000} F^{1}{ }_{0}+F^{01} F^{1}{ }_{1}+F^{02} F^{1}{ }_{2}+F^{03} F^{1}{ }_{3}\right\}+\eta^{01}(1 / 2)\left\{(\mathbf{b} \cdot \mathbf{b}) / \mu_{0}-\varepsilon_{0}(\mathbf{e} \cdot \mathbf{e})\right\} \\
& =\left(-1 / c \mu_{0}\right)\left\{0+0-e^{y} b^{2}+e^{2} b^{y}\right\}+(0) \\
& =\left(1 / c \mu_{0}\right)\left\{+e^{y} b^{2}-e^{2} b^{y}\right\} \\
& \rightarrow 0 k^{\text {th }} \operatorname{comp}=(1 / c)\left\{\varepsilon_{i j}{ }^{\mathrm{k}} \mathrm{e}^{\mathrm{i}} \mathrm{~b}^{\mathrm{j}} / \mu_{0}\right\} \rightarrow(1 / \mathrm{c})\left\{\mathbf{e} \times \mathbf{b} / \mu_{o}\right\}=\mathrm{s} / \mathrm{c}
\end{aligned}
\]

4-Tensor in (+,-,-,-), neg of formula in (-,+,+,+) Symmetric

Trace Tensor Invariant
\(\operatorname{Tr}\left[T^{\mu \mathrm{V}}\right]=0\) \(=\mathrm{T}^{00}-\mathrm{T}^{11}-\mathrm{T}^{22}-\mathrm{T}^{33}\)
\(=T^{00}-3 T^{00}\left(1\right.\) from \(\left.\delta^{i i}\right)+\left(2^{*} T^{00}\right.\) from \(\left.T^{x x}+T^{y y}+T^{z z}\right)\) \(=T^{00}-3 T^{00}+2^{*} T^{00}\)
\(=0\)
=Sum of EigenValues
\(\mathrm{T}_{\text {Maxwelliem }}{ }^{\mu \mathrm{V}}\)
\[
1 / 2\left(\varepsilon_{0} e^{2}+b^{2} / \mu_{0}\right) s^{0 j} / c
\]
sio/c
\[
-\sigma^{i j}
\]
w/ 3D Maxwell Stress Tensor

\section*{\(\sigma^{i j}=\)}
\(=\varepsilon_{0} e^{i} e^{j}+b^{i} b^{j} / \mu_{0}\) \(-1 / 2\left(\varepsilon_{0} e^{2}+b^{2} / \mu_{0}\right) \delta^{i j}\) \(=\varepsilon_{0} e^{i} e^{j}+b^{i} b^{j} / \mu_{0}\) \(-T^{00} \delta^{i j}\)

SR 4-Tensor (2,0)-Tensor T \({ }^{\mu v}\) \((1,1)\)-Tensor \(\mathrm{T}^{\mu}{ }_{v}\) or \(\mathrm{T}_{\mu}\) \((0,2)\)-Tensor \(T_{\mu v}\) \((0,1)\)-Tensor \(\mathrm{V}_{\mu}=\left(\mathrm{v}_{0},-\mathrm{v}\right)\)

\section*{SRQM Study: SR 4-Tensors} Properties of Lorentz Transform Tensors Relation to 4D Kronecker Delta

\(\uparrow\) Double Minkowski-Metric Indexed-Altered Tensors (1 raised, 1 lowered) \(\downarrow\)

\section*{SRQM Study: SR 4-Tensors SR EigenValues of Lorentz Transform Tensors}

\(\operatorname{Det}\left[T^{{ }^{a}}{ }_{\mathrm{a}}\right]=\Pi_{k}\left[\lambda_{\mathrm{k}}\right]\); with \(\left\{\lambda_{\mathrm{k}}\right\}=\) EigenValues
Characteristic Eqns: \(\operatorname{Det}\left[T^{\alpha}{ }_{a}-\lambda_{k} I_{4}\right]=0\)

\footnotetext{
Trace \(\left[T^{\mu v}\right]=\eta_{\mu v} T^{\mu v}=T_{\mu}^{\mu}=T\) \(\mathbf{V} \cdot \mathbf{V}=V^{\mu} \eta_{\mu v} V^{v}=\left[\left(v^{0}\right)^{2}-\mathbf{V} \cdot \mathbf{v}\right]=\left(v^{0}{ }_{0}\right)^{2}\) = Lorentz Scalar Invariant
}

\section*{SRQM Study: SR 4-Tensors SR Tensor Invariants for Continuous Lorentz Transform Tensors}

SciRealm.org

\section*{The Lorentz Transform Tensor \(\left\{\Lambda^{u_{v}^{\prime}}=\partial x^{w^{\prime}} / \partial x^{v}=\partial_{v}\left[X^{v}\right]\right\}\) is the tensor all SR 4-Vectors must transform by.}
(2,0)-Tensor \(=4\)-Tensor Tuv: Has (4+) Tensor Invariants (though not all independent) Inner Product
a) \(\mathrm{T}^{\mathrm{a}}{ }_{a}=\) Trace \(=\) Sum of EigenValues for (1,1)-Tensors (mixed)
b) \(T^{\alpha}{ }_{[\alpha} T^{\beta}{ }_{\beta]}=\) Asymm Bi-Product \(\rightarrow\) Inner Product
c) \(T^{\alpha}{ }_{[\alpha}{ }^{\top}{ }_{\beta} T^{\gamma}{ }_{v]}=\) Asymm Tri-Product \(\rightarrow\) ?Name?
d) \(T^{\alpha}{ }_{[\alpha} T^{\beta}{ }_{\beta} T^{v}{ }^{\gamma} T^{\delta}{ }_{\delta]}=\) Asymm Quad-Product \(\rightarrow\) 4D Determinant = Product of EigenValues for (1,1)-Tensors
a): Lorentz Trace \(\left[\Lambda^{\mu v}\right]=\{0.4\)..Infinity\} Lorentz Boost meets Rotation at Identity of 4
b): Lorentz Inner Product \(\Lambda_{\mu v} \wedge^{\mu \mathrm{v}}=4\) from \(\left\{\eta_{\mu v} \Lambda^{\mu}{ }_{\alpha} \Lambda_{\beta}^{v}=\eta_{\alpha \beta}\right\}\) and \(\left\{\eta_{\mu v} \eta^{\mu v}=4\right\}\)
c): Lorentz AsymmTri[\(\left.\wedge^{\mu \mathrm{VV}}\right]=\)
d): Lorentz Det[\(\left[\wedge^{\mu \nu}\right]=+1\) for Proper Transforms, Continuous Transforms Proper

\section*{An even more general version would be} with \(\mathrm{a} \& \mathrm{~b}\) as arbitrary complex values:
could be 2 boosts, 2 rotations,

Asymm Tri-Product Tensor Invariant AsymmTri \(\left[\wedge^{\mu^{\prime}}\right]=\) ? Not yet calc..

\section*{Sum of}

EigenValues [\(\wedge{ }^{\left.\mu^{\prime}{ }_{v}\right]}\) \(=\operatorname{Tr}\left[\wedge \mu^{\prime \prime}{ }_{v}\right]=\wedge^{\mu^{\prime}}{ }_{\mu}\) \(=\left\{e^{a}+e^{-a}+e^{b}+e^{-b}\right\}\)
\(=2(\cosh [a]+\cosh [b])\)

or a boost:rotation combo

SR:Lorentz Transform \(\partial_{v}\left[R^{\mu^{\prime}}\right]=\partial R^{\mu^{\prime}} / \partial R^{v}=\Lambda^{\mu^{\prime}}\)
\(\Lambda^{\mu}{ }_{v}=\left(\Lambda^{-1}\right)_{v}{ }^{\mu}: \Lambda^{\mu}{ }_{a}\left(\Lambda^{-1}\right)^{\alpha}{ }_{v}=\eta^{\mu}{ }_{v}=\delta^{\mu}\)
\(\eta_{\mu v} \wedge^{\mu}{ }_{a} \Lambda^{\vee}{ }_{\beta}=\eta_{\alpha \beta}\)
(Det \(\left[\wedge_{v}^{\mu}\right]= \pm\) D \(\Lambda_{u v} \wedge^{\mu v}=4\)

SR 4-Tensor
(2,0)-Tensor \(\mathrm{T}^{\mathrm{wv}}\) (1,1)-Tensor \(\mathrm{T}^{\mu}{ }_{v}\) or \(\mathrm{T}_{\mu}\)
\((0,2)\)-Tensor \(T_{\text {uv }}\) \((0,1)\)-Tensor \(\mathrm{V}_{\mu}=\left(\mathrm{v}_{0},-\mathrm{v}\right)\)

SR 4-Scalar
(0,0)-Tensor \(S\) or \(S_{0}\)
Lorentz Scalar

Boost(0)
\(=\{-4\)..Infinity \(\}\)

Rotation(0)

Rotation Tensor \(\wedge^{\mu^{\prime}} \rightarrow R^{\mu_{v}}\)

Lorentz SR
\(\left.\begin{array}{ccc} & = & \\ {\left[\begin{array}{ccc}1 & 0 & 0\end{array} 0\right]} \\ 0 & \cos [\theta] & -\sin [\theta] \\ {[0} & 0 \\ 0 & \sin [\theta] & \cos [\theta] \\ 0 & 0 & 0\end{array} 1\right]\)

Determinant Tensor Invariant

Det[Proper \(\left.\wedge^{\mu^{\prime}}{ }_{v}\right]=+1\)
Proper Transform

always +1

\footnotetext{
Trace \(\left[T^{\mu \mathrm{V}}\right]=\eta_{\mu \mathrm{v}} T^{\mu \mathrm{V}}=\mathrm{T}^{\mu}{ }_{\mu}=\mathrm{T}\) \(\mathbf{V} \cdot \mathbf{V}=\mathrm{V}^{\mu} \eta_{\mu \mathrm{v}} \mathrm{V}^{\mathrm{v}}=\left[\left(\mathrm{v}^{0}\right)^{2}-\mathbf{v} \cdot \mathbf{v}\right]=\left(\mathrm{v}^{0}{ }_{\mathrm{o}}\right)^{2}\) = Lorentz Scalar Invariant
}

\(-\infty, . .,(-4), . .,-2, . .,(0), . .,+2, . .,(+4), \ldots,+\infty\)

The Trace of various discrete Lorentz transforms varies in steps from \(\{-4,-2,0,2,4\}\)

This includes Mirror Flips, Time Reversal, and Parity Inverse essentially taking all combinations of \(\pm 1\) on the diagonal of the transform.

Proper Improper

Proper
Improper
Proper

\section*{SRQM Study: SR 4-Tensors More SR Tensor Invariants for Discrete Lorentz Transform Tensors}

4-Vector SRQM Interpretation
of QM

related to exchange symmetr related to exchange symmetry and the Spin-Statistics idea that a particle-exchange is the equivalent of a spin-rotation.

A single Flip would not be an exchange because it leaves a mirror-inversion of <right-|-left>

But the extra Flip along an orthogonal axis corrects the mirror-inversion, and would be an overall exchange because the particle is in a different location.

SR 4-Tensor (2,0)-Tensor T \({ }^{\mu \nu}\) (1,1)-Tensor \(T^{\mu}{ }_{v}\) or \(T_{\mu}\) \((0,2)\)-Tensor \(\mathrm{T}_{\mu v}\)
\(\operatorname{Det}\left[T^{a}{ }_{a}\right]=\Pi_{k}\left[\lambda_{k}\right]\) with \(\left\{\lambda_{k}\right\}=\) EigenValues
Characteristic Eqns: \(\operatorname{Det}\left[T^{a}{ }_{a}-\lambda_{k} I_{4}\right]=0\)

Riemann Curvature Tensor \(=\) Riem
\(R^{\rho}{ }_{\sigma \mu v}=\partial_{\mu} \Gamma^{\rho_{v \sigma}}-\partial_{v} \Gamma^{\rho}{ }_{\mu \sigma}+\Gamma^{\rho}{ }_{\mu \lambda} \Gamma^{\lambda}{ }_{v \sigma}-\Gamma^{\rho}{ }_{v \lambda} \Gamma^{\lambda}{ }_{\mu \sigma}\)
\(\rightarrow 0^{\circ}{ }_{\sigma \mu v}\) for SR "Flat" Minkowski SpaceTime

Carminati-McLenaghan invariants or CM scalars
Below are just the 5 real ones, there are some complex ones too

SR 4-Tensor
(2,0)-Tensor T \({ }^{\text {pv }}\) (1,1)-Tensor \(\mathrm{T}^{\mu}{ }_{v}\) or \(\mathrm{T}_{\nu}{ }^{v}\) \((0,2)\)-Tensor \(\mathrm{T}_{\mu v}\)

SR 4-Scalar
\((0,0)\)-Tensor \(S\) or \(S_{0}\)
Lorentz Scalar
see also: Zakhary-McIntosh curvature invariants

SR 4-Scalars, 4-Vectors, and 4-Tensors beautifully and elegantly display the relations between lots of different physical properties and relations. Their notation makes navigation through the physics very simple.

They also devolve very nicely into the limiting/approximate Newtonian cases of \(\{|\mathbf{v}| \ll \mathrm{c}\}\) by letting \(\left\{\gamma \rightarrow 1\right.\) and \(\left.\gamma^{\prime}=\mathrm{d} \gamma / \mathrm{dt} \rightarrow 0\right\}\).

SR tells us that several different physical properties are actually dual aspects of the same thing, with the only real difference being one's point of view, or reference frame.

Examples of 4-Vectors \(=(1,0)\)-Tensors include:
(Time , Space), (Energy , Momentum), (Power, Force), (Frequency , WaveNumber), (Time Differential , Spatial Gradient),(NumberDensity , NumberFlux),
(ChargeDensity , CurrentDensity), (EM-ScalarPotential , EM-VectorPotential), etc.
One can also examine 4-Tensors, which are type (2,0)-Tensors.
The Faraday EM Tensor similarly combines EM fields:
Electric \(\left\{e=e^{00}=e^{0 j}=\left(e^{x}, e^{y}, e^{2}\right)\right\}\) and Magnetic \(\left\{b=b^{k}=\left(b^{x}, b^{y}, b^{2}\right)\right\}\)
\(F^{\alpha \beta}=\)\begin{tabular}{cc}
0 & \(-e^{0 j} / c\) \\
\(+e^{i 0} / c\) & \(-\left(\varepsilon^{i j}{ }_{k} b^{k}\right)\)
\end{tabular}

Also, things are even more related than that. The 4-Momentum is just a constant times 4-Velocity. The 4-WaveVector is just a constant times 4-Velocity.

In addition, the very important conservation/continuity equations seem to just fall out of the notation. The universe apparently has some simple laws which can be easy to write down by using a little math and a super notation.

\section*{SR 4-Tensor}
(2,0)-Tensor T \({ }^{\text {uv }}\) (1,1)-Tensor \(T^{\mu}{ }_{v}\) or \(T_{\nu}\) \((0,2)\)-Tensor \(\mathrm{T}_{\mu \mathrm{v}}\)

\title{
SR Gradient 4-Vectors = 4D (1,0)-Tensors SR Gradient One-Forms = 4D (0,1)-Tensors
}
```

4-Vector = Type 4D (1,0)-Tensor
4-Position R = R
4-Gradient \partialR}=\partial=\mp@subsup{\partial}{}{\mu}=\partial/\partial\mp@subsup{R}{\mu}{}=(\partial//c,-\nabla

```

\section*{Standard 4-Vector}

4-Position \(\mathbf{R}=R^{\mu}=(c t, r)\)
4-Velocity \(\mathbf{U}=\mathbf{U}^{\mu}=\gamma(\mathrm{c}, \mathrm{u})\)
4-Momentum \(\mathbf{P}=\mathrm{P}^{\mu}=(E / c, p)\)
4-WaveVector \(\mathrm{K}=\mathrm{K}^{\mu}=(\omega / c, k)\)

\section*{[Temporal:Spatial] components}
[Time (t) : Space (r)]
[Time Differential \(\left(\partial_{\mathrm{t}}\right)\) : Spatial Gradient \((\nabla)\)]

In each case, the (Whichever)Gradient 4-Vector is derived from a 4D SR One-Form or 4-CoVector, which is a type \((0,1)\)-Tensor
ex. One-Form PositionGradient \(\partial_{R^{v}}=\partial / \partial R^{v}=\left(\partial_{R} / c, \nabla_{R}\right)\)

The (Whichever)Gradient 4-Vector is the index-raised version of the SR One-Form (Whichever)Gradient ex. 4-PositionGradient \(\partial_{R}^{\mu}=\partial / \partial R_{\mu}=\left(\partial_{R} / C,-\nabla_{R}\right)=\eta^{\mu v} \partial_{R^{v}}=\eta^{\mu v} \partial / \partial R^{v}=\eta^{\mu v}\left(\partial_{R} / C, V_{R}\right)_{v}=\eta^{\mu v}(\text { One-Form PositionGradient })_{v}\)

This is why the 4-Gradient is commonly seen with a minus sign in the spatial component, unlike the other regular 4-Vectors, which have all positive components.

\section*{4-Tensors can be constructed from the Tensor Outer Product of 4-Vectors}

\section*{Some Basic 4-Vectors}

\section*{Minkowski SpaceTime Diagram Events \& Dimensions}

Note the separate dimensional units: (time + 3D space) \(\Delta \mathrm{t}\) is [time, \(\mathrm{SI} \rightarrow \mathrm{s}], \quad|\Delta r|\) is [length, \(\mathrm{SI} \rightarrow \mathrm{m}\)]
"Stack of Motion Picture Photos"

LightCone
\(\Delta t\) time-like interval (+)
c light-like interval (0) = null
\(\Delta r\) space-like interval (-)

4-Displacement \(\Delta R=(c \Delta t, \Delta r)\)
4-Position
\(\mathbf{R}=(c t, r) \in<\) Event \(>\)

\section*{Special}

Relativity

Note the matching dimensional units: (4D Time-Space)
\[
\Delta R \cdot \Delta R=\left[(c \Delta t)^{2}-\Delta r \cdot \Delta r\right]=0 \quad \text { Light-like:Null (0) }
\]
\((c \Delta t)\) is [length/time]*[time] \(=[\) length], \(|\Delta r|\) is [length], \(|\Delta R|\) is [length]
\(\tau\) is the Proper Time = "rest-time", time as measured by something not moving spatially The Minkowski Diagram provides a great visual representation of SpaceTime
Classical (scalar
Galilean
Invariant \begin{tabular}{c}
3-vector) \\
Not Lorentz \\
Invariant
\end{tabular}

\footnotetext{
Trace \(\left[T^{\mu \mathrm{v}}\right]=\eta_{\mu \mathrm{v}} T^{\mu \mathrm{v}}=\mathrm{T}_{\mu}{ }_{\mu}=T\) \(\mathbf{V} \cdot \mathbf{V}=\mathrm{V}^{\mathrm{V}} \eta_{\mathrm{rv}} \mathrm{V}^{\mathrm{V}}=\left[\left(\mathrm{v}^{0}\right)^{2}-\mathbf{v} \cdot \mathbf{v}\right]=\left(\mathrm{v}_{0}^{0}\right)^{2}\)
= Lorentz Scalar Invariant
}

\section*{Some Basic 4-Vectors}
\begin{tabular}{l|c}
\(\Delta t\) & time-like interval \((+)\) \\
at-rest & inertial motion \\
WorldLine \((\mathrm{u}=0)\) & WorldLine \((0<\mathrm{u}<\mathrm{c})\)
\end{tabular}

past
\(\Delta r\)
space-like interval ()
An Event (*) is a point in SpaceTime The 4-Position points to an Event.

A WorldLine is a series of connected Events which trace out a path in SpaceTime, such as the track of a moving particle.

LightCone SR 4-CoVector:OneForm \((0,1)\)-Tensor \(\mathrm{V}_{\mu}=\left(\mathrm{v}_{0},-\mathrm{v}\right)\)

```

4-Displacement
|R=(c\Deltat,\Deltar)
4-Position
R=(ct,r)\in<Event>

```

The 4-Position is a particular type of 4-Displacement, for which the vector base is at the <Origin> \(=(0,0,0,0)=4\)-Zero.

4-Position is Lorentz Invariant, but not Poincaré Invariant. A standard 4-Displacement is both.
\((c \Delta \tau)^{2}\) for time-like (+)
\(\boldsymbol{\Delta} \cdot \boldsymbol{\Delta} \boldsymbol{R}=\left[(c \Delta t)^{2}-\boldsymbol{\Delta r} \cdot \boldsymbol{\Delta r}\right]=0 \quad\) for light-like (0)
-(\(\left.\Delta r_{0}\right)^{2}\) for space-like (-)

4-Velocity
\(\mathbf{U}=\gamma(\mathrm{c}, \mathrm{u})=\mathrm{d} \mathbf{R} / \mathrm{d} \tau\) \(\mathrm{U} \cdot \mathrm{U}=\mathrm{c}^{2}\)

4-Velocity (rest-frame)
\(\mathbf{U}_{\mathrm{o}}=(\mathrm{c}, 0)\)
\(U_{0} \cdot U_{0}=C^{2}\)

4-Velocity \({ }_{\text {(photonic) }}\) \(\mathbf{U}_{\mathrm{c}}=\gamma_{\mathrm{c}}(\mathrm{c}, \mathrm{c} \hat{\mathrm{n}})\)
\[
\begin{gathered}
\mathbf{U} \cdot \mathbf{U}=\gamma(\mathrm{c}, \mathbf{u}) \cdot \gamma(\mathrm{c}, \mathbf{u})=\gamma^{2}\left(\mathrm{c}^{2}-\mathbf{u} \cdot \mathbf{u}\right)=\left(\mathrm{c}^{2}\right) \\
\left.\left.\gamma=1 / \sqrt{ } 1-(\mathrm{u} / \mathrm{c})^{2}\right]=1 / \sqrt{ } 1-(\beta)^{2}\right]
\end{gathered}
\]

Massive particles move temporally into the future at the speed-of-light (c) in their own rest-frame.

Massless particles (photonic) move nully into the future at the speed-of-light (c), and have no rest-frame.

Since the SpaceTime magnitude of \(\mathbf{U}\) is a constant (c), changes in the components of \(\mathbf{U}\) are like rotating the 4 -Vector without changing its length. It keeps the same magnitude. Rotations, purely spatial changes, \{eg. along \(x, y\}\) result in circular displacements. \(\operatorname{Det}\left[\Lambda_{v v}\right]= \pm 1 \Lambda^{2} \Lambda_{\mathrm{uv}} \Lambda^{\mu v}=4\) Boosts, or temporal-spatial changes, \(\{\mathrm{eg}\). along \(\mathrm{x}, \mathrm{t}\}\) result in hyperbolic displacements. The interval between the origin and a given topograph-line is a Lorentz Invariant Constant.
\(\mathbf{U} \cdot \mathbf{U}=\gamma(\mathrm{c}, \mathrm{u}) \cdot \gamma(\mathrm{c}, \mathrm{u})=\gamma^{2}\left(\mathrm{c}^{2}-\mathbf{u} \cdot \mathbf{u}\right)=\left(\mathrm{c}^{2}\right)\)

Rotation (\(x, y\)): Purely Spatial

The Light Cone / Minkowski Diagram provides a great visual representation of SpaceTime

\section*{SR Invariant Intervals Minkowski Diagram}

Since the SpaceTime magnitude of \(\mathbf{U}\) is a constant (c), changes in the components of \(\mathbf{U}\) are like rotating the 4 -Vector without changing its length. It keeps the same magnitude (c). Rotations, purely spatial changes, \{eg. along \(x, y\}\) result in circular displacements. Boosts, or temporal-spatial changes, \{eg. along \(x, t\}\) result in hyperbolic displacements. The interval between the origin and a given topograph-line is a Lorentz Invariant Constant.

\section*{SR:Minkowski Metric}
\(\partial[R]=\partial^{\mu} R^{v}=\eta^{\mu v}=V^{\mu v}+H^{\mu v} \rightarrow\)
\(\operatorname{Diag}[1,-1,-1,-1]=\operatorname{Diag}\left[1,-\mathrm{I}_{(3)}\right]=\operatorname{Diag}\left[1,-\delta^{\mathrm{j}}\right]\)
\{in Cartesian form\} "Particle Physics" Convention
\(\left\{\eta_{\mu \mu}\right\}=1 /\left\{\eta^{\mu \mu}\right\}: \eta_{\mu}{ }^{\nu}=\delta_{\mu}{ }^{\nu} \quad \operatorname{Tr}\left[\eta^{\mu \nu}\right]=4\)

The Minkowski Diagram provides a great visual representation of SpaceTime

A Tensor Study of Physical 4-Vectors 4-Position, 4-Velocity, 4-Acceleration SpaceTime Kinematics

This group of 4-Vectors are the main ones that are connected by the ProperTime Derivative.
\(\mathrm{U} \cdot \partial=\mathrm{d} / \mathrm{d} \tau=\gamma \mathrm{d} / \mathrm{dt}=\gamma\left(\mathrm{c} \partial_{\mathrm{I}} / \mathrm{c}+\mathrm{u} \cdot \nabla\right)=\gamma\left(\partial_{\mathrm{t}}+\mathbf{u} \cdot \nabla\right)\)
The classical part of it, the convective derivative, \(\left(\partial_{\mathrm{t}}+\mathbf{u} \cdot \nabla\right)\), is known by many different names: The convective derivative is a derivative taken with respect to a moving coordinate system. It is also called
 the advective derivative, derivative following the motion, hydrodynamic derivative, Lagrangian derivative, material derivative, particle derivative, substantial derivative, substantive derivative, Stokes derivative, or total derivative

Special Relativity \(|\mathbf{v}|=|\mathbf{u}|=\{0 \leftrightarrow \mathrm{c}\}\) \(\gamma=1 / \sqrt{\left[1-(v / \mathrm{c})^{2}\right]}\)

```

$=\gamma(c, u)$
$\mathbf{P}=(\mathrm{E} / \mathrm{c}, \mathrm{p})=\mathrm{m}_{0} \mathbf{U}=\gamma \mathrm{m}_{\mathrm{o}}(\mathrm{c}, \mathrm{u})=\mathrm{m}(\mathrm{c}, \mathrm{u})$

```

Temporal part: \(\quad \mathrm{E}=\mathrm{mc}^{2}=\gamma \mathrm{m}_{0} \mathrm{c}^{2}=\gamma \mathrm{E}_{0}\) \{energy\}
\[
E=m_{0} c^{2}+(\gamma-1) m_{0} c^{2}
\]
\[
E=E_{0}+(\gamma-1) E_{0}
\]
\[
\text { (rest) }+ \text { (kinetic })
\]

Spatial part:
\(\downarrow\) Newtonian/Classical Limit \(\downarrow\)
Classical Mechanics


```

P=(E/c,p)~(1+(v/c)2/2)mo(c,u)

```
Temporal part: \(E \sim\left(1+(v / c)^{2} / 2\right) m_{0} c^{2}=m_{0} c^{2}+m_{0} v^{2} / 2\)
\{energy\} \(E_{0}+|p|^{2} / 2 m_{0}\)
 (rest) + (kinetic)

The relativistic Gamma factor \(\gamma=1 / \sqrt{[1}\left[-(\mathrm{v} / \mathrm{c})^{2}\right]\)
The \(1^{\text {st }}\) order Newtonian Limit gives \(\gamma \sim 1+\mathrm{O}\left[(\mathrm{v} / \mathrm{c})^{2}\right]\)
The \(2^{\text {nd }}\) order Newtonian Limit gives \(\gamma \sim 1+(\mathrm{v} / \mathrm{c})^{2} / 2+\mathrm{O}\left[(\mathrm{v} / \mathrm{c})^{4}\right]\)
For historical reasons, velocity can be represented by either (v) or (u)

SR 4-Tensor
(2,0)-Tensor T \({ }^{\mu \nu}\) (1,1)-Tensor \(\mathrm{T}^{\mu}{ }_{v}\) or \(\mathrm{T}_{\nu}\) \((0,2)\)-Tensor \(\mathrm{T}_{\mathrm{uv}}\) Invariant

SRQM: Some Basic 4-Vectors 4-Velocity, 4-Acceleration, SpaceTime Orthogonality

SR 4-Scalar
\((0,0)\)-Tensor S or So
Lorentz Scalar

\title{
SRQM: Some Basic 4-Vectors 4-Displacement, 4-Velocity, Relativity of Simultaneity
}

4-Gradient
\(\partial=\left(\partial_{1} / c,-\nabla\right)\)
4-Displacement
\(\Delta \mathbf{X}=(\mathrm{c} \Delta \mathrm{t}, \Delta \mathrm{x})\)
dX=(cdt, dx)
4-Position \(\mathbf{X}=(\mathrm{ct}, \mathrm{x})\)

4-Acceleration
\(\mathbf{A}=\gamma\left(\mathrm{C} \gamma^{\prime}, \gamma^{\prime} \mathbf{u}+\gamma \mathbf{a}\right)\)
ProperTime
Derivative

If Lorentz Scalar (\(\mathbf{U} \cdot \Delta \mathbf{X}=0=\mathrm{c}^{2} \Delta \tau\)), then the ProperTime displacement \((\Delta \tau)\) is zero, and the event separation \(\left(\mathbf{\Delta} \mathbf{X}=\mathbf{X}_{2}-\mathbf{X}_{1}\right)\) is orthogonal to the worldline \(\mathbf{U}\).
\(\mathbf{X}_{\mathbf{1}}\) and \(\mathbf{X}_{\mathbf{2}}\) are therefore simultaneous for the observer on this worldline \(\mathbf{U}\).
Examining the equation we get \(\gamma\left(\mathrm{c}^{2} \Delta \mathrm{t}-\mathbf{u} \cdot \Delta \mathbf{x}\right)=0\). The coordinate time difference between the events is \(\left(\Delta \mathrm{t}=\mathbf{u} \cdot \Delta \mathbf{x} / \mathrm{c}^{2}\right)\)
The condition for simultaneity in an alternate frame (moving at 3 -velocity \(\mathbf{u}\) wrt. the worldine \(\mathbf{U}\)) is \(\Delta t=0\), which implies \((\mathbf{u} \cdot \Delta \mathbf{x})=0\).
This can be met by:
\((|\mathbf{u}|=0)\), the alternate observer is not moving wrt. the events, i.e. is on worldline \(\mathbf{U}\) or on a worldline parallel to \(\mathbf{U}\). \((|\Delta \mathbf{x}|=0)\), the events are at the same spatial location (co-local). \((\mathbf{u} \cdot \Delta \mathbf{x}=0\)), the alternate observer's motion is perpendicular (orthogonal) to the spatial separation \(\Delta \mathbf{x}\) of the events in that frame.

If none of these conditions is met, then the events will not be simultaneous in the alternate reference frame.
This is the mathematics behind the concept of Relativity of Simultaneity.

SR 4-Tensor (2,0)-Tensor T \({ }^{\mu \nu}\) (1,1)-Tensor \(\mathrm{T}^{\mu}{ }_{v}\) or \(\mathrm{T}_{\nu}\) \((0,2)\)-Tensor \(\mathrm{T}_{\mathrm{uv}}\)

SR 4-Scalar
(0,0)-Tensor S or So
Lorentz Scalar

\section*{SR Diagram:} SR Motion * Lorentz Scalar = Interesting Physical 4-Vector

\((0,1)\)-Tensor \(\mathrm{V}_{\mu}=\left(\mathrm{v}_{0},-\mathrm{v}\right)\)

\section*{SRQM Diagram:}

\section*{SRQM Motion * Lorentz Scalar = Interesting Physical 4-Vector}

A Tensor Study of Physical 4-Vectors

 Rest Number Density
Rest Probabilty Density
 SR 4-CoVector:OneForm \((0,1)\)-Tensor \(\mathrm{V}_{\mu}=\left(\mathrm{v}_{0},-\mathrm{v}\right)\)

\section*{SRQM Diagram: \\ ProperTime Derivative Very Fundamental Results}

Continuity of

\(\mathbf{U} \cdot \boldsymbol{\partial}=\gamma(\mathrm{c}, \mathrm{u}) \cdot\left(\partial_{\mathrm{t}} / \mathrm{c},-\nabla\right)=\gamma\left(\partial_{\mathrm{t}}+\mathbf{u} \cdot \nabla\right)\)
\(=\gamma \mathrm{d} / \mathrm{dt}=\mathrm{d} / \mathrm{d} \tau\)

4-Acceleration
\(\mathbf{A}=\gamma\left(\mathrm{c} \gamma^{\prime}, \gamma^{\prime} \mathbf{u}+\gamma \mathbf{a}\right)\)

\section*{Conservation Laws:}
\(\partial \cdot \mathbf{R}=4\)
\(d / d \tau(\partial \cdot \mathbf{R})=d / d \tau(4)=0\)
\(d / d \tau(\partial \cdot \mathbf{R})=d / d \tau(\partial) \cdot \mathbf{R}+\partial \cdot d / d \tau(\mathbf{R})=0\)
\(d / d \tau(\partial \cdot \mathbf{R})=d / d \tau[\partial] \cdot \mathbf{R}+\partial \cdot \mathbf{U}=0\)
\(\partial \cdot \mathbf{U}=-\mathrm{d} / \mathrm{d} \tau[\partial] \cdot \mathbf{R}\)
\(\partial \cdot \mathbf{U}=-(\mathbf{U} \cdot \partial)[\partial] \cdot \mathbf{R}\)
\(\partial \cdot \mathbf{U}=-\left(U_{v} \partial^{v}\right)\left[\partial_{\mu}\right] R^{\mu}\)
\(\partial \cdot \mathbf{U}=-U_{v} \partial^{v} \partial_{\mu} R^{\mu}\)
\(\partial \cdot \mathbf{U}=-U_{\mathrm{v}} \partial_{\mu} \partial^{\mathrm{V}} \mathrm{R}^{\mathrm{r}}:\) I believe this is legit, partials commute
\(\partial \cdot \mathbf{U}=-U_{v} \partial_{\mu} \eta^{v \mu}\)
\(\partial \cdot U=-U_{v}\left(0^{v}\right)\)
\(\partial \cdot \mathbf{U}=0\)
Conservation of the 4-Velocity Flow
(4-Velocity Flow-Field)
\(\partial \cdot \mathbf{U}=0\)
ə.(Lorentz Scalar)U = 0(Lorentz Scalar)
ว-(Lorentz Scalar)U = 0
\(\partial \cdot(\) Interesting 4 -Vector) \(=0\)
Example:
\(\partial \cdot\left(\rho_{\circ}\right) \mathbf{U}=0\)
\(\partial \cdot \mathrm{J}=0\)
\(\left(\partial_{i} / c \rho c+\nabla \cdot j\right)=0\)
\(\left(\partial_{\mathrm{t}} \mathrm{p}+\nabla \cdot \mathrm{j}\right)=0\)
\(=\) Conservation of Charge
= A Continuity Equation

\section*{All of the Physical}

Conservation Laws are in the form of a 4-Divergence, which is a Lorentz Invariant Scalar equation.

These are local continuity equations which basically say that the temporal change in a quantity is balanced by the flow of that quantity into or out of a local spatial region.

Conservation of Charge:
\(\partial \cdot \mathbf{J}=\left(\partial_{t} \rho+\nabla \cdot \mathbf{j}\right)=0\)

\footnotetext{

\(\mathbf{V} \cdot \mathbf{V}=\mathbf{V}^{4} \eta_{\operatorname{Lv}} \mathbf{V}^{\mathrm{V}}=\left[\left(\mathbf{v}^{0}\right)^{2}-\mathbf{V} \cdot \mathbf{v}\right]=\left(\mathbf{v}^{0}{ }_{0}\right)^{2}\)
= Lorentz Scalar Invariant
}

These are Fluid or Density -type Conservation/Continuity Laws

\section*{SRQM: Some Basic 4-Vectors} 4-Velocity, 4-Gradient, Time Dilation
at-rest worldline \(\mathrm{U}_{0}\) (u=0) fully temporal
const inertial motion worldline U (\(0<\mathrm{u}<\mathrm{c}\))
trades some time for space

\(\mathbf{U} \cdot \mathbf{U}=\gamma(\mathrm{c}, \quad) \cdot \gamma(\mathrm{c}, \quad)=\gamma^{2}\left(\mathrm{c}^{2}-\mathbf{u} \cdot \mathbf{u}\right)=\left(\mathrm{c}^{2}\right)\)
\(\gamma=1 / \sqrt{ }\left[1-(u / c)^{2}\right]=1 / \sqrt{ }\left[1-\beta^{2}\right]\)
Everything moves into future (+t) at the speed-of-light (c) in its own spatial rest-frame
The Minkowski Diagram provides a great visual representation of SpaceTime

Since the SpaceTime magnitude of \(\mathbf{U}\) is a constant, changes in the components of U are like "rotating" the 4 -Vector without changing its length. However, as U gains some spatial velocity, it loses some "relative" temporal velocity. Objects that move in some reference frame "age" more slowly relative to those at rest in the same reference frame.

Time Dilation!
\[
\begin{aligned}
\Delta \mathrm{t} & =\gamma \Delta \tau=\gamma \Delta \mathrm{t}_{0} \\
\mathrm{dt} & =\gamma \mathrm{d} \tau \\
\mathrm{~d} / \mathrm{d} \tau & =\gamma \mathrm{d} / \mathrm{dt}
\end{aligned}
\]

Each observer will see the other as aging more slowly; similarly to two people moving oppositely along a train track, seeing the other as appearing smaller in the distance.

M

\section*{SRQM: Some Basic 4-Vectors} Lorentz Invariant d'Alembertian (\(\partial \cdot \partial\))

The d'Alembertian \(\left\{\partial \cdot \partial=\left(\partial_{\mathrm{t}} / \mathrm{c}\right)^{2}-\nabla \cdot \nabla\right\}\) is a 4D Lorentz Scalar Invariant

It is used as the basis of many "wave-type" equations.
\((\partial \cdot \partial) \varphi[\mathbf{X}]=(\partial \cdot \partial) \varphi[(\mathrm{t}, \mathbf{x})]=0\) is the standard relativistic wave equation
\((\partial \cdot \partial) \mathbf{A}[\mathbf{X}]=(\partial \cdot \partial) \mathbf{A}[(\mathrm{t}, \mathbf{x})]=0\) is the Maxwell EM Wave equation In Lorenz Gauge \((\partial \cdot \mathbf{A})=0\)
\((\partial \cdot \partial) \mathbf{A}[\mathbf{X}]=(\partial \cdot \partial) \mathbf{A}[(\mathrm{t}, \mathbf{X})]=\mu_{\mathrm{o}} \mathbf{J}\) is the Maxwell EM Wave equation In Lorenz Gauge \((\partial \cdot \mathbf{A})=0\) with a Source term \(\mathbf{J}\)
\((\partial \cdot \partial) \varphi[\mathbf{X}]=-\left(m_{0} c / \hbar\right)^{2} \varphi[\mathbf{X}]\) is the standard relativistic quantum Klein-Gordon equation
\((\partial-\partial) \mathrm{G}\left[\mathrm{X}-\mathrm{X}^{\prime}\right]=\delta^{(4)}\left[\mathrm{X}-\mathrm{X}^{\prime}\right]: \mathrm{G}\left[\mathrm{X}-\mathrm{X}^{\prime}\right]\) is a 4D Green's Function, \(\delta^{(4)}\left[\mathrm{X}-\mathrm{X}^{\prime}\right]\) is a 4D Dirac Delta function
\(\delta^{(4)}\left[\mathbf{X}-\mathbf{X}^{\prime}\right]=1 /(2 \pi)^{4} \int \mathrm{~d}^{4} \mathbf{K} \mathrm{e}^{-\left(\mathrm{i}\left(\mathrm{K} \cdot\left(\mathrm{X}-\mathrm{X}^{\prime}\right)\right)\right.}=\delta[\mathrm{ct-ct}] \delta^{(3)}\left[\mathrm{x}-\mathrm{x}^{\prime}\right]=\delta[\mathrm{ct-ct}] \delta\left[\mathrm{x}-\mathrm{x}^{\prime}\right] \delta\left[\mathrm{y}-\mathrm{y}^{\prime}\right] \delta\left[\mathrm{z}-\mathrm{z}^{\prime}\right]\)
\(\int_{\text {[Some 4D Volume] }} \delta^{(4)}\left[\mathrm{X}-\mathrm{X}^{\prime}\right] \mathrm{d}^{4} \mathrm{X}=\left\{1\right.\) if \(\mathrm{X}^{\prime}\) in the 4D Volume, 0 otherwise \(\}\)

\section*{4-Gradient \(\partial=(\partial / \mathrm{t},-\nabla)\)}

The Covariant 4D versions of the Green's Function and the Dirac Delta Function.
Given a linear ordinary differential equation (ODE), L (solution) = source, one can first solve L(green) \(=\delta[\mathrm{s}]\), for each s , and realizing that, since the source is a sum of delta functions, the solution is a sum of Green's functions as well, by linearity of L.

\author{
4D Dirac Delta \(\delta^{(4)}\left[\mathbf{X}-\mathbf{X}^{\prime}\right]\)
}

\section*{SRQM: Some Basic 4-Vectors}

\section*{4-WaveVector, aka. Wave 4-Vector: \{solution of d'Alembertian Wave Eqn. \(\partial \cdot \partial\}\)}

There are multiple ways of writing out the components of the 4 -WaveVector, with each one giving an interesting take on what the 4-WaveVector means.

An SR wave \(\Psi\) is actually composed of two tensors:
(1) 4-Vector propagation part \(=K^{a}\) (the engine), in \(e^{\wedge}\left(-\mathrm{i}^{\mathrm{a}} \mathrm{X}_{\mathrm{a}}\right)\)
(2) Variable amplitude part = A (the load), depends on what is waving...

4-Scalar A: \(\Psi=A e^{\wedge}\left(-\mathrm{i}^{\mathrm{a}} \mathrm{X}_{a}\right)\) ex. KG Quantum Wave

4-Vector \(\mathrm{A}^{\mu}: \Psi^{\mu}=\mathrm{A}^{\mu} \mathrm{e}^{\wedge}\left(-\mathrm{iK}^{\omega} \mathrm{X}_{a}\right)\) ex. Maxwell Photon Wave

4-Tensor \(\mathrm{A}^{\mathrm{av}}: \Psi^{\mathrm{tv}}=\mathrm{A}^{\mathrm{av}} \mathrm{e}^{\wedge}\left(-\mathrm{iK}^{\mathrm{a}} \mathrm{X}_{\mathrm{a}}\right)\) ex. Gravitational Wave Approx

The \(\psi\) tensor-type will match the A tensor-type, as the propagation part \(e^{\wedge}\left(-\mathrm{iK}^{\mathrm{a}} \mathrm{X}_{\text {a }}\right)\) is overall dimensionless.

One comparison I find very interesting is:
\(\mathbf{R} \cdot \mathbf{R}=(\mathrm{ct})^{2}=(\mathrm{ct})^{2}\)
\(K \cdot K=\left(1 / c \mp_{0}\right)^{2}\)
\(\partial \cdot \partial=\left(\partial / c \partial t_{0}\right)^{2}=(\partial / c \partial \tau)^{2}\)
4-Position R=(ct,r)
\(R \cdot R=(c t)^{2}-r\)
\(=(c \tau)^{2}\) \(=\left(\mathrm{ct}_{0}\right)^{2}\)

I believe the last one is correct: \((\partial \cdot \partial)[\mathbf{R}]=\mathbf{0}=(\partial / c \partial \tau)^{2}[\mathbf{R}]=\mathbf{A}_{0} / \mathrm{c}^{2}=\mathbf{0}\) : The 4-Acceleration seen in the ProperTime Frame \(=\) RestFrame \(=\mathbf{0}\) Normally \((\mathrm{d} / \mathrm{d} \tau)^{2}[R]=A\), which could be non-zero. But that is for the total derivative, not the partial derivative.

SR 4-Scalar
\((0,1)\)-Tensor \(\mathrm{V}_{\mu}=\left(\mathrm{v}_{0},-\mathrm{v}\right)\)
(0,0)-Tensor S or S.
\((0,0)\)-Tensor S or So
Lorentz Scalar

\[
\begin{aligned}
\mathbf{K} & =(\omega / \mathrm{c}, \mathrm{k})=\left(\omega / \mathrm{c}, \omega \hat{1} / /_{\text {phase }}\right)=\left(\omega_{\mathrm{o}} / \mathrm{c}^{2}\right) \mathbf{U} \\
& =\left(\omega_{\mathrm{o}} / \mathrm{c}^{2}\right) \gamma(\mathrm{c}, \mathrm{u})=\left(\omega / \mathrm{c}^{2}\right)(\mathrm{c}, \mathrm{u})=\left(\omega / \mathrm{c},\left(\omega / \mathrm{c}^{2}\right) \mathrm{u}\right)
\end{aligned}
\]
\(\left(\omega / c, \omega \hat{n} / v_{\text {phase }}\right)=\left(\omega / c,\left(\omega / c^{2}\right) u\right)\)
Taking just the spatial components of the 4-WaveVector:
\(\omega n / v_{\text {phase }}=\left(\omega / c^{2}\right) \mathbf{u}\)
\(\hat{n} / v_{\text {phase }}=\left(u / c^{2}\right)\)
\(u^{*} V_{\text {phase }}=c^{2}\)
\(\mathrm{V}_{\text {group }} * \mathrm{~V}_{\text {phase }}=\mathrm{c}^{2}\), with \(\mathrm{u}=\mathrm{V}_{\text {group }}\)
Wave Group velocity (\(\mathrm{v}_{\text {group }}\)) is mathematically the same as Particle velocity (u) Wave Phase velocity (\(v_{\text {phase }}\)) is the speed of an individual plane-wave, also the speed of signal synchronicity, the speed of the wave of coordinated flashes.

\section*{Relativistic SR Doppler Effect}
(\(\hat{\mathrm{n}}\)) here is the unit-directional 3 -vector of the photon
Choose an observer frame for which:
\(\mathrm{K}=(\omega / \mathrm{c}, \mathrm{k})\), with \(\mathbf{k}\), \(\hat{\mathrm{n}}\) pointing toward observer
\(\mathbf{U}_{\text {obs }}=(\mathrm{c}, 0) \quad \mathrm{K} \cdot \mathrm{U}_{\text {obs }}=(\omega / \mathrm{c}, \mathrm{k}) \cdot(\mathrm{c}, 0)=\omega=\omega_{\text {obs }}{ }^{\circ}\)
\(\mathbf{U}_{\text {emit }}=\gamma(c, u) \quad \mathbf{K} \cdot \mathbf{U}_{\text {emit }}=(\omega / c\), , \() \cdot \gamma(c, u)=\gamma(\omega-\mathbf{k} \cdot \mathbf{u})=\omega_{\text {emil }}\)
\(\mathbf{K} \cdot \mathbf{U}_{\text {obs }} / \mathbf{K} \cdot \mathbf{U}_{\text {emit }}=\omega_{\text {obs }} d \omega_{\text {emit }}=\omega /[\gamma(\omega-\mathbf{k} \cdot \mathbf{u})]\)
For photons, \(\mathbf{K}\) is null \(\rightarrow \mathbf{K} \cdot \mathbf{K}=0 \rightarrow \mathbf{k}=(\omega / \mathrm{c}) \hat{n}\)
\(\omega_{\text {obs }} / \omega_{\text {emif }}=\omega /[\gamma(\omega-(\omega / c) \hat{n} \cdot \mathbf{u})]=1 /[\gamma(1-\hat{n} \cdot \beta)]=1 /\left[\gamma\left(1-|\beta| \cos \left[\theta_{\text {obs }}\right)\right]\right.\)
\(\omega_{\text {obs }} / \omega_{\text {emit }}=\gamma \omega_{\text {obs }} d\left(\gamma \omega_{\text {emio }}\right)=\omega_{\text {obs }} d \omega_{\text {emio }}\)
\(\omega_{\text {obs }}=\omega_{\text {emir }} /[\gamma(1-\hat{n} \cdot \beta)]=\omega_{\text {emit }} * \sqrt{ }[1+|\beta|]^{*} \sqrt{ }[1-|\beta|] /(1-\hat{n} \cdot \beta)\)
with \(\left.\left.\gamma=1 / \sqrt{[1-\beta} \beta^{2}\right]=1 /\left(\sqrt{ }[1+|\beta|]^{*} \sqrt{[1-\mid}|\beta|\right]\right)\)
For motion of emitter \(\beta\) : (in observer frame of reference)
Away from obs, \((\hat{n} \cdot \beta)=-\beta, \omega_{\text {obs }}=\omega_{\text {emit }} *[1-||\beta|] / \sqrt{ }(1+|\beta|)=\) Red Shiff Toward obs, \(\quad(\hat{n} \cdot \beta)=+\beta, \omega_{\text {obs }}=\omega_{\text {emit }}{ }^{*} \sqrt{ }[1+|\beta|] / \sqrt{ }(1-|\beta|)=\)
Transverse, \(\quad(\hat{n} \cdot \beta)=0, \omega_{\text {obs }}=\omega_{\text {emi }} / \gamma=\) Transverse Doppler Shift

The Phase Velocity of a Photon \(\left\{v_{\text {phase }}=c\right\}\) equals the Particle Velocity of a Photon \(\{u=c\}\)
The Phase Velocity of a Massive Particle \(\left\{v_{\text {phase }}>c\right\}\) is greater than the Velocity of a Massive Particle \(\{u<c\}\) Wave Properties, Relativistic Aberration

\[
\begin{aligned}
\mathbf{K} & =(\omega / \mathrm{c}, \mathrm{k})=\left(\omega / \mathrm{c}, \omega \hat{\omega} / \mathrm{V}_{\text {phase }}\right)=\left(\omega_{o} / \mathrm{c}^{2}\right) \mathrm{U} \\
& =\left(\omega_{\mathrm{o}} / \mathrm{c}^{2}\right) \gamma(\mathrm{c}, \mathrm{u})=\left(\omega / \mathrm{c}^{2}\right)(\mathrm{c}, \mathrm{u})=\left(\omega / \mathrm{c},\left(\omega / \mathrm{c}^{2}\right) \mathrm{u}\right)
\end{aligned}
\]
\(\left(\omega / c, \omega \hat{n} / V_{\text {phase }}\right)=\left(\omega / c,\left(\omega / c^{2}\right) u\right)\)
Taking just the spatial components of the 4-WaveVector:
\(\omega n / v_{\text {phase }}=\left(\omega / c^{2}\right) \mathrm{u}\)
\(\hat{n} / v_{\text {phase }}=\left(u / c^{2}\right)\)
\(u^{*} V_{\text {phase }}=c^{2}\)
\(\mathrm{V}_{\text {group }} * \mathrm{~V}_{\text {phase }}=\mathrm{c}^{2}\), with \(\mathrm{u}=\mathrm{V}_{\text {group }}\)
Wave Group velocity (\(\mathrm{v}_{\text {group }}\)) is mathematically the same as Particle velocity (u) Wave Phase velocity (\(v_{\text {phase }}\)) is the speed of an individual plane-wave, also the speed of signal synchronicity, the speed of the wave of coordinated flashes.
```

Relativistic SR Aberration Effect
( $\hat{\mathrm{n}}$ ) here is the unit-directional 3 -vector of the photon
$\omega_{\text {obs }}=\omega_{\text {emil }} \mu[\gamma(1-\hat{n} \cdot \beta)]=\omega_{\text {emil }} /\left[\gamma\left(1-|\beta| \cos \left[\theta_{\text {obs }}\right)\right]\right.$
Change reference frames with $\{0 \mathrm{os} \rightarrow \mathrm{emit}\} \&\{\beta \rightarrow-\beta\}$
$\omega_{\text {emit }}=\omega_{\text {oos }}\left[\{\gamma(1+\hat{n} \cdot \beta)]=\omega_{\text {obs }}\left[\left[\gamma\left(1+|\beta| \cos \left[\theta_{\text {emil }}\right]\right)\right]\right.\right.$
$\left(\omega_{\text {obs }}\right)^{*}\left(\omega_{\text {emit }}\right)=\left(\omega_{\text {emil }}\left[\gamma \gamma\left(1-|\beta| \cos \left[\theta_{\text {obs }}\right]\right)\right]\right)^{*}\left(\omega_{\text {obs }} /\left[\gamma\left(1+|\beta| \cos \left[\theta_{\text {emil }}\right]\right)\right]\right)$
$1=\left(1 /\left[\gamma\left(1-|\beta| \cos \left[\theta_{\text {ooss }}\right]\right)\right]\right)^{*}\left(1 /\left[\gamma\left(1+|\beta| \cos \left[\theta_{\text {emil }}\right]\right)\right]\right)$
$1=\left(\gamma\left(1-|\beta| \cos \left[\theta_{\text {obs }}\right]\right)\right)^{*}\left(\gamma\left(1+|\beta| \cos \left[\theta_{\text {emill }}\right]\right)\right)$
$1=\gamma^{2}\left(1-|\beta| \cos \left[\theta_{\text {obs }}\right]\right)^{*}\left(1+|\beta| \cos \left[\theta_{\text {emil }}\right]\right)$
Solve for $|\beta| \cos \left[\theta_{\text {obs }}\right]$ and use $\left\{\left(\gamma^{2}-1\right)=\beta^{22 / 2}\right\}$
$\cos \left[\theta_{\text {obs }}\right]=\left(\cos \left[\theta_{\text {emil }}\right]+|\beta|\right) /\left(1+|\beta| \cos \left[\theta_{\text {emill }}\right]\right)$

```

The Phase Velocity of a Photon \(\left\{\mathrm{V}_{\text {phase }}=\mathrm{c}\right\}\) equals the Particle Velocity of a Photon \(\{\mathrm{u}=\mathrm{c}\}\)
The Phase Velocity of a Massive Particle \(\left\{V_{\text {phase }}>c\right\}\) is greater than the Velocity of a Massive Particle \(\{u<c\}\)

SR 4-Tensor
(2,0)-Tensor T \({ }^{\mu \mathrm{v}}\) (1,1)-Tensor \(\mathrm{T}^{\mu}{ }_{v}\) or \(\mathrm{T}_{\nu}\)
\((0,2)\)-Tensor \(T\) \((0,1)\)-Tensor \(\mathrm{V}_{\mu}=\left(\mathrm{V}_{0},-\mathrm{v}\right)\)

\title{
Some Cool Minkowski Metric Tensor Tricks 4-Gradient, 4-Position, 4-Velocity
} SpaceTime is 4D

Minkowski Metric

\(\eta_{\alpha \beta}\left(\eta^{\gamma \beta}\right)=\eta_{a^{\gamma}}=\operatorname{Diag}[1,-1,-1,-1]^{*} \operatorname{Diag}[1,-1,-1,-1]=\operatorname{Diag}[1,1,1,1]\) thus

Single Index-Lowering the Minkowski Metric (\(\eta^{\gamma \beta}\)) gives the Kronecker Delta
\((\partial \cdot R)=\left(\partial^{\alpha} \cdot R^{\beta}\right)=\left(\partial^{\alpha} \eta_{\alpha \beta} R^{\beta}\right)=\eta_{\alpha \beta}\left(\partial^{\alpha} R^{\beta}\right)=\eta_{\alpha \beta}\left(\eta^{\alpha \beta}\right)=\eta_{\alpha}{ }^{\alpha}=\delta_{\alpha}{ }^{\alpha}=4\)
Trace[Minkowski Metric] \(=\operatorname{Tr}\left[\eta^{\alpha \beta}\right]=\eta_{\alpha \beta}\left[\eta^{\alpha \beta}\right]=\eta_{\alpha}{ }^{\alpha}=\delta_{\alpha}{ }^{\alpha}=4\)
thus

The Divergence of 4-Position \((\partial \cdot R)=\) "Magnitude" of the Minkowski Metric \(\operatorname{Tr}\left[\eta^{\alpha \beta}\right]=\) the Dimension of SpaceTime (4)
\(\left(U^{\prime} \cdot \partial\right)[R]=\left(U^{\alpha} \cdot \partial^{\beta}\right)\left[R^{\vee}\right]=\left(U^{\alpha} \eta_{\alpha \beta} \partial^{\beta}\right)\left[R^{\vee}\right]=\left(U_{\beta} \partial^{\beta}\right)\left[R^{\vee}\right]=\left(U_{\beta}\right) \partial^{\beta}\left[R^{\vee}\right]=\left(U_{\beta}\right) \eta^{\beta \gamma}=U^{\vee}=U=(d / d \tau)[R]\)
thus
Lorentz Scalar Product \((\mathbf{U} \cdot \partial)=\) Derivative wrt. ProperTime (\(\mathrm{d} / \mathrm{d} \tau)=\) Relativistic Factor * Derivative wrt. CoordinateTime \(\gamma(\mathrm{d} / \mathrm{dt})\) :

\section*{SRQM+EM Diagram: 4-Vectors}

\section*{SRQM+EM Diagram: 4-Vectors, 4-Tensors}
\begin{tabular}{c}
\\
\hline 4-Displacement \\
\(\mathbf{\Delta R = (c \Delta t , \Delta r)}\) \\
\(\mathbf{d R}=(c d t, d r)\) \\
\hline \begin{tabular}{c}
4-Position \\
\(\mathbf{R}=(\mathrm{ct}, \mathrm{r})\)
\end{tabular} \\
\hline
\end{tabular}

4-Acceleration
\(\mathbf{A}=\gamma\left(\mathrm{c} \gamma^{\prime}, \gamma^{\prime} \mathbf{u}+\gamma \mathrm{a}\right)\)

\section*{4-Polarization: \(\mathrm{E}=\left(\varepsilon^{0}, \varepsilon\right)=(\varepsilon \cdot \beta, \varepsilon)\) \(\mathrm{S}=\left(\mathbf{s}^{0}, \mathbf{s}\right)=(\mathbf{s} \cdot \boldsymbol{\beta}, \mathbf{s})\)}
\(\partial[\mathbf{R}]=\eta^{\mu v} \rightarrow \operatorname{Diag}[1,-1,-1,-1]\) Minkowski Metric
\begin{tabular}{|c|c|}
\hline 4-UnitTemporal \\
\(\mathbf{T}=\gamma(1, \beta)\)
\end{tabular}\(\quad\)\begin{tabular}{c}
4-Velocity \\
\(\mathbf{U}=\gamma(\mathrm{c}, \mathrm{u})\)
\end{tabular}

4-Momentum
\[
P=(m c, p)=(E / c, p)
\]

4-ChargeFlux 4-CurrentDensity \(J=(\rho c, j)=\rho(c, u)\)

4-EMVectorPotential \(\mathbf{A}=(\varphi / c, a)\)

4-TotalWaveVector \(\mathbf{K}_{\mathrm{T}}=\left(\omega_{\mathrm{T}} / \mathrm{c}, \mathrm{k}_{\mathrm{T}}\right)\)

\section*{4-Force \(\mathrm{F}=\gamma(\dot{\mathrm{E}} / \mathrm{c}, \mathrm{f}=\dot{\mathrm{p}})\)}

\section*{-MassFlux}

4-MomentumDensity
\(\mathbf{G}=\left(\rho_{\mathrm{m}} \mathrm{C}, \mathrm{q}\right)=\left(\rho_{\mathrm{e}} / \mathrm{c}, \mathrm{q}\right)\)

4-WaveVector
\(\mathrm{K}=(\omega / \mathrm{c}, \mathrm{k})\)

4-NumberFlux
\(\mathrm{N}=(\mathrm{nc}, \mathrm{n})=\mathrm{n}(\mathrm{c}, \mathrm{u})\)
4-ProbCurrDensity
4-ProbabilityFlux
J =(

\[
\begin{gathered}
\text { 4-TotalMomentum } \\
\mathbf{P}_{T}=\left(E_{T} / c, p_{T}\right)=\left(H / c, p_{T}\right)
\end{gathered}
\]

\section*{4-ForceDensity}
\(\mathbf{F}_{\text {den }}=\gamma\left(\dot{E}_{\text {den }} / \mathbf{c}, f_{\text {den }}\right)\)
4-MomentumField
\(P_{f}=\left(E_{f} / c, p_{f}\right)\)
\(=P+Q=P+q A\) \((0,1)\)-Tensor \(\mathrm{V}_{\mu}=\left(\mathrm{v}_{0},-\mathrm{v}\right)\)

Existing SR Rules
Quantum Principles
\(\partial[R]=\eta^{\mathrm{Lv}} \rightarrow \operatorname{Diag}[1,-1,-1,-1]\)

SRQM+EM Diagram: 4-Vectors, 4-Tensors

\(T \cdot \Delta R / c=\Delta \tau\)

4-Unit Temporal
\(\mathbf{T}=\gamma(1, \beta)\)
\begin{tabular}{|l|}
\hline 4-UnitSpatial \\
\(\mathbf{S}=\gamma_{\beta n}(\hat{n} \cdot \boldsymbol{\beta}, \mathrm{n})_{\perp}\)
\end{tabular}

Conservation of
C SR 4-Tenso (2,0)-Tensor T \({ }^{\mu v}\) (1,1)-Tensor \(T^{\mu}{ }_{v}\) or \(T_{\mu}\) \((0,2)\)-Tensor \(T_{\mu v}\)

Existing SR Rules
Quantum Principles
\((+,-,-,-) S R \rightarrow Q\)
Physics
SRQM+EM Diagram: 4-Vectors, 4-Tensors

Lorentz Scalars / Physical Constants

SR 4-Tensor
(2,0)-Tensor T \({ }^{\mu v}\) (1,1)-Tensor \(T^{\mu_{v}}\) or \(T_{\nu}\)
\((0,2)\)-Tensor \(T_{\mu v}\)
\((+,-,-,-) S R \rightarrow Q M\) of Physical 4-Vectors

SRQM+EM Diagram: 4-Vectors, 4-Tensors Lorentz Scalars / Physical Constants with Tensor Invariants

SR 4-Tensor
(2,0)-Tensor \(\mathrm{T}^{\mathrm{uv}}\) (1,1)-Tensor \(T^{\mu}{ }_{v}\) or \(T_{\mu}\) \((0,2)\)-Tensor \(T_{\mu v}\)

A Tensor Study of Physical 4-Vectors

\section*{\(\partial \cdot G^{\mu v}=0^{\mu}\) \\ SR Conservation \\ of Einstein Tensor}

Notice that all the main "Universal" or "Fundamental" \(1 / \mu_{0}\) Physical Constants are here: G, c, ћ, \(\varepsilon_{0}, \mu_{\circ}\).

Some depend on the actual particle type: \(\mathrm{q}, \mathrm{m}_{0}, \omega_{0}\)
Some depend on regional conditions: \(\tau, \rho_{e o}, \rho_{o}, \rho_{0}, \varphi_{o}, \psi^{*} \Psi\) Some depend on interaction: \(\Phi_{\text {phase }}, S_{\text {action }}\)
Some are mathematical: \(0,4, \pi, \mathrm{i}, \mathrm{Diag}[1,-1,-1,-1] \mathrm{d} / \mathrm{d} \tau\) Conservation Laws are also a type of "zero" constant in this regard.

The majority of the constants are Lorentz Scalars, but some are 4-Vector or 4-Tensor, and all are valid for all inertial observers.

\section*{Fundamental Physical Constants are SR Lorentz Scalars}

a good argument for why their values are constant. Changing even one would change the relationship properties among all of the 4-Vectors.

\title{
SRQM Diagram: Projection Tensors Temporal, Spatial, Null, SpaceTime
}

Projection Tensors act as follows:
Generic 4-Vector:
\(A^{V}=\left(a^{0}, a\right)=\left(a^{0}, a^{1}, a^{2}, a^{3}\right)\)

Temporal Projection:
\(V^{{ }^{\mu}}=\eta_{\omega v} V^{\nu \omega \omega} \rightarrow \operatorname{Diag}[1,0,0,0\)
\(V_{v}{ }^{v} A^{v}=\left(a^{0}, 0,0,0\right)=\left(a^{0}, 0\right)\)
Spatial Projection:
\(H^{\mu}{ }_{v}=\eta_{\omega v} H^{\mu \omega} \rightarrow \operatorname{Diag}[0,1,1,1]\) \(H^{\mu} v A^{v}=\left(0, a^{1}, a^{2}, a^{3}\right)=(0, a)\)

SpaceTime Projection:
\(V^{v}{ }_{v} A^{v}+H^{\mu} v A^{v}=\eta^{\mu} v A^{v}\)
\(=\delta^{\mu}{ }_{v} A^{v}=A^{\mu}=\left(a^{0}, a\right)\)
\[
V^{\mu}{ }_{v}+H^{\mu}{ }_{v}=\eta^{\mu}{ }_{v}=\delta^{\mu_{v}}
\]

\section*{\(\mathrm{V}^{\mathrm{IVV}}+\mathrm{H}^{\mathrm{LV}}=\eta^{\mathrm{LV}}\)}

The Minkowski Metric Tensor is the Sum of Temporal \& Spatial Projection Tensors, all of which are dimensionless.

\section*{SRQM Diagram: Projection Tensors \&} Perfect-Fluid Stress-Energy Tensor

SR 4-Tensor
(2,0)-Tensor T \({ }^{\mu v}\) (1,1)-Tensor \(\mathrm{T}_{v}\) or \(\mathrm{T}_{\mu}\)
\((0,2)\)-Tensor \(\mathrm{T}_{\mu v}\)
\(P^{\mu} N^{v}=\left(m_{0} U^{\mu}\right)\left(n_{0} U^{v}\right)=\left(m_{0} n_{0}\right)\left(U^{P} U^{v}\right)=\left(\rho_{m o}\right)\left(U^{P} U^{v}\right)\)
\(=\left(\rho_{\mathrm{mo}}\right)\left(\mathrm{C}^{2}\right)\left(T^{\mu} \mathrm{T}^{v}\right)=\left(\rho_{\mathrm{eo}}\right)\left(T^{\mu} T^{\mathrm{V}}\right)=\left(\rho_{\mathrm{eo}}\right)\left(\mathrm{V}^{\mathrm{PV}}\right)=\rho_{\mathrm{eo}} \mathrm{V}^{\mathrm{V}}\)

\section*{SRQM+EM Diagram:}

\section*{Projection Tensors \& Stress-Energy Tensors:} of Physical 4-Vectors http://scirealm.org/SRQM.pdf
 \\ \section*{R} \\ \section*{R} of Physical 4-Vectors

\section*{SRQM Study: Physical 4-Tensors Matter-Dust vs. Null-Dust}

Matter-Dust is a special case of a perfect fluid with time-like 4-Velocity U, energy density \(\rho\), and zero pressure \(p\), described by the energy-momentum tensor \(T_{(\text {dust })^{\mu v}}=\rho_{o} U^{\mu} U^{v}\). Because there is no pressure gradient, the fluid elements of the dust follow time-like geodesics.

Null-Dust corresponds to the limit in which the 4-Velocity U becomes null, and is described by \(\mathrm{T}_{\text {(nuld dust }^{\mu \mathrm{V}}=\rho_{0} \mathrm{~K}^{\mu} \mathrm{K}^{\nu} \text {, }}\) \(K \cdot K=0\), with \(\rho>0\) and trace[T]=0. The elements of dust follow null geodesics.

Null-Dust is interpreted as a coherent zero-rest-mass field propagating at the speed of light (c) in the null direction K. A null-dust can describe propagating electromagnetic (EM) or gravitational waves.

Note:There is an unfortunate slight notational clash between:

4-(Dust)NumberFlux \(\mathbf{N}=(n c, n u)=n_{0} \mathbf{U}\)
\[
\text { 4-"Unit"Null } \mathbf{N}=(1, \pm \hat{n})
\]

Use colored overbars on the "Unit" 4-Vectors \(\mathbf{T}=\) Temporal : \(\mathbf{N}=\) Null : \(\mathbf{S}=\) Spatial

4-Momentum
\(P=P==(E / c=m c, p=m u)=m_{0} \mathbf{U}\)

\section*{(Cold) Matter-Dust}
\(T^{\mu \nu} \rightarrow P^{\mu} N^{\nu}=m_{0} U^{\mu} n_{0} U^{\nu}=\left(\rho_{m o}\right) U^{\mu} U^{v}=\) \(=\left(\rho_{\mathrm{mo}} \mathrm{C}^{2}\right) \bar{T}^{\mu} \mathrm{T}^{\mathrm{v}}=\left(\rho_{\mathrm{eo}}\right) \bar{T}^{\mu} \overline{\mathrm{T}^{v}}=\left(\rho_{\mathrm{eo}}\right) V^{\mu v} \rightarrow_{\{\mathrm{MCRF}\}}\)
\begin{tabular}{|c|c|c|c|}
\hline \(\underline{\text { - }}\) & - & \(\underline{y}\) & z \\
\hline t [\(\rho_{\mathrm{e}}\) & 0 & 0 & 0 \\
\hline \(\underline{x}[0\) & 0 & 0 & 0 \\
\hline \(\underline{y}\) [0 & 0 & 0 & 0 \\
\hline \(\underline{z}[0\) & 0 & 0 & 0 \\
\hline
\end{tabular}
\(\rho_{\mathrm{e}}=\rho_{\mathrm{m}} \mathrm{C}^{2} 0^{0 \mathrm{j}} 0^{\mathrm{ij}} \quad 0^{\mathrm{ij}}\)

Stress-Energy 4-Tensor
Symmetric, Spatial Isotropic, Pressureless

Null-Dust : "Gravitational Wave"
Incoherent EM Mixture
\(T^{\mu v} \rightarrow \Phi_{0} \mathrm{~N}^{\mu} \mathrm{N}^{\mathrm{v}}=\Phi_{0} \mathrm{~N}^{\mu \mathrm{V}} \rightarrow\{\) MCRF_z_dir_no rest frame \(\}\)

SR 4-Tensor
(2,0)-Tensor \(\mathrm{T}^{\mathrm{wv}}\) (1,1)-Tensor \(T^{\mu}{ }_{v}\) or \(T_{\nu}\)
\((0,2)\)-Tensor \(T_{\text {uv }}\)

\title{
SRQM Study: Physical 4-Tensors Vacuums vs. Fluids vs. Dusts
} of Physical 4-Vectors
(Cold) Matter-Dust
\(T^{\mu v} \rightarrow P^{\mu} N^{v}=m_{0} U^{\mu} n_{0} U^{v}=\left(\rho_{m o}\right) U^{\mu} U^{v}=\)

\begin{tabular}{|c|c|c|c|}
\hline \(\underline{\square}\) & \(\underline{x}\) & \(\underline{y}\) & z \\
\hline \(\underline{t}\left[\rho_{\mathrm{e}}\right.\) & 0 & 0 & 0 \\
\hline \(\underline{x}[0\) & 0 & 0 & 0 \\
\hline \(\underline{y}\) [0 & 0 & 0 & 0 \\
\hline \(\underline{z}[0\) & 0 & 0 & 0 \\
\hline
\end{tabular}

EoS[\(T^{u v]}=w=0\)

\(\operatorname{Tr}\left[T^{\mu v}\right]=\rho_{\mathrm{e}}\)
Stress-Energy 4-Tensor Symmetric, Spatial Isotropic, Pressureless

\section*{Dusts}

Isotropy Group 3D Lie Group E(2)=Euclidean Plane
Segre Type \{2,11\} Null-Dust : "Gravitational Wave" Incoherent EM Mixture
\(T^{\mu v} \rightarrow \Phi_{0} N^{\mu} N^{v}=\Phi_{0} N^{\mu v} \rightarrow\left\{\right.\) MCRF_- \(^{\mu}\)-dir_no rest frame \(\}\)

Stress-Energy 4-Tensor
Symmetric, Null

PhotonGas=RadiationFluid \(\mathrm{T}^{\mu v} \rightarrow\left(\rho_{\mathrm{eo}}\right) \mathrm{V}^{\mu \mathrm{V}}+\left(-\rho_{\mathrm{eo}} / 3\right) H^{H^{\mu v}} \rightarrow\{\mathrm{MCRF}\) ? \(\}\)

\begin{tabular}{cc}
\(\Phi^{00}\) & \(\Phi^{0 j}\) \\
\(\Phi^{i 0}\) & \(\Phi^{\mathrm{j}}\)
\end{tabular}

\section*{\(\operatorname{Tr}\left[T^{\mu \nu}\right]=0\)}
\(\mathbf{V} \cdot \mathbf{V}=\mathrm{V}^{\mu} \eta_{\mu \mathrm{v}} \mathrm{V}^{\mathrm{V}}=\left[\left(\mathrm{V}^{0}\right)^{2}-\mathbf{V} \cdot \mathbf{v}\right]=\left(\mathrm{V}^{0}{ }_{\mathrm{o}}\right)^{2}\)
= Lorentz Scalar Invariant

\section*{SRQM Diagram:}

\section*{All SR 4-Tensors can be generated from SR 4-Vectors:}

```

M}\mp@subsup{M}{}{\muV}=\mp@subsup{X}{}{\wedge}P=\mp@subsup{X}{}{\mu}\mp@subsup{P}{}{v}-\mp@subsup{X}{}{V}\mp@subsup{P}{}{\mu}:4-AngularMomentum 4-Tensor (from the 4-Position \& 4-Momentum

```

```

V Viv = T\otimesT = TMTV

```

```

T
(\rho}\mp@subsup{\rho}{\textrm{eo}}{})=\mp@subsup{T}{\mathrm{ Cold_Dust }}{\mathrm{ tV }}\mp@subsup{V}{\textrm{HV}}{
T Lambda_Vacuum}\mp@subsup{}{}{\muv}=(\mp@subsup{\rho}{eo}{})\mp@subsup{\eta}{}{\muv}\quad:L\mathrm{ LambdaVacuum (Dark Energy) Stress-Energy 4-Tensor (riom previousyy made 4-Tensors above)
$\left(p_{o}\right)=(k)(1 / 3) T_{\text {Lambda }} V_{\text {Vacuum }}{ }^{\text {HV }} H_{u v}:$ MCRF Pressure 4-Scalar (firom previously made 4-Tensors above) with the pressure initially set to the EnergyDensity
and ( $k$ ) an arbitrary constant which sets pressure level

```
\(T_{\text {Perfect_Fluid }}{ }^{\text {lV }}=\left(\rho_{e o}\right) V^{\mathrm{VV}+}\left(-\mathrm{p}_{o}\right) H^{\mathrm{rvv}} \quad:\) PerfectFluid Stress-Energy 4-Tensor (from previously made 4-Tensors above) of Physical 4-Vectors

4D Generalized Stokes':Gauss' Theorem in Special Relativity
\(\int_{\Omega} \mathrm{d}^{4} \mathbf{X}\left(\partial_{\mu} \mathrm{V}^{\mu}\right)=\oint_{\partial \Omega} \mathrm{dS}\left(\mathrm{V}^{\mu} \mathrm{N}_{\mu}\right)\)
\(\int_{\Omega} \mathrm{d}^{4} \mathbf{X}(\partial \cdot \mathbf{V})=\oint_{\partial \Omega} \mathrm{dS}(\mathbf{V} \cdot \mathbf{N})\)
with:
\(\mathbf{V}=\mathrm{V}^{\mu}\) is a 4-Vector field defined in 4D Minkowski Region \(\Omega\) \((\partial \cdot \mathbf{V})=\left(\partial_{\mu} V^{\mu}\right)\) is the 4-Divergence of \(\mathbf{V}\)
\(\Omega=4 \mathrm{D}\) Minkowski Region, \(\partial \Omega=\) it's 3D boundary \(\mathrm{d}^{4} \mathbf{X}=4 \mathrm{D}\) Volume Element, \(\mathbf{V}=\mathrm{V}^{\mu}=\) Arbitrary 4 -Vector Field dS = 3D Surface Element, \(\hat{N}=\hat{N}^{\mu}=\) Surface Normal \((\mathbf{V} \cdot \mathbf{N})=\left(\mathbf{V}^{\mu} \mathbf{N}_{\mu}\right)\) is the component of \(\mathbf{V}\) along the boundary normal \(\mathbf{N}\)-direction \(\Omega\) is a 4D simply-connected region of Minkowski SpaceTime \(\partial \Omega=S\) is its 3D boundary with its own 3D Volume element dS and outward pointing normal N . \(\mathrm{N}=\mathrm{N}{ }^{\mathrm{u}}\) is the outward-pointing normal of the boundary
\(d^{4} \mathbf{X}=(c d t)\left(d^{3} \mathbf{x}\right)=(c d t)(d x d y d z)\) is the 4D differential volume element

In vector calculus, the divergence theorem, also known as Gauss's theorem or Ostrogradsky's theorem, is a result that relates the flow (that is, flux) of a vector field through a surface to the behavior of the vector field inside the surface. More precisely, the divergence theorem states that the outward flux of a vector field through a closed surface is equal to the volume integral of the divergence over the region inside the surface.
Intuitively, it states that the sum of all sources minus the sum of all sinks gives the net flow out of a region. In vector calculus, and more generally in differential geometry, the generalized Stokes' theorem is a statement about the integration of differential forms on manifolds, which both simplifies and generalizes several theorems from vector calculus.
(0,2)-Tensor T
(1,0)-Tensor \(\mathrm{V}^{\mu}=\mathbf{V}=\left(\mathrm{v}^{0}, \mathrm{v}\right)\) SR 4-CoVector:OneForm \((0,1)\)-Tensor \(\mathrm{V}_{\mu}=\left(\mathrm{v}_{0},-\mathrm{v}\right)\)

SR 4-Scalar
\((0,0)\)-Tensor S or So
Lorentz Scalar

Minimal Coupling = (EM)Potential Interaction Conservation of 4-TotalMomentum of Physical 4-Vectors

4-Momentum
4-PotentialMomentum
4-VectorPotential
4-MomentumIncPotentialField
4-TotalMomentum
Minimal Coupling Relation
\begin{tabular}{|c|c|}
\hline \(\mathbf{P}=(\mathrm{E} / \mathrm{c}=\mathrm{mc}, \mathrm{p})\) : & 4-Momentum \\
\hline \(\mathbf{Q}=(\mathrm{V} / \mathrm{c}, \mathrm{q})=\mathrm{q} \mathbf{A}=\mathrm{q}(\varphi / \mathrm{c}, \mathrm{a})\) : & 4-PotentialMomentum \\
\hline \(\mathbf{A}=(\varphi / \mathrm{c}, \mathrm{a})\) : & 4-VectorPotential \\
\hline \(\mathrm{P}_{\mathrm{f}}=\left(E_{\mathrm{f}} / \mathrm{c}=(\mathrm{E}+\mathrm{q} \varphi) / \mathrm{c}, \mathrm{p}_{\mathrm{f}}\right):\) & 4-MomentumIncPotentialFie \\
\hline \(\mathrm{P}_{\mathrm{T}}=\left(\mathrm{E}_{\mathrm{T}} / \mathrm{c}, \mathrm{p}_{\mathrm{T}}\right)=\left(\mathrm{H} / \mathrm{c}, \mathrm{p}_{\mathrm{T}}\right)=\Sigma_{\mathrm{n}}\left[\mathrm{P}_{\mathrm{fn}}\right]\) : & 4-TotalMomentum \\
\hline \(\mathbf{P}=\mathrm{P}_{\mathrm{f}}-\mathrm{qA}=\left(\mathrm{E}_{\mathrm{f}} / \mathrm{c}-\mathrm{q} \varphi / \mathrm{c}, \mathrm{p}_{\mathrm{f}}-\mathrm{q} a\right):\) & Minimal Coupling Relation \\
\hline
\end{tabular}
\(\mathbf{P}_{\mathrm{f}}=\mathbf{P}+\mathbf{Q}=\mathbf{P}+\mathrm{qA}\) : Conservation of 4-MomentumIncPotentialField
\(P_{f}=P+Q\)
\(\mathbf{P}_{\mathrm{f}}=\mathbf{P}+\mathbf{q} \mathbf{A}\)
\(\mathbf{P}_{\mathrm{f}}=\left(\mathrm{m}_{0}\right) \mathbf{U}+\left(\mathrm{q} \varphi_{0} / \mathrm{c}^{2}\right) \mathbf{U}\)
\(\mathbf{P}_{\mathrm{f}}=\left(\mathrm{E}_{\mathrm{o}} / \mathrm{c}^{2}\right) \mathbf{U}+\left(\mathrm{q} \varphi_{0} / \mathrm{c}^{2}\right) \mathbf{U}\)
\(\mathbf{P}_{\mathrm{f}}=\left(\left[\mathrm{E}_{\mathrm{o}}+\mathrm{q} \varphi_{0}\right] / \mathrm{c}^{2}\right) \mathbf{U}\)
\(P_{f}=\left(\left[E_{0}+q \varphi_{0}\right] / c^{2}\right) \gamma(c, u)\)
\(\mathbf{P}_{\mathrm{f}}=\left([\mathrm{E}+\mathrm{q} \varphi] / \mathrm{c}^{2}\right)(\mathrm{c}, \mathrm{u})\)
\(\mathbf{P}_{\mathbf{f}}=\left([\mathrm{E}+\mathrm{q} \varphi] / \mathrm{c},[\mathrm{E}+\mathrm{q} \varphi] \mathrm{u} / \mathrm{c}^{2}\right)\)
\(\boldsymbol{P}_{\mathrm{f}}=\left([\mathrm{E}+\mathrm{q} \varphi] / \mathrm{c}, \mathrm{Eu} / \mathrm{c}^{2}+\mathrm{q} \varphi \mathrm{u} / \mathrm{c}^{2}\right)\)
\(\mathbf{P}_{\mathrm{f}}=((\mathrm{E}+\mathrm{q} \varphi) / \mathrm{c}, \mathrm{p}+\mathrm{qa})\)

4-MomentumlncPotentialField has a contribution from:
a Mass "charge" (mo) Lorentz Scalar
an EM charge \((\mathrm{q})\) Lorentz Scalar interacting with a potential \(\left(\varphi_{\circ}\right)\)
\(P_{T}=\Sigma_{n}\left[P_{f}\right]\) : Conservation of 4-TotalMomentum
4-TotalMomentum is the Sum over all such 4-Momenta
SR 4-Tensor
SR 4-Scalar (1,1)-Tensor \(T^{\mu}{ }_{v}\) or \(T_{\mu}{ }^{v}\) \((1,0)\)-Tensor \(\mathrm{V}^{\mu}=\mathbf{V}=\left(\mathrm{v}^{0}, \mathrm{v}\right)\) SR 4-CoVector:OneForm
\((0,0)\)-Tensor S or So \((0,1)\)-Tensor \(\mathrm{V}_{\mu}=\left(\mathrm{v}_{0},-\mathrm{v}\right)\)

Lorentz Scalar

q
4-EMPotentialMomentum \(\mathbf{A}=(\varphi / c, a)\)
\(\left\{\varphi_{\circ}=0\right\} \leftrightarrow\{\mathbf{A} \cdot \mathbf{U}=0\} \leftrightarrow\{\mathbf{A}\) is null \(\}\)

Trace \(\left[T^{\mu V}\right]=\eta_{\mu v} T^{\mu v}=T_{M_{\mu}}=T\)

4-Momentum \(\mathbf{P}=m_{0} \mathbf{U}=\left(E_{0} / c^{2}\right) \mathbf{U}\)
4-VectorPotential \(\mathbf{A}=\left(\varphi_{o} / c^{2}\right) \mathbf{U}\)
4-TotalMomentumIncField \(P_{f}=(P+q \mathbf{A})=\left(E_{f} / c=(E+q \varphi) / c, p_{f}=p+q a\right)\)
4-TotalMomentum \(P_{T}=\left(E_{T} / c=H / c, p_{T}\right)=\Sigma_{n}\left[P_{f n}\right]\) :
\(\mathbf{P} \cdot \mathbf{U}=\gamma(\mathbf{E}-\mathbf{p} \cdot \mathbf{u})=\mathbf{E}_{0}=\mathrm{m}_{0} \mathbf{c}^{2}: \mathbf{A} \cdot \mathbf{U}=\gamma(\varphi-\mathbf{a} \cdot \mathbf{u})=\varphi_{0}\)
\(P_{\top} \cdot \mathbf{U}=(\mathbf{P} \cdot \mathbf{U}+q \mathbf{A} \cdot \mathbf{U})=E_{0}+q \varphi_{0}=m_{0} c^{2}+q \varphi_{\circ}\)
\(\gamma=1 /\) Sqrt[1- \(\beta \cdot \beta]\) : Relativistic Gamma Identity
\((\gamma-1 / \gamma)=(\gamma \beta \cdot \beta)\) : Manipulate into this form... still an identity
\((\gamma-1 / \gamma)\left(\mathrm{P}_{\mathrm{T}} \cdot \mathbf{U}\right)=(\gamma \beta \cdot \beta)\left(\mathrm{P}_{\mathrm{T}} \cdot \mathbf{U}\right)\) : Still covariant with Lorentz Scalar \(\gamma\left(\mathbf{P}_{\mathrm{T}} \cdot \mathbf{U}\right)+-\left(\mathbf{P}_{\mathrm{T}} \cdot \mathbf{U}\right) / \gamma=(\gamma \boldsymbol{\beta} \cdot \boldsymbol{\beta})\left(\mathbf{P}_{\mathrm{T}} \cdot \mathbf{U}\right)\)
\(\gamma\left(\mathbf{P}_{\mathrm{T}} \cdot \mathbf{U}\right)+-\left(\mathbf{P}_{\mathrm{T}} \cdot \mathbf{U}\right) / \gamma=(\gamma \boldsymbol{\beta} \cdot \boldsymbol{\beta})\left(\mathrm{E}_{0}+\mathrm{q} \varphi_{0}\right)\)
\(\gamma\left(\mathbf{P}_{\mathrm{T}} \cdot \mathbf{U}\right)+-\left(\mathbf{P}_{\mathrm{T}} \cdot \mathbf{U}\right) / \gamma=(\gamma \mathbf{u} \cdot \mathbf{u})\left(\mathbf{E}_{0}+\mathbf{q} \varphi_{0}\right) / \mathrm{c}^{2}\)
\(\gamma\left(\mathbf{P}_{\mathbf{T}} \cdot \mathbf{U}\right)+-\left(\mathbf{P}_{\mathrm{T}} \cdot \mathbf{U}\right) / \gamma=\left[\gamma\left(\mathrm{E}_{0} / \mathrm{c}^{2}+\mathrm{q} \varphi_{0} / \mathrm{c}^{2}\right) \mathbf{u} \cdot \mathbf{u}\right]\)
\(\gamma\left(\mathbf{P}_{\mathrm{T}} \cdot \mathbf{U}\right)+-\left(\mathbf{P}_{\mathrm{T}} \cdot \mathbf{U}\right) / \gamma=\left[\left(\gamma \mathrm{E}_{\mathrm{o}} \mathbf{u} / \mathrm{c}^{2}+\gamma \mathbf{q} \varphi_{0} \mathbf{u} / \mathrm{c}^{2}\right) \cdot \mathbf{u}\right]\)
\(\gamma\left(\mathbf{P}_{\top} \cdot \mathbf{U}\right)+-\left(\mathbf{P}_{\top} \cdot \mathbf{U}\right) / \gamma=\left[\left(E \mathbf{L} / \mathrm{c}^{2}+\mathrm{q} \varphi \mathbf{u} / \mathrm{c}^{2}\right) \cdot \mathbf{u}\right]\)
\(\gamma\left(\mathbf{P}_{\mathbf{T}} \cdot \mathbf{U}\right)+-\left(\mathbf{P}_{\mathrm{T}} \cdot \mathbf{U}\right) / \gamma=[(\mathbf{p}+\mathbf{q} \mathbf{a}) \cdot \mathbf{u}]\) \(\gamma\left(\mathbf{P}_{\mathrm{T}} \cdot \mathbf{U}\right)+-\left(\mathbf{P}_{\mathrm{T}} \cdot \mathbf{U}\right) / \gamma=\left(\mathbf{p}_{\mathrm{T}} \cdot \mathbf{u}\right)\)
Lorentz Gamma
Identity
\(\gamma=1 / \sqrt{ }\left[1-\beta^{2}\right]\)
\(\gamma^{2}=1 /\left(1-\beta^{2}\right)\)
\(\left(1-\beta^{2}\right) \gamma^{2}=1\)
\(\left(\gamma^{2}-\gamma^{2} \beta^{2}\right)=1\)
\(\left(\gamma^{2}-1\right)=\gamma^{2} \beta^{2}\)
\((\gamma-1 / \gamma)=\left(\gamma \beta^{2}\right)\)
\(\{H \quad\}+\{L \quad\}=\left(p_{T} \cdot u\right)\) : The \(\{\) Hamiltonian:Lagrangian\} Connection

\section*{H:L Connection in Density Format}
\(\mathrm{H}+\mathrm{L}=\left(\mathrm{p}_{\mathrm{T}} \cdot \mathbf{u}\right)\)
\(\mathrm{nH}+\mathrm{nL}=\mathrm{n}\left(\mathbf{p}_{\mathbf{T}} \cdot \mathbf{u}\right)\), with number density \(\mathrm{n}=\gamma \mathrm{n}_{0}\)
\(\mathscr{H}+\mathcal{L}=\left(\mathrm{g}_{\mathrm{T}} \cdot \mathrm{u}\right)\), with
momentum density \(\left\{\mathrm{g}_{\mathrm{T}}=n \mathrm{p}_{\mathrm{T}}\right\}\)
Hamiltonian Density \(\{\mathscr{H}=\mathrm{nH}\}\)
Lagrangian Density \(\left\{\mathcal{L}=\mathrm{nL}=\left(\gamma n_{0}\right)\left(\mathrm{L}_{0} / \gamma\right)=\mathrm{n}_{0} \mathrm{~L}_{0}\right\}\)
Lagrangian Density is Lorentz Scalar
for an EM field (photonic):
\(\mathscr{H}=(1 / 2)\left\{\varepsilon_{0} \mathbf{e} \cdot \mathbf{e}+\mathrm{b} \cdot \mathbf{b} / \mu_{0}\right\}\)
\(\mathcal{L}=(1 / 2)\left\{\varepsilon_{0} e \cdot \mathbf{e}-\mathrm{b} \cdot \mathrm{b} / \mu_{0}\right\}=\left(-1 / 4 \mu_{0}\right) F_{\mu \nu} F^{\mu v}\)
\(\mathscr{H}+\mathcal{L}=\varepsilon_{0} \mathbf{e} \cdot \mathbf{e}=\left(\mathbf{g}_{\mathrm{T}} \cdot \mathbf{u}\right)\)
\(|\mathbf{u}|=c\)
\(\left|g_{\mathrm{T}}\right|=\varepsilon_{0} e \cdot e / c\)
Poynting Vector \(|\mathbf{s}|=|\mathbf{g}| \mathbf{c}^{2} \rightarrow \mathbf{c \varepsilon _ { o } e \cdot e}\)
\[
\begin{array}{lll}
\mathrm{H}=\gamma\left(\mathbf{P}_{\top} \cdot \mathbf{U}\right)=\gamma((\mathbf{P}+q \mathbf{A}) \cdot \mathbf{U})=\text { The Hamiltonian with minimal coupling } & \mathrm{H}_{0}=\left(\mathbf{P}_{\mathrm{T}} \cdot \mathbf{U}\right) & \mathrm{H}=\gamma \mathrm{H}_{0} \\
\mathrm{~L}=-\left(\mathbf{P}_{\top} \cdot \mathbf{U}\right) / \gamma=-((\mathbf{P}+q \mathbf{A}) \cdot \mathbf{U}) / \gamma=\text { The Lagrangian with minimal coupling } & \mathrm{L}_{0}=-\left(\mathbf{P}_{\top} \cdot \mathbf{U}\right) & \mathrm{L}=\mathrm{L}_{0} / \gamma
\end{array}
\]

4-Vector notation gives a very nice way to find the Hamiltonian/Lagrangian connection: \((H)+(L)=\left(\mathbf{p}_{T} \cdot \mathbf{u}\right)\), where \(H=\gamma\left(\mathbf{P}_{T} \cdot \mathbf{U}\right) \& L=-\left(\mathbf{P}_{T} \cdot \mathbf{U}\right) / \gamma\)
\[
\mathrm{H}+\mathrm{L}=\left(\mathbf{p}_{\mathrm{T}} \cdot \mathbf{u}\right)=\gamma\left(\mathbf{P}_{\mathrm{T}} \cdot \mathbf{U}\right)+-\left(\mathbf{P}_{\mathrm{T}} \cdot \mathbf{U}\right) / \gamma
\] of Physical 4-Vectors

Lorentz Relativistic Factor Relativistic Identity, rearranged Identity * Lorentz Scalar

Identity, but not Lorentz Scalars

\section*{\((1+x)^{n} \sim 1+n x+O\left(x^{2}\right)\) for \(|x| \ll 1\)}

The non-relativistic Hamiltonian H is an approximation of the relativistic + \(\mathrm{H}=\gamma\left(\mathrm{m}_{0} \mathrm{c}^{2}+\mathrm{q} \Phi_{0}\right)\)
\(\mathrm{H}=\left(1 / \sqrt{[1} 1-(\mathrm{v} / \mathrm{c})^{2} \mathrm{j}\right)\left(\mathrm{m}_{\mathrm{o}} \mathrm{c}^{2}+\mathrm{q} \Phi_{\mathrm{o}}\right)\)
\(H \sim\left(\left[1+(v / c)^{2} / 2\right]\right)\left(m_{0} c^{2}+q \Phi_{0}\right)=\left(m_{0} c^{2}+q \Phi_{0}\right)+(1 / 2)\left(m_{0} c^{2} v^{2} / c^{2}+q \Phi_{0} v^{2} / c^{2}\right)\) \(H \sim\left(m_{0} c^{2}+q \Phi_{0}\right)+(1 / 2)\left(m_{0} v^{2}+0\right)\)
\(H \sim(1 / 2)\left(m_{0} v^{2}\right)+\left(m_{o} c^{2}+q \Phi_{0}\right)\)
\(\mathrm{H} \sim(\) Kinetic \()+(\) Rest+Potential \()=\mathrm{T}+\mathrm{V}\{\) for \(|\mathrm{v}| \ll \mathrm{c}\}\)
The non-relativistic Lagrangian \(L\) is an approximation of the relativistic \(L\) : \(\mathrm{L}=-\left(\mathrm{m}_{0} \mathrm{c}^{2}+\mathrm{q} \Phi_{\circ}\right) / \gamma\)
\(-L=\left(m_{0} c^{2}+q \Phi_{0}\right) / \gamma=\sqrt{ }\left[1-(v / c)^{2}\right]\left(m_{0} c^{2}+q \Phi_{0}\right)\)
\(-L \sim\left(m_{0} c^{2}+q \Phi_{0}\right)-(1 / 2)\left(m_{0} c^{2} v^{2} / c^{2}+q \Phi_{0} v^{2} / c^{2}\right)\)
\(-L \sim\left(m_{0} c^{2}+q \Phi_{0}\right)-(1 / 2)\left(m_{0} v^{2}+\sim 0\right)\)
\(L \sim(1 / 2)\left(m_{0} v^{2}\right)-\left(m_{0} c^{2}+q \Phi_{0}\right)\)
L ~ (Kinetic) - (Rest+Potential) = T - V \{for |v| << c\}
Thus, \((\mathrm{H} \sim \mathrm{T}+\mathrm{V})\) and \((\mathrm{L} \sim \mathrm{T}-\mathrm{V})\) only in the non-relativistic limit \((|\mathrm{V}| \ll \mathrm{c})\) \(H+L \sim(T+V)+(T-V)=2 T=2\left(1 / 2 m_{0} u \cdot u\right)=p \cdot u\) Thus, \((H)+(L)=(\mathbf{p} \cdot \mathbf{u})\) in the non-relativistic case.
\(\left.H= \pm m_{0} c^{2} \sqrt{[1}+\left(p_{T}-q a\right)^{2} /\left(m_{0}{ }^{2} c^{2}\right)\right]+q 4\)
\(H \sim \pm m_{0} c^{2}\left[1+\left(p_{T}-q a\right)^{2} /\left(2 m_{0}{ }^{2} c^{2}\right)\right]+q \varphi\) for \(\left|\left(p_{T}-q a\right)^{2} /\left(m_{0} c\right)^{2}\right| \ll 1\) \(H \sim \pm\left[m_{0} c^{2}+\left(p_{T}-q a\right)^{2} /\left(2 m_{0}\right)\right]+q \varphi\) for \(\left|\left(p_{T}-q a\right)^{2} /\left(m_{0} c\right)^{2}\right| \ll 1\) \{non-relativistic limit\}
\begin{tabular}{|c|c|c|}
\hline Relativistic Hamiltonian \(\mathrm{H}=\gamma\left(\mathbf{P}_{\mathbf{T}} \cdot \mathbf{U}\right)\) & Relativistic Lagrangian
\[
\mathrm{L}=-\left(\mathrm{P}_{\mathrm{T}} \cdot \mathbf{U}\right) / \gamma
\] & \[
\begin{aligned}
& \mathbf{p}_{\mathrm{T}} \cdot \mathbf{u}=\left(\gamma \boldsymbol{\beta}^{2}\right)\left(\mathbf{P}_{\mathrm{T}} \cdot \mathbf{U}\right)= \\
& H+L=\mathbf{p}_{\mathrm{T}} \cdot \mathbf{u}=\gamma\left(\mathbf{P}_{\mathrm{T}} \cdot \mathbf{U}\right)-\left(\mathbf{P}_{\mathrm{T}} \cdot \mathbf{U}\right) / \gamma
\end{aligned}
\] \\
\hline & \[
\begin{aligned}
& \mathrm{L}=-\left(\mathbf{P}_{\mathrm{r}} \cdot \mathbf{U}\right) / \gamma \\
& \mathrm{L}=-((\mathbf{P}+\mathbf{Q}) \cdot \mathbf{U}) / \gamma \\
& \mathrm{L}=-(\mathbf{P} \cdot \mathbf{U}+\mathbf{Q} \cdot \mathbf{U}) / \gamma \\
& \mathrm{L}=-\mathbf{P} \cdot \mathbf{U} / \gamma-\mathbf{Q} \cdot \mathbf{U} / \gamma \\
& \mathrm{L}=-\mathrm{m}_{0} \mathbf{U} \cdot \mathbf{U} / \gamma-\mathrm{q} \mathbf{A} \cdot \mathbf{U} / \gamma \\
& \mathrm{L}=-\mathrm{m}_{0} \mathrm{C}^{2} / \gamma-\mathrm{q} \mathbf{A} \cdot \mathbf{U} / \gamma \\
& \mathrm{L}=-\mathrm{m}_{0} \mathrm{C}^{2} / \gamma-\mathrm{q}(\varphi / \mathrm{c}, \mathrm{a}) \cdot \gamma(\mathrm{c}, \mathrm{u}) / \gamma \\
& \mathrm{L}=-\mathrm{m}_{0} \mathrm{C}^{2} / \gamma-\mathrm{q}(\varphi / \mathrm{c}, \mathrm{a}) \cdot(\mathrm{c}, \mathrm{u}) \\
& \mathrm{L}=-\mathrm{m}_{0} \mathrm{C}^{2} / \gamma-\mathrm{q}(\varphi-\mathbf{a} \cdot \mathbf{u}) \\
& \mathrm{L}=-\mathrm{m}_{0} \mathrm{C}^{2} / \gamma-\mathrm{q} \varphi+\mathrm{q} \cdot \mathbf{a} \cdot \mathbf{u} \\
& \mathrm{~L}=-\mathrm{m}_{0} \mathrm{C}^{2} / \gamma-\mathrm{q} \varphi_{0} / \gamma \\
& \mathrm{L}=-\left(\mathrm{m}_{0} \mathrm{c}^{2}+\mathrm{q} \varphi_{0}\right) / \gamma \\
& \mathrm{L}=-\left(\mathrm{m}_{0} \mathrm{c}^{2}+\mathrm{V}_{0}\right) / \gamma
\end{aligned}
\] & \\
\hline Rest Hamiltonian, Invariant
\[
H_{o}=\left(\mathbf{P}_{\mathrm{T}} \cdot \mathbf{U}\right)=\mathrm{H} / \gamma
\] & Rest Lagrangian, Invariant
\[
\mathrm{L}_{o}=-\left(\mathbf{P}_{\mathrm{T}} \cdot \mathbf{U}\right)=\gamma \mathrm{L}
\] & Rest Factor, Invariant \(\mathrm{H}_{0}+\mathrm{L}_{\mathrm{o}}=0\) \\
\hline
\end{tabular}

\section*{\(\mathrm{P}_{\mathrm{T}}=-\partial_{\mathrm{U}}\left[\mathrm{L}_{\mathrm{o}}\right]=-\partial_{\mathrm{U}}[\gamma \mathrm{L}]=-\partial_{\mathrm{U}}\left[-\left(\mathrm{P}_{\mathrm{T}} \cdot \mathrm{U}\right)\right]=\mathrm{P}_{\mathrm{T}}\) \\ \(\left(\mathrm{E}_{\mathrm{T}} / \mathrm{c}, \mathrm{p}_{\mathrm{T}}\right)=-\left(\partial_{\gamma \mathrm{c}},-\partial_{\gamma u}\right)[\gamma \mathrm{L}]=\left(-\partial_{\mathrm{c}}, \partial_{\mathrm{u}}\right)[\mathrm{L}]\) \(\mathbf{p}_{\mathrm{T}}=\partial_{\mathrm{u}}[\mathrm{L}]=(\partial / \partial \mathbf{u})[\mathrm{L}]\)}

4-Vector notation gives a very nice way to find the Hamiltonian/Lagrangian connection: \((\mathrm{H})+(\mathrm{L})=\left(\mathbf{p}_{\mathrm{T}} \cdot \mathbf{u}\right)\), where \(\mathrm{H}=\gamma\left(\mathbf{P}_{\mathrm{T}} \cdot \mathbf{U}\right) \& \mathrm{~L}=-\left(\mathbf{P}_{\mathrm{T}} \cdot \mathbf{U}\right) / \gamma\)

\section*{SRQM Study:} SR Lagrangian, Lagrangian Density, and Relativistic Action (S)

Relativistic Action \((\mathrm{S})\) is Lorentz Scalar Invariant
\(\mathrm{S}=\int \mathrm{Ldt}=\int\left(\mathrm{L}_{0} / \gamma\right)(\mathrm{dt})=\int\left(\mathrm{L}_{0} / \gamma\right)(\gamma \mathrm{d} \tau)=\int\left(\mathrm{L}_{0}\right)(\mathrm{d} \tau)\)
\(\mathrm{S}=\int \mathrm{Ldt}=\int(\mathcal{L} / \mathrm{n}) \mathrm{dt}=\int[\mathcal{L} /(\mathrm{n})] \mathrm{dt}=\int \mathcal{L}\left(\mathrm{d}^{3} \mathrm{x}\right) \mathrm{dt}=\int(\mathcal{L} / \mathrm{c})\left(\mathrm{d}^{3} \mathrm{x}\right)(\mathrm{cdt})=\int(\mathcal{L} / \mathrm{c})\left(\mathrm{d}^{4} \mathrm{x}\right)\)
Explicitly-Covariant Relativistic Action (S)

\section*{Particle Form}
\(\mathrm{S}=\int \mathrm{L}_{\mathrm{o}} \mathrm{d} \tau=-\int \mathrm{H}_{0} \mathrm{~d} \tau\)
\(\mathbf{S}=-\int\left(\mathbf{P}_{\mathbf{T}} \cdot \mathbf{U}\right) \mathrm{d} \tau\)
\[
S=(1 / c))(\mathcal{L})\left(d^{4} x\right)
\]
\(\mathbf{S}=-\int\left(\mathbf{P}_{\mathbf{T}} \cdot \mathbf{d R} / \mathrm{d} \tau\right) \mathrm{d} \tau\)
\(S=-\int\left(P_{T} \cdot d \boldsymbol{R}\right)\)
Density Form \(\left\{=n_{0}{ }^{*}\right.\) Particle\}
\[
\left.S=(1 / c)]\left(n_{0} L_{0}\right)\left(d^{4} x\right)=-(1 / c)\right]\left(n_{0} H_{0}\right)\left(d^{4} x\right)
\]
\(S=\int(\mathcal{L} / c)\left(d^{4} x\right)\)
\(\mathbf{S}=-\int\left(\mathbf{P}_{\mathbf{T}} \cdot \mathbf{U}\right) \mathrm{d} \tau\)
\(S=-\int((P+q A) \cdot \mathbf{U}) d \tau\)
\(\mathbf{S}=-\int(\mathbf{P} \cdot \mathbf{U}+\mathbf{q A} \cdot \mathbf{U}) \mathrm{d} \tau\)
\(\mathrm{S}=-\int\left(\mathrm{E}_{0}+\mathrm{qU} \cdot \mathbf{A}\right) \mathrm{d} \tau\)
\(S=-\int\left(E_{0}+q \varphi_{0}\right) d \tau\)
\(S=-\int\left(E_{0}+V_{0}\right) d \tau\)
\(S=-\int\left(m_{0} c^{2}+V_{0}\right) d \tau\)
\(S=-\int\left(m_{0} c^{2}\right) d \tau-q(\mathbf{A} \cdot d \mathbf{X})\)
with \(\mathrm{V}_{\mathrm{o}}=\mathrm{q} \varphi_{\mathrm{o}}\)
\(S=-(1 / c)] n_{0}\left(P_{T} \cdot \mathbf{U}\right)\left(d^{4} x\right)\)
\(S=-(1 / c) \int n_{0}((P+q A) \cdot \mathbf{U})\left(d^{4} x\right)\)
\(S=-(1 / c) \int\left(n_{0} \cdot \mathbf{P} \cdot \mathbf{U}+n_{0} q \mathbf{A} \cdot \mathbf{U}\right)\left(d^{4} x\right)\)
\(S=-(1 / c))\left(n_{0} E_{0}+n_{0} q U \cdot A\right)\left(d^{4} x\right)\)
\(S=-(1 / c))\left(\rho_{E^{0}}+J \cdot A\right)\left(d^{4} x\right)\)
\(S=(1 / \mathrm{c})](\mathcal{L})\left(\mathrm{d}^{4} \mathrm{x}\right)\)
\(S=(1 / c)\}\left((1 / 2)\left\{\varepsilon_{0} e \cdot \mathbf{e}-\mathbf{b} \cdot b / \mu_{0}\right\}\right)\left(d^{4} x\right)\)
\(S=(1 / c) \int\left(\left(-1 / 4 \mu_{\circ}\right) F_{\mu v} F^{\mu v}\right)\left(d^{4} x\right)\)
for an EM field = no rest frame
thus \(S=\int L d t=-\int\left[\left(m_{0} c^{2}+V_{0}\right) / \gamma\right] d t\)
\(\mathrm{w} / \mathrm{L}=-\left[\left(\mathrm{m}_{0} \mathrm{c}^{2}+\mathrm{V}_{0}\right) / \gamma\right]\)

Lagrangian \(\left\{\mathrm{L}=\left(\mathrm{p}_{\mathrm{T}} \cdot \mathbf{u}\right)-\mathrm{H}\right\}\) is *not* Lorentz Scalar Invariant
Rest Lagrangian \(\left\{\mathrm{L}_{0}=\gamma \mathrm{L}=-\left(\mathrm{P}_{\mathrm{T}} \cdot \mathbf{U}\right)\right\}\) is Lorentz Scalar Invariant Lagrangian Density \(\left\{\mathcal{L}=\mathrm{nL}=\left(\gamma \mathrm{n}_{0}\right)\left(\mathrm{L}_{\mathrm{d}} / \gamma\right)=\mathrm{n}_{0} \mathrm{~L}_{0}\right\}\) is Lorentz Scalar Invariant
```

n= \gammano = \#/d}\mp@subsup{\textrm{d}}{}{3}\textrm{x}=\#/(\textrm{dx})(\textrm{dy})(\textrm{dz})= number density
dt = \gammad\tau
cd\tau= }\mp@subsup{\textrm{n}}{0}{(cdt)(dx)(dy)(dz)= 㚙(d
d\tau=(n/c)(d4

```
```

H:L Connection in Density Format for Photonic System (no rest-frame)
H+L=(p
nH+nL = n(p)
Ht}+\mathcal{L}=(\mp@subsup{\mathbf{g}}{\textrm{T}}{\prime}\cdot\mathbf{U})\mathrm{ , with
momentum density {\mp@subsup{g}{\textrm{T}}{= np}
Hamiltonian density {\mathscr{H}=\textrm{nH}}
Lagrangian Density {\mathcal{L}=\textrm{nL}=(\gamma\mp@subsup{n}{0}{})(\mp@subsup{L}{0}{}/\gamma)=\mp@subsup{n}{0}{}\mp@subsup{L}{0}{}}
Lagrangian Density is Lorentz Scalar
for an EM field (photonic):
HH}=(1/2){\mp@subsup{\varepsilon}{0}{}\mathbf{e}\cdot\mathbf{e}+\mathbf{b}\cdot\mathbf{b}/\mp@subsup{\mu}{0}{}}=\mp@subsup{n}{0}{}\mp@subsup{E}{0}{}=\mp@subsup{\rho}{\mp@subsup{\textrm{E}}{0}{0}}{}=EM Field Energy Density
\mathcal{L}=(1/2){\mp@subsup{\varepsilon}{0}{}\mathbf{e}\cdot\mathbf{e}-\mathbf{b}\cdot\mathbf{b}/\mp@subsup{\mu}{0}{}}=(-1/4\mp@subsup{\mu}{0}{})\mp@subsup{F}{|v}{}\mp@subsup{F}{}{pv/}=(-1/4\mp@subsup{\mu}{0}{}\mp@subsup{)}{}{*}F\mathrm{ Faraday EM Tensor Inner Product}
Ht}+\mathcal{L}=\mp@subsup{\varepsilon}{0}{}\mathbf{e}\cdot\mathbf{e}=(\mp@subsup{\textrm{g}}{\textrm{T}}{}\cdot\mathbf{u}
|u| = c
|g
Poynting Vector |s| = |g|c}\mp@subsup{\mathbf{c}}{}{2}->\textrm{c}\mp@subsup{\varepsilon}{0}{}\mathbf{e}\cdot\mathbf{e
\mp@subsup{\varepsilon}{0}{}}\mp@subsup{\mu}{0}{}=1/\mp@subsup{c}{}{2}:\mathrm{ :Electric:Magnetic Constant Eqn

## SRQM Study:

 SR Hamilton-Jacobi Equation and Relativistic Action (S)Lagrangian $\left\{\mathrm{L}=\left(\mathrm{p}_{\mathrm{T}} \cdot \mathbf{u}\right)-\mathrm{H}=-\left(\mathrm{P}_{\mathrm{T}} \cdot \mathbf{U}\right) / \gamma\right\}$ is *not* a Lorentz Scalar Rest Lagrangian $\left\{L_{o}=\gamma \mathrm{L}=-\left(\mathrm{P}_{\mathrm{T}} \cdot \mathbf{U}\right)\right\}$ is a Lorentz Scalar

Relativistic Action (S) is Lorentz Scalar
S = JLdt
$\mathrm{S}=\int\left(\mathrm{L}_{d} / \gamma\right)(\gamma \mathrm{d} \tau)$
$\mathrm{S}=\int\left(\mathrm{L}_{0}\right)(\mathrm{d} \tau)$
Explicitly Covariant
Relativistic Action (S)
$\mathrm{S}=\int \mathrm{L}_{\mathrm{o}} \mathrm{d} \tau=-\int \mathrm{H}_{\mathrm{o}} \mathrm{d} \tau$
$\mathbf{S}=-\int\left(\mathbf{P}_{\mathbf{T}} \cdot \mathbf{U}\right) \mathrm{d} \tau$
$\mathrm{S}=-\int\left(\mathrm{P}_{\mathrm{T}} \cdot \mathrm{dR} / \mathrm{d} \tau\right) \mathrm{d} \tau$
$S=-\int\left(P_{T} \cdot d R\right)$
$\mathbf{S}=-\int\left(\mathbf{P}_{\mathbf{T}} \cdot \mathbf{U}\right) \mathrm{d} \tau$
$\mathbf{S}=-\int((\mathbf{P}+\mathbf{q A}) \cdot \mathbf{U}) \mathrm{d} \tau$
$\mathbf{S}=-\int(\mathbf{P} \cdot \mathbf{U}+\mathbf{q A} \cdot \mathbf{U}) \mathrm{d} \tau$
$S=-\int\left(E_{0}+q \varphi_{0}\right) d \tau$
$S=-\int\left(E_{0}+V_{0}\right) d \tau$ with $V_{0}=q \varphi_{0}$
$\mathrm{S}=-\int\left(\mathrm{m}_{0} \mathrm{c}^{2}+\mathrm{V}_{0}\right) \mathrm{d} \tau$
$\mathrm{S}=-\int\left(\mathrm{H}_{0}\right) \mathrm{d} \tau$

4-Scalars
Relativistic Action Equation Integral Format
$S_{\text {action }}=-\left[\left[P_{T} \cdot d R\right]\right.$ $=-\int\left[\mathbf{P}_{\mathbf{T}} \cdot \mathbf{U}\right] \mathrm{d} \tau$
$=-\int\left[\left(H / \mathbf{c}, \mathbf{p}_{\mathbf{T}}\right) \cdot \gamma(\mathbf{c}, \mathbf{u})\right] d \tau$ $=-\int\left[\gamma\left(\mathrm{H}-\mathbf{p}_{\mathrm{T}} \cdot \mathbf{u}\right] \mathrm{d} \tau\right.$
$=-\left[\left[\mathrm{H}_{0}\right] \mathrm{d} \tau\right.$
$=\int\left[L_{0}\right] d \tau$
$=\left(R \cdot \partial_{u}\right)\left[L_{0}\right]$
$=\left(\mathbf{R} \cdot \partial_{U}\right)\left[-\left(\mathbf{P}_{\mathrm{T}} \cdot \mathbf{U}\right)\right]$ $(0,1)$-Tensor $\mathrm{V}_{\mu}=\left(\mathrm{V}_{0},-\mathrm{v}\right)$


Proper Time
$R \cdot \partial_{U}=\left(\int d R\right) \cdot \partial_{U}=\left(\int \mathbf{U} d \tau\right) \cdot \partial_{U}=[[.]. d \tau$
Integral
Hamilton-Jacobi Equation
$\partial[-S]=-\partial[S]=P_{T}$
$S=-\int\left(E_{0}+q \varphi_{0}\right) d \tau$
$S=-\left(E_{0}+q \varphi_{0}\right) / d \tau$
S = $-\left(E_{0}+q \varphi_{0}\right)(\tau+$ const $)$
Relativistic Hamilton-Jacobi Equation Differential Format

$$
-S=\left(E_{0}+q \varphi_{0}\right)(\tau+\text { const })
$$

$$
\partial[-S]=\left(E_{0}+q \varphi_{\circ}\right) \partial[(\tau+\text { const })]
$$

$$
\partial[-S]=\left(E_{o}+q \varphi_{0}\right) \partial[\tau]
$$

$$
\partial[-\mathrm{S}]=\left(\mathrm{E}_{\mathrm{o}}+\mathrm{q} \varphi_{0}\right) \partial\left[\mathrm{R} \cdot \mathrm{U} / \mathrm{c}^{2}\right]
$$

TotalMomentum

$$
\partial[-S]=\left(\left(E_{0}+q \varphi_{0}\right) / c^{2}\right) \partial[R \cdot U]
$$

$P_{T}=\left(E_{T} / c=H / c, p_{T}\right)$

$$
\partial[-\mathrm{S}]=\left(\mathrm{E}_{d} / \mathrm{c}^{2}+\mathrm{q} \varphi_{d} / \mathrm{c}^{2}\right) \mathrm{U}
$$

$=-\partial_{\mathrm{R}}\left[\mathrm{S}_{\text {action }}\right]$

$$
\partial[-S]=\left(m_{0}+q \varphi_{0} / c^{2}\right) U
$$

$=\left(-\partial_{t} / c\left[\mathrm{~S}_{\text {action }}\right], \nabla\left[\mathrm{S}_{\text {action }}\right]\right)$

$$
\partial[-S]=m_{0} \mathbf{U}+q\left(\varphi_{0} / C^{2}\right) \mathbf{U}
$$

$=-\partial_{u}\left[L_{0}\right]=\partial_{u}\left[H_{0}\right]$

$$
\partial[-S]=P+q \mathbf{A}
$$

$\mathbf{P}_{\mathrm{T}}=-\partial_{\mathrm{U}}\left[\mathrm{L}_{0}\right]=-\partial_{\mathrm{U}}[\gamma \mathrm{L}]=-\partial_{\mathrm{U}}\left[-\left(\mathbf{P}_{\mathrm{T}} \cdot \mathbf{U}\right)\right]=\mathbf{P}_{\mathrm{T}}$

$$
\partial[-S]=P_{T}
$$ $\left(E_{T} / c_{1}, p_{T}\right)=-\left(\partial_{r a},-\partial_{\mu i l}\right)[\gamma \mathrm{L}]=\left(-\partial_{c}, \partial_{H}\right)[L]$

Verified!
$\mathbf{p}_{\mathrm{T}}=\partial_{\mathrm{H}}[\mathrm{L}]=(\partial / \partial \mathrm{u})[\mathrm{L}]$
$\mathbf{R} \cdot \mathbf{U}=\mathrm{c}^{2} \tau: \tau=\mathbf{R} \cdot \mathbf{U} / \mathbf{c}^{2}$

The Hamilton-Jacobi Equation is incredibly simple in 4-Vector form $-\partial\left[S_{\text {action }}\right]=P_{\mathrm{T}}:$ gives temporal $\left(-\partial_{\mathrm{t}}\left[\mathrm{S}_{\text {action }}\right]=\mathrm{H}=\mathrm{E}_{\mathrm{T}}\right)$ \& spatial $\left(\nabla\left[\mathrm{S}_{\text {action }}\right]=p_{\mathrm{T}}\right)$

## Relativistic Action (S), Rest Lagrangian ( $\mathrm{L}_{\mathrm{o}}$ )

 Path to 4-TotalMomentum

## SRQM Diagram:

A Tensor Study of Physical 4-Vectors

## Relativistic Hamilton-Jacobi Equation ( $\mathrm{P}_{\mathrm{T}}=-\partial[\mathrm{S}]$ ) Differential Format : 4-Vectors

 http://scirealm.org/SRQM.pdfRelativistic Action (S) is Lorentz Scalar Invariant $\mathrm{S}=\int \mathrm{Ldt}=\int\left(\mathrm{L}_{\mathrm{o}} / \gamma\right)(\gamma \mathrm{d} \tau)=\int\left(\mathrm{L}_{0}\right)(\mathrm{d} \tau)=\int \mathrm{L}_{0} \mathrm{~d} \tau$

4-Displacement
$\Delta R=(c \Delta t, \Delta r)$   dR=(cdt.
4-Position   $R=(c t, r)$

 $=(\mathrm{cd} \tau)^{2}$
variant Interva
(1/c) $\sqrt{ }[.$.
Explicitly-Covariant Relativistic Action (S): $\mathrm{d} \tau=(1 / \mathrm{c}) \sqrt{ }[\mathrm{dR} \cdot \mathrm{dR}]$
$\mathrm{S}=\int \mathrm{L}_{\mathrm{o}} \mathrm{d} \tau=-\int \mathrm{H}_{0} \mathrm{~d} \tau$
$\mathrm{S}=-\left(\mathrm{P}_{\mathrm{T}} \cdot \mathbf{U}\right) \mathrm{d} \tau$
$\mathrm{S}=-\left(\mathrm{P}_{\mathrm{T}} \cdot \mathrm{dR} / \mathrm{d} \tau\right) \mathrm{d} \tau$
$\mathrm{S}=-\left(\mathrm{P}_{\mathrm{T}} \cdot \mathrm{dR}\right)$
$\mathbf{S}=-\int\left(\mathbf{P}_{\mathrm{T}} \cdot \mathbf{U}\right) \mathrm{d} \tau$
$S=-\int((P+q A) \cdot \mathbf{U}) d \tau$
$\partial \cdot R=4$
Spacertme
Dimension
$\mathbf{S}=-\int(\mathbf{P} \cdot \mathbf{U}+\mathbf{q A} \cdot \mathbf{U}) \mathrm{d} \tau$
$S=-\int\left(E_{0}+q \varphi_{0}\right) d \tau$
$\mathrm{S}=-\int\left(\mathrm{E}_{0}+\mathrm{V}_{0}\right) \mathrm{d} \tau$ with $\mathrm{V}_{0}=\mathrm{q} \varphi$
$S=-\int\left(m_{0} c^{2}+V_{0}\right) d \tau$ 4-Velocity
$\mathbf{U}=\gamma(\mathrm{c}, \mathrm{u})$
$\partial[\mathbf{R}]=\eta^{\mu \nu} \rightarrow \operatorname{Diag}[1,-1,-1,-1]$ Minkowski Metric

4-EMPotentialMomentum

$$
Q=(U / c, q)=q A
$$ SR 4-CoVector:OneForm ( 0,0 )-Tensor S or So $(0,1)$-Tensor $\mathrm{V}_{\mu}=\left(\mathrm{v}_{0},-\mathrm{v}\right)$

## Relativistic Action Equation

4-Displacement
$\Delta \mathbf{R}=(c \Delta t, \Delta r)$
$d R=(c d t . d r)$
4-Position
$\mathbf{R}=(c t, r)$

$\left(\begin{array}{c}\partial \cdot R=4 \\ \text { SpaceTime } \\ \text { Dimension }\end{array}\right) \quad \partial[R]=\eta^{\text {MV }} \rightarrow \operatorname{Diag}[1,-1,-1,-1]$
oordinate Time

## SRQM Diagram: Relativistic Factors Hamiltonian \& Lagrangian Relativistic Euler-Lagrange Equation

SR 4-Tensor (2,0)-Tensor T ${ }^{\mu v}$ (1,1)-Tensor $T^{\mu}{ }_{v}$ or $T_{\mu}$ $(0,2)$-Tensor $\mathrm{T}_{\mu \mathrm{v}}$ $(0,1)$-Tensor $\mathrm{V}_{\mu}=\left(\mathrm{v}_{0},-\mathrm{v}\right)$

SR Relativistic Scalar (not Lorentz Invariant)

Note Similarity:
4-Velocity is ProperTime Derivative of 4-Position $\mathrm{U}=(\mathrm{d} / \mathrm{d} \tau) \mathrm{R} \quad[\mathrm{m} / \mathrm{s}]=[1 / \mathrm{s}]^{*}[\mathrm{~m}]$

Relativistic Euler-Lagrange Eqn $\partial_{R}=(\mathrm{d} / \mathrm{d} \tau) \partial_{u} \quad[1 / \mathrm{m}]=[1 / \mathrm{s}]^{*}[\mathrm{~s} / \mathrm{m}]$

The differential form just inverses the dimensional units, so the placement of the $\mathbf{R}$ and $\mathbf{U}$ switch.

That is it: so simple! Much, much easier than how I was taught in Grad School.

To complete the process and create the Equations of Motion one just applies the base form to a Lagrangian.

This can be: a classical Lagrangian a relativistic Lagrangian a Lorentz scalar Lagrangian a quantum Lagrangian


SR 4-Tensor (2,0)-Tensor $\mathrm{T}^{\mu v}$ (1,1)-Tensor $T^{\mu}{ }_{v}$ or $T_{\nu}$
$(0,2)$-Tensor $T_{\mu v}$

SR 4-Vector
(1,0)-Tensor $\mathrm{V}^{\mu}=\mathbf{V}=\left(\mathrm{v}^{0}, \mathbf{v}\right)$ SR 4-CoVector:OneForm $(0,1)$-Tensor $\mathrm{V}_{\mu}=\left(\mathrm{v}_{0},-\mathrm{v}\right)$

Relativistic 4D Euler-Lagrange Eqn

$$
\begin{aligned}
\partial_{\mathrm{R}} & =(\mathrm{d} / \mathrm{d} \tau) \partial u \\
\partial / \partial \mathrm{R} & =(\mathrm{d} / \mathrm{d}) \partial \partial \partial \underline{\mathrm{U}} \\
\partial[\mathrm{~L}] \partial \underline{\mathrm{R}} & =(\mathrm{d} / \mathrm{d} \tau) \partial[\mathrm{L}] \partial \underline{U}
\end{aligned}
$$

Classical limit, spatial component
$\partial[\mathrm{L}] / \partial \mathrm{r}=(\mathrm{d} / \mathrm{dt}) \partial[\mathrm{L}] / \partial \mathrm{u}$
$\partial[\mathrm{L}] / \partial \mathbf{x}=(\mathrm{d} / \mathrm{dt}) \partial[\mathrm{L}] / \mathrm{u}$

$$
L=-\left[\left(m_{0} c^{2}+V_{0}\right) / \gamma\right]
$$

$\partial[L] / \partial u=-\left(m_{0} c^{2}+V_{0}\right) \partial[1 / \gamma] / \partial u$
$\partial[L] / \partial u=\left(m_{0} c^{2}+V_{0}\right)\left(\gamma u / c^{2}\right)$
$(\mathrm{d} / \mathrm{dt}) \partial[\mathrm{L}] / \partial \mathbf{u}=(\mathrm{d} / \mathrm{d} t)\left[\left(\mathrm{m}_{0} \mathrm{c}^{2}+\mathrm{V}_{0}\right)\left(\gamma \mathrm{u} / \mathrm{c}^{2}\right)\right]$
$\partial[L] / \partial \mathbf{x}=-(1 / \gamma) \partial\left[V_{0}\right] / \partial \mathbf{x}$

$(\mathrm{d} / \mathrm{dt}) \partial[\mathrm{L}] / \partial \mathbf{u}=\partial[\mathrm{L}] / \partial \mathbf{x}$
$\left.(\mathrm{d} / \mathrm{dt})\left[\left(m_{0} \mathrm{c}^{2}+\mathrm{V}_{0}\right)\left(\gamma \mathbf{u} / \mathrm{c}^{2}\right)\right]=-(1 / \gamma) \partial \mathrm{V}_{0}\right] / \partial \mathrm{x}$

$$
(\mathrm{d} / \mathrm{d} \tau) \mathrm{P}_{\mathrm{T}}=-\partial\left[\mathrm{V}_{\mathrm{o}}\right]
$$

$\mathbf{P}_{\mathrm{T}}=-\partial_{\mathrm{U}}\left[\mathrm{L}_{\mathrm{o}}\right]=-\partial_{\mathrm{U}}[\gamma \mathrm{L}]=-\partial_{\mathrm{U}}\left[-\left(\mathbf{P}_{\mathrm{T}} \cdot \mathbf{U}\right)\right]=\mathbf{P}_{\mathrm{T}}$
$\left(\mathrm{E}_{\mathrm{T}} / \mathrm{C}, \mathrm{p}_{\mathrm{T}}\right)=-\left(\partial_{\gamma \mathrm{c}}, \partial_{\gamma \mathrm{u}}\right)[\gamma \mathrm{L}]=\left(-\partial_{\mathrm{c}}, \partial_{\mathrm{u}}\right)[\mathrm{L}]$ $\mathbf{p}_{\mathrm{T}}=\partial_{\mathrm{u}}[\mathrm{L}]=(\partial / \partial \mathbf{u})[\mathrm{L}]$

4-TotalMomentum
$P_{T}=\left(E_{T} / c=H / c, p_{T}\right)$
$=-\partial_{\mathrm{R}}\left[\mathrm{S}_{\text {action }}\right]$
$=\left(-\partial_{t} / c\left[\mathrm{~S}_{\text {action }}\right], \nabla\left[\mathrm{S}_{\text {action }}\right]\right)$
$=-\partial_{u}\left[L_{0}\right]=\partial_{u}\left[H_{0}\right]$

Trace $\left[T^{\mu V}\right]=\eta_{H v} T^{\mu v}=T_{\mu}=T$
$\mathbf{V} \cdot \mathbf{V}=\mathrm{V}^{\mathrm{V}} \eta_{\mathrm{rv}} \mathrm{V}^{\mathrm{V}}=\left[\left(\mathrm{v}^{0}\right)^{2}-\mathbf{v} \cdot \mathbf{v}\right]=\left(\mathrm{V}_{0}^{0}\right)^{2}$ = Lorentz Scalar Invariant


$$
\begin{aligned}
& \mathcal{L}=(1 / 2)\left\{\partial_{R}[\Phi] \cdot \partial_{R}[\Phi]-\left(m_{0} c / \hbar\right)^{2} \Phi^{2}\right\}: \text { KG Lagrangian Density } \\
& \partial_{[\Phi]} \mathcal{L}=\left(\partial_{R}\right) \partial_{\left[\partial_{R}(\Phi)\right]} \mathcal{L}: \text { Euler-Lagrange Eqn \{density format\} } \\
& -\left(m_{0} c / \hbar\right)^{2} \Phi=\left(\partial_{R}\right) \cdot \partial_{R}[\Phi] \\
& \left(\partial_{R} \cdot \partial_{R}\right)[\Phi]=-\left(m_{0} c / \hbar\right)^{2} \Phi \\
& (\partial \cdot \partial)=-\left(m_{0} c / \hbar\right)^{2}: \text { KG Eqn of Motion }
\end{aligned}
$$

Klein-Gordon Relativistic Quantum Wave Eqn

4-Velocity U is ProperTime Derivative of 4-Position R. The Euler-Lagrange Eqn can be generated by taking the differential form of the same equation.

## Relativistic 4-Vector Kinematical Eqn

 $\mathbf{U}=(\mathrm{d} / \mathrm{d} \tau)[\mathbf{R}]$$\mathbf{U} \cdot \mathbf{K}=(\mathrm{d} / \mathrm{d} \tau)[\mathbf{R}] \cdot \mathbf{K}$
Relativistic Euler-Lagrange Eqns \{uses gradient-type 4-Vectors\} $\partial_{\mathrm{R}}=(\mathrm{d} / \mathrm{d} \tau) \partial_{\mathrm{u}}:\{$ particle format $\}$
$\partial_{\mathrm{R} \cdot \mathrm{K}}=(\mathrm{d} / \mathrm{d} \tau) \partial_{\mathrm{U} \cdot \mathrm{K}}$
$\partial_{(-\Phi)}=(\mathrm{d} / \mathrm{d} \tau) \partial_{\mathrm{U} \cdot \mathrm{K}}$
$\partial_{(-\Phi)}=\left(U \cdot \partial_{R}\right) \partial_{\mathrm{U} \cdot \mathrm{K}}$
$\partial / \partial(-\Phi)=\left(\mathbf{U} \cdot \partial_{\mathbf{R}}\right) \partial / \partial[\mathbf{U} \cdot \mathbf{K}]$
$\partial / \partial(-\Phi)=\left(\partial_{R}\right) \partial / \partial[K]$
$\partial / \partial(-\Phi)=\left(\partial_{\mathrm{R}}\right) \partial / \partial\left[\partial_{\mathrm{R}}(-\Phi)\right]$
$\partial / \partial(\Phi)=\left(\partial_{R}\right) \partial / \partial\left[\partial_{R}(\Phi)\right]$
$\partial_{[\Phi]}=\left(\partial_{R}\right) \partial_{\left[\partial_{R}(\Phi)\right]:}\{$ density format $\}$

4-VelocityGradient
$\partial_{\mathrm{u}}{ }^{\beta}=\partial_{\mathrm{u}}=\partial / \partial \mathrm{U}_{\beta}=\left(\partial_{\mathrm{u}_{\mathrm{t}}} / \mathrm{c},-\nabla_{\mathrm{u}}\right)$
$\rightarrow\left(\partial / \partial \gamma \mathrm{c},-\partial / \partial \gamma u_{x},-\partial / \partial \gamma u_{y},-\partial / \partial \gamma u_{z}\right)$
, $(0,1)$-Tensor $V=\left(v_{0}-v\right)$ $(0,2)$-Tensor $\mathrm{T}_{\mu v}$ $(0,1)$-Tensor $\mathrm{V}_{\mu}=\left(\mathrm{V}_{0},-\mathrm{v}\right)$

A Tensor Study of Physical 4-Vectors

## $\partial_{\mathrm{R}}[\mathbf{R}]=\eta^{\mu v} \rightarrow \operatorname{Diag}[1,-1,-1,-1]$ Minkowski Metric

$L_{0}=-\left(P_{\mathrm{T}} \cdot \mathbf{U}\right)$
$\partial_{U}\left[L_{0}\right]=-P_{T}=-(P+q A)$
$(\mathrm{d} / \mathrm{d} \tau)\left[\partial_{U}\left[L_{0}\right]\right]=(\mathrm{d} / \mathrm{d} \tau)\left[-P_{T}\right]=-(\mathrm{d} / \mathrm{d} \tau)[\mathrm{P}+\mathrm{q} \mathbf{A}]=-(\mathrm{F}+\mathrm{q}(\mathrm{d} / \mathrm{d} \tau)[\mathbf{A}])=-(\mathrm{F}+\mathrm{qU} \cdot \partial[\mathbf{A}])=-\left(\mathrm{F}+\mathrm{q} \mathrm{U}_{\mathrm{v}} \partial^{v}[\mathbf{A}]\right)$
$\partial_{R}\left[L_{-}\right]=\partial_{R}\left[-P_{T} \cdot U\right]=-\partial_{R}[(P+q A) \cdot U]=(0)+-q \partial_{R}[A \cdot U]=-q \partial_{R}\left[U_{V} A^{V}\right]=-q U_{V} \partial_{R}[A]$ assuming the 4 -Gradient $\partial_{R}$ of the 4 -Velocity $\mathbf{U}$ is zero.

Euler-Lagrange Eqn: $(\mathrm{d} / \mathrm{d} \tau) \partial_{\mathrm{u}}=\partial_{\mathrm{R}}$
$-(F+q U, ~ \partial \nu[A])=-q U, \partial_{R}\left[A^{V}\right]$
$F+q U_{v} \partial^{V}[A]=q U_{v} \partial_{R}\left[A^{V}\right]$
$F=q U_{\mathrm{v}} \partial_{\mathrm{R}}[\mathrm{A}]-\mathrm{q} \mathrm{U}_{\mathrm{v}} \partial^{2}[\mathrm{~A}]$
$F=q U_{v}\left(\partial_{\mathrm{r}}\left[A^{\eta}\right]-\partial^{V}[A]\right)$
$F^{\mu}=q U_{v}\left(\partial^{H}\left[A^{V}\right]-\partial^{V}[A \cdot]\right)$

$$
\left.\mathrm{F}^{\mu}=\mathrm{qU}_{v}\left(\mathrm{~F}^{N / V}\right)=\left(\mathrm{dP}^{\mu} / \mathrm{d}^{\mu}\right]\right) \text { : EoM for EM particle }
$$

Lorentz Force Equation

## SRQM Diagram:

## Relativistic Euler-Lagrange Equation using L。 Equation of Motion (EoM) for EM particle

$\gamma=1 /$ Sqrt[1- $\beta \cdot \beta$ ]: Relativistic Gamma Identity $(\gamma-1 / \gamma)=(\gamma \beta \cdot \beta)$ : Manipulate into this form... still an identity $\gamma\left(\mathrm{P}_{\mathrm{T}} \cdot \mathbf{U}\right)+-\left(\mathrm{P}_{\mathrm{T}} \cdot \mathbf{U}\right) / \gamma=(\gamma \boldsymbol{\beta} \cdot \boldsymbol{\beta})\left(\mathrm{P}_{\mathrm{T}} \cdot \mathbf{U}\right)$ $\gamma\left(\mathbf{P}_{\mathrm{T}} \cdot \mathbf{U}\right)+-\left(\mathbf{P}_{\mathrm{T}} \cdot \mathbf{U}\right) / \gamma=\left(\mathbf{p}_{\mathrm{T}} \cdot \mathbf{u}\right)$

$\{H \quad\}+\{L \quad\}=\left(p_{T} \cdot \mathbf{u}\right)$ : The Hamiltonian/Lagrangian connection

$\mathrm{H}=\gamma \mathrm{H}_{\mathrm{o}}=\gamma\left(\mathbf{P}_{\mathrm{T}} \cdot \mathbf{U}\right)=\gamma((\mathbf{P}+\mathbf{q} \mathbf{A}) \cdot \mathbf{U})=$ The Hamiltonian with minimal coupling $\mathrm{L}=\mathrm{L}_{\mathrm{d}} / \gamma=-\left(\mathrm{P}_{\mathrm{T}} \cdot \mathbf{U}\right) / \gamma=-((\mathrm{P}+\mathrm{q} \mathbf{A}) \cdot \mathbf{U}) / \gamma=$ The Lagrangian with minimal coupling
$\mathrm{H}_{0}=\left(\mathbf{P}_{\mathrm{T}} \cdot \mathbf{U}\right)=-\mathrm{L}_{0}=\left(\mathbf{U} \cdot \mathbf{P}_{\mathrm{T}}\right)$ : Rest Hamiltonian = Total RestEnergy $\mathrm{L}_{0}=-\left(\mathrm{P}_{\mathrm{T}} \cdot \mathbf{U}\right)=-\mathrm{H}_{0}$
$(\mathrm{d} / \mathrm{d} \tau) \partial_{\mathrm{U}}\left[\mathrm{L}_{0}\right]=\partial_{\mathrm{R}}\left[\mathrm{L}_{0}\right]$

SR 4-Scalar SR 4-CoVector:OneForm $(0,1)$-Tensor $V_{\mu}=\left(v_{0},-v\right)$


$$
\begin{gathered}
\text { 4-VelocityGradient } \\
\partial_{u}=\left(\partial_{U} / c,-\nabla_{u}\right)
\end{gathered}
$$

$\rightarrow\left(\partial \partial \partial c,-\partial \partial \partial_{u_{x}},-\partial \partial \gamma u_{y},-\partial \partial \gamma u_{z}\right)$

> 4-VelocityGradient part $(\mathrm{d} / \mathrm{d} \tau) \partial_{u}\left[\mathrm{~L}_{0}\right]=(\mathrm{d} / \mathrm{d} \tau) \partial \partial \underline{U}^{\left[L_{0}\right]}$ $(\mathrm{d} / \mathrm{d} \tau) \partial_{0}{ }^{\circ}\left[\mathrm{L}_{0}\right]=(\mathrm{d} / \mathrm{d} \tau) \partial \partial \mathrm{U}_{a}\left[\mathrm{~L}_{0}\right]$
$=(\mathrm{d} / \mathrm{d} \tau) \partial_{\mathrm{u}}\left[-\mathrm{P}_{\mathrm{T}} \cdot \mathbf{U}\right]$
$=(\mathrm{d} / \mathrm{d} \tau)\left[-\mathrm{P}_{\mathrm{T}}\right]$
$=-(\mathrm{d} / \mathrm{d} \tau)[\mathbf{P}+\mathrm{q} \mathbf{A}]$
$=-(\mathbf{F}+q(\mathrm{~d} / \mathrm{d} \tau)[\mathbf{A}])$
$=-(\mathbf{F}+q(\mathbf{U} \cdot \boldsymbol{\partial})[\mathbf{A}])$
$=-\left(F^{\alpha}+q U_{\beta} \partial^{\beta}\left[A^{\alpha}\right]\right)$

## $\mathbf{P}_{\mathrm{T}}=-\partial_{\mathrm{U}}\left[\mathrm{L}_{\mathrm{O}}\right]=-\partial_{\mathrm{U}}[\gamma \mathrm{L}]=-\partial_{\mathrm{L}}\left[-\left(\mathbf{P}_{\mathrm{T}} \cdot \mathbf{U}\right)\right]=\mathbf{P}_{\mathrm{T}}$

$\left(E_{T} / \mathrm{c}, \mathrm{p}_{\mathrm{T}}\right)=-\left(\partial_{\gamma c},-\partial_{\gamma u}\right)[\gamma \mathrm{L}]=\left(-\partial_{\mathrm{c}}, \partial_{\mathrm{u}}\right)[\mathrm{L}]$
$\mathrm{p}_{\mathrm{T}}=\partial_{\mathrm{u}}[\mathrm{L}]=(\partial / \partial \mathrm{u})[\mathrm{L}]$

ProperTime
$\mathbf{U} \cdot \partial=\mathrm{d} / \mathrm{d} \tau=\gamma \mathrm{d} / \mathrm{dt}$
Derivative

4-(Position)Gradient $\partial_{R}=\partial=\left(\partial_{t} / \mathrm{c},-\nabla_{\mathrm{R}}\right)$
$\rightarrow(\partial / \partial c t,-\partial / \partial x,-\partial \partial \partial y,-\partial \partial z)$

4-PositionGradient part
$\partial_{R}\left[L_{0}\right]=\partial / \partial \underline{R}\left[L_{0}\right]$
$\partial_{R}{ }^{a}\left[L_{0}\right]=\partial / \partial R_{\alpha}\left[L_{0}\right]$
$=\partial_{\mathrm{R}}\left[-\mathrm{P}_{\mathrm{T}} \cdot \mathrm{U}\right]$
$=-\partial_{R}[(P+q A) \cdot U]$
$=(\mathbf{O})+-q \partial_{R}[\mathbf{A} \cdot \mathbf{U}]$
$=-q \partial_{\mathrm{R}}\left[\mathrm{U}_{\beta} A^{\beta}\right]$
$=-q U_{\beta} \partial^{\alpha}\left[A^{\beta}\right]$
$-\left(F^{\alpha}+q U_{\beta} \partial^{\beta}\left[A^{\alpha}\right]\right)=-q U_{\beta} \partial^{\alpha}\left[A^{\beta}\right]$ $\left(F^{\alpha}+q U_{\beta} \partial^{\beta}\left[A^{\alpha}\right]\right)=q U_{\beta} \partial^{\alpha}\left[A^{\beta}\right]$ $F^{\alpha}=q U_{\beta} \partial^{\alpha}\left[A^{\beta}\right]-q U_{\beta} \partial^{\beta}\left[A^{\alpha}\right]$ $F^{\alpha}=q U_{\beta}\left(\partial^{\alpha}\left[A^{\beta}\right]-\partial^{\beta}\left[A^{\alpha}\right]\right)$ $\left(\mathrm{dP}^{\alpha} / \mathrm{d} \tau\right)=\mathrm{F}^{\alpha}=\mathrm{qU}_{\beta}\left(\mathrm{F}^{\alpha \beta}\right)$ Lorentz Force Equation

## Assumes:

$$
\partial[\mathbf{U}]=\partial_{\mathrm{R}}[\mathbf{U}]=0^{\mu \mathrm{V}}
$$

$$
\partial[\mathbf{P}]=\partial_{R}[\mathbf{P}]=0^{\mu \mathrm{V}}
$$

## SRQM Diagram:

SciRealm.org

A Tensor Study of Physical 4-Vectors
$\mathrm{L}_{0}{ }^{\prime}=\mathrm{a} \mathrm{L}_{0}+\mathrm{b}$ : Lagrangian-with-affine-transform $\mathrm{L}_{0}{ }^{\prime}$ gives same physics, when using the Euler-Lagrange Equation

Let ( $a=$ const $=-1$ ) and ( $b=$ const $\left.=-1 / 2 m_{0} c^{2}=-1 / 2 m_{0} \mathbf{U} \cdot \mathbf{U}\right)$ Then $L_{0}{ }^{\prime}=-L_{0}-1 / 2 m_{0} C^{2}=1 / 2 m_{0} \mathbf{U} \cdot \mathbf{U}+q \mathbf{A} \cdot \mathbf{U}$

Note, however, that some other defintions do *not* work with $L_{o}$ ' The 4-TotalMomentum relation no longer works.
$(\mathrm{d} / \mathrm{d} \tau) \partial_{u}\left[\mathrm{~L}_{\mathrm{L}}\right]=\partial_{\mathrm{R}}\left[\mathrm{L}_{\mathrm{o}}\right]$
4 -Velocity is ProperTime
Derivative of 4-Position
$\mathrm{U}=(\mathrm{d} / \mathrm{d} \tau) \mathrm{R} \quad[\mathrm{m} / \mathrm{s}]=[1 / \mathrm{s}]^{*}[\mathrm{~m}]$
Relativistic Euler-Lagrange Eqn
$\partial_{R}=(\mathrm{d} / \mathrm{d} \tau) \partial_{u}[1 / \mathrm{m}]=[1 / \mathrm{s}]^{*}[\mathrm{~s} / \mathrm{m}]$
$\partial \partial \partial \mathbf{R}=(\mathrm{d} / \mathrm{d} \tau) \partial \partial \mathrm{U}$
$\partial[\mathrm{L}] / \partial \underline{R}=(\mathrm{d} / \mathrm{d} \tau) \partial[\mathrm{L}] / \partial \underline{\mathrm{U}}$
Classical limit, spatial component
$\partial[\mathrm{L} / \partial \mathrm{r}=(\mathrm{d} / \mathrm{dt}) \partial[\mathrm{L}] / \partial \mathrm{u}$
$\partial[\mathrm{L} / / \partial \mathbf{x}=(\mathrm{d} / \mathrm{dt}) \partial[\mathrm{L}] / \partial \mathrm{u}$
$\mathbf{F}_{\mathrm{E} M}=\gamma \mathrm{q}\{(\mathbf{u} \cdot \mathbf{e}) \mathbf{c},(\mathbf{e})+(\mathbf{u} \times \mathbf{b})\}$
$\mathbf{e}=(-\nabla \varphi-\partial \mathbf{a})$ and $\mathbf{b}=[\nabla \times \mathbf{a}]$
If $\mathrm{a} \sim 0$, then $\mathrm{f}=-\mathrm{q} \nabla \varphi=-\nabla \mathrm{U}$, the force is neg grad of a potential
$\mathrm{P}_{\mathrm{T}}=-\partial_{\mathrm{U}}\left[\mathrm{L}_{\mathrm{o}}\right]=-\partial_{\mathrm{U}}[\gamma \mathrm{L}]=-\partial_{\mathrm{U}}\left[-\left(\mathrm{P}_{\mathrm{T}} \cdot \mathbf{U}\right)\right]=\mathrm{P}_{\mathrm{T}}$
$\left(E_{T} / c, p_{T}\right)=-\left(\partial_{\gamma c},-\partial_{\gamma u}\right)[\gamma L]=\left(-\partial_{c}, \partial_{u}\right)[L]$ $\mathrm{p}_{\mathrm{T}}=\partial_{\mathrm{u}}[\mathrm{L}]=(\partial / \partial \mathbf{u})[\mathrm{L}]$
$\mathrm{P}_{\mathrm{T}} \neq-\partial_{v}\left[L_{0}{ }^{\prime}\right]$


$=P+q A$


ProperTime
$\mathbf{U} \cdot \partial=\mathrm{d} / \mathrm{d} \tau=\gamma \mathrm{d} / \mathrm{dt}$ Derivative


$$
=\mathbf{P} \cdot \mathbf{U}+q \mathbf{A} \cdot \mathbf{U}-(1 / 2) \mathrm{m}_{0} \mathbf{U} \cdot \mathbf{U}
$$

$$
=m_{0} \mathbf{U} \cdot \mathbf{U}+q \mathbf{A} \cdot \mathbf{U} \cdot(1 / 2) \mathrm{m}_{0} \mathbf{U} \cdot \mathbf{U}
$$

$$
=(1 / 2) m_{0} \mathbf{U} \cdot \mathbf{U}+q \mathbf{A} \cdot \mathbf{U}
$$

4-(Position)Gradient $\partial_{R}=\partial=\left(\partial_{\mathrm{t}} / \mathrm{c},-\nabla_{\mathrm{R}}\right)$

## Relativistic Euler-Lagrange Equation using $L_{o}{ }^{\prime}$ Equation of Motion (EoM) for EM particle

SR 4-Scalar $(0,1)$-Tensor $\mathrm{V}_{\mu}=\left(\mathrm{v}_{0},-\mathrm{v}\right)$

4-(EM)VectorPotential $\mathbf{A}=A^{\mu}=(\varphi / c, a)$

## SRQM Diagram:

$\gamma=1$ Sart[1- $\cdot \beta \cdot \beta$ : Relativistic Gamma Identity
$(\gamma-1 / \gamma)=(\gamma \beta \cdot \beta)$ : Manipulate into this form... still an identity $\gamma\left(\mathbf{P}_{\mathrm{T}} \cdot \mathbf{U}\right)+-\left(\mathbf{P}_{\mathrm{T}} \cdot \mathbf{U}\right) / \gamma=(\gamma \boldsymbol{\beta} \cdot \boldsymbol{\beta})\left(\mathbf{P}_{\mathrm{T}} \cdot \mathbf{U}\right)$
$\gamma\left(\mathbf{P}_{\mathrm{T}} \cdot \mathbf{U}\right)+-\left(\mathbf{P}_{\mathrm{T}} \cdot \mathbf{U}\right) / \gamma=\left(\mathbf{p}_{\mathrm{T}} \cdot \mathbf{U}\right)$
$\{\mathrm{H}\}+\{\quad \mathrm{L} \quad\}=\left(\mathbf{p}_{\top} \cdot \mathbf{u}\right)$ : The Hamiltonian/Lagrangian connection
$\mathrm{H}=\gamma \mathrm{H}_{0}=\gamma\left(\mathbf{P}_{\mathrm{r}} \cdot \mathbf{U}\right)=\gamma((\mathbf{P}+\mathbf{q} \mathbf{A}) \cdot \mathbf{U})=$ The Hamiltonian with minimal coupling $\mathrm{L}=\mathrm{L}_{\mathrm{d}} / \gamma=-\left(\mathrm{P}_{\mathrm{T}} \cdot \mathbf{U}\right) / \gamma=-((\mathrm{P}+\mathrm{qA}) \cdot \mathbf{U}) / \gamma=$ The Lagrangian with minimal coupling
$\mathrm{H}_{\mathrm{o}}=\left(\mathrm{P}_{\mathrm{T}} \cdot \mathbf{U}\right)=-\mathrm{L}_{\mathrm{o}}=\left(\mathbf{U} \cdot \mathrm{P}_{\mathrm{T}}\right)$ : Rest Hamiltonian = Total RestEnergy $L_{0}=-\left(\mathbf{P}_{\mathrm{T}} \cdot \mathbf{U}\right)=-\mathrm{H}_{0}$
$\partial_{\mathrm{P}_{\mathrm{T}}}\left[\mathrm{H}_{0}\right]=\partial_{\mathrm{P}_{\mathrm{T}}}\left[\mathbf{U} \cdot \mathbf{P}_{\mathrm{T}}\right]=\partial_{\mathrm{P}_{\mathrm{T}}}[\mathbf{U}] \cdot \mathbf{P}_{\mathrm{T}}+\mathbf{U} \cdot \partial_{\mathrm{P}_{\mathrm{T}}}\left[\mathbf{P}_{\mathrm{T}}\right]=0+\mathbf{U} \cdot \partial_{\mathrm{P}_{\mathrm{T}}}\left[\mathbf{P}_{\mathrm{T}}\right]=\mathbf{U}=\mathrm{d} / \mathrm{d} \tau[\mathbf{X}]$ Thus: $(\mathrm{d} / \mathrm{d} \tau)[\mathrm{X}]=\partial_{\mathrm{P}_{T}}\left[\mathrm{H}_{0}\right]=\left(\partial / \partial \mathrm{P}_{\mathrm{I}}\right)\left[\mathrm{H}_{0}\right]$
$\partial_{\mathrm{x}}\left[\mathrm{H}_{0}\right]=\partial_{\mathrm{X}}\left[\mathbf{U} \cdot \mathbf{P}_{\mathrm{T}}\right]=\partial_{\mathrm{x}}[\mathbf{U}] \cdot \mathbf{P}_{\mathrm{T}}+\mathbf{U} \cdot \partial_{\mathrm{x}}\left[\mathbf{P}_{\mathrm{T}}\right]=0+\mathbf{U} \cdot \partial_{\mathrm{x}}\left[\mathbf{P}_{\mathrm{T}}\right]=\mathrm{d} / \mathrm{d} \tau\left[\mathbf{P}_{\mathrm{T}}\right]$ Thus: $(\mathrm{d} / \mathrm{d} \tau)\left[\mathrm{P}_{\mathrm{T}}\right]=\partial_{\mathrm{X}}\left[\mathrm{H}_{0}\right]=(\partial / \partial \mathrm{X})\left[\mathrm{H}_{0}\right]$

Relativistic Hamilton's Equations (4-Vector) $(\mathrm{d} / \mathrm{d} \tau)[\mathbf{X}]=\left(\partial / \partial \mathrm{P}_{\mathrm{r}}\right)\left[\mathrm{H}_{\mathrm{o}}\right.$ $(\mathrm{d} / \mathrm{d} \tau)\left[\mathbf{P}_{\mathrm{T}}\right]=(\partial \partial \overline{\mathbf{X}})\left[\mathrm{H}_{\mathrm{o}}\right]$
$(\mathrm{d} / \mathrm{d} \tau)[\mathbf{X}]=\gamma(\mathrm{d} / \mathrm{dt})[\mathbf{X}]=\left(\partial / \partial \mathbf{P}_{\mathrm{T}}\right)\left[\mathrm{H}_{\mathrm{0}}\right]=\left(\partial / \partial \mathbf{P}_{\mathrm{T}}\right)\left[\left(\mathbf{P}_{\mathrm{T}} \cdot \mathbf{U}\right)\right]=\mathbf{U}$ $(\mathrm{d} / \mathrm{d} \tau)\left[\mathrm{P}_{\mathrm{T}}\right]=\gamma(\mathrm{d} / \mathrm{dt})\left[\mathrm{P}_{\mathrm{T}}\right]=(\partial / \partial \underline{\mathrm{X}})\left[\mathrm{H}_{0}\right]=(\partial / \partial \underline{\mathrm{X}})\left[\left(\mathrm{P}_{\mathrm{T}} \cdot \mathbf{U}\right)\right]=\partial\left[\left(\mathrm{P}_{\mathrm{T}} \cdot \mathbf{U}\right)\right]$

Taking just the spatial components: $\gamma(\mathrm{d} / \mathrm{dt})[\mathbf{x}]=\left(\partial / \partial \mathbf{p}_{\mathrm{r}}\right)\left[\mathrm{H}_{\mathrm{o}}\right]=\left(\partial / \partial \mathbf{p}_{\mathrm{I}}\right)(\mathrm{H} / \gamma)$ $\gamma(\mathrm{d} / \mathrm{dt})\left[\mathrm{p}_{\mathrm{T}}\right]=(\partial / \partial \mathbf{x})\left[\mathrm{H}_{0}\right]=(\partial / \partial \underline{\mathbf{x}})(\mathrm{H} / \gamma)$

Take the Classical limit $\{\gamma \rightarrow 1\}$
Classical Hamilton's Equations (3-vector): $(\mathrm{d} / \mathrm{dt})[\mathrm{x}]=\left(+\partial / \partial \mathrm{p}_{\mathrm{T}}\right)[\mathrm{H}]$ $(\mathrm{d} / \mathrm{dt})\left[\mathrm{p}_{\mathrm{T}}\right]=(-\partial / \partial \mathrm{x})[\mathrm{H}]$
4-TotalMomentum

$$
P_{T}=\left(E_{T} / c=H / c, p_{T}\right)
$$

$$
=-\partial_{\mathrm{R}}\left[\mathrm{~S}_{\text {action }}\right]
$$

$$
=\left(-\partial_{t} / c\left[S_{\text {action }}\right], \nabla\left[S_{\text {action }}\right]\right)
$$

$$
=-\partial u\left[\mathrm{Lo}_{0}\right]=\partial_{u}\left[\mathrm{H}_{0}\right]
$$

(d/d $\tau$ )[X]
$=4$-Velocity
= $P / m_{0}$
$=\left(\mathbf{P}_{\mathrm{T}}-\mathrm{q} \mathbf{A}\right) / m_{0}$
$\square$
$(\mathrm{d} / \mathrm{d} \tau)\left[\mathrm{P}_{\mathrm{T}}\right]$
$=(\mathrm{d} / \mathrm{d} \tau)[\mathbf{P}+\mathrm{q} \mathbf{A}]$
$=[F+q(d / d \tau) A]$
$=[\mathbf{F}+q(\mathbf{U} \cdot \boldsymbol{\partial}) \mathbf{A}]$
$=\left[F^{\alpha}+q\left(U_{\beta} \partial^{\beta}\right) A^{\alpha}\right]$
$=F^{\alpha}+q U_{\beta} \partial^{\beta}\left[A^{\alpha}\right]$

4-Velocity
$\mathrm{U}=\gamma(\mathrm{c}, \mathrm{u})$
$\left(\partial_{P_{T}}\right)\left[H_{0}\right]=\left(\partial / \partial \underline{P}_{\mathrm{I}}\right)\left[H_{0}\right]$
$=\left(\partial / \partial \mathbf{P}_{\mathrm{I}}\right)\left[\mathbf{P}_{\mathbf{T}} \cdot \mathbf{U}\right]$
$=\left(\partial / \partial \mathbf{P}_{\mathrm{T}}\right)\left[\mathbf{P}_{\mathrm{T}} \mathbf{U}\right]$
$=\left(\partial \underline{P}_{\mathrm{T}} / \partial \mathrm{P}_{\mathrm{T}}\right) \mathbf{U}$
$=\mathbf{U}=\gamma(\mathrm{c}, \mathbf{u})$
= 4-Velocity
= P/m。
$=\left(\mathrm{P}_{\mathrm{T}}-\mathrm{q} A\right) / \mathrm{m}_{\mathrm{o}}$
$(\mathrm{d} / \mathrm{d} \tau)\left[\mathrm{P}_{\mathrm{T}}\right]=(\partial / \partial \underline{\mathbf{X}})\left[\mathrm{H}_{0}\right]$


$$
\begin{gathered}
\left(\partial_{\mathrm{X}}\right)\left[\mathrm{H}_{0}\right]=(\partial / \partial \underline{\mathbf{X}})\left[\mathrm{H}_{0}\right] \\
=(\partial / \partial \underline{\mathbf{X}})[\mathbf{P} \cdot \mathbf{U}+\mathrm{q} \mathbf{A} \cdot \mathbf{U}] \\
=[\mathbf{U}+\mathrm{q}(\partial \mathbf{A} \partial \underline{\mathbf{X}}) \cdot \mathbf{U}] \\
=[q \partial[\mathbf{A}] \cdot \mathbf{U}] \\
=q \underline{q}[\mathbf{A}] \cdot \mathbf{U} \\
=q \partial^{\alpha}\left[A^{\beta}\right] \mathrm{U}_{\beta} \\
=\mathrm{q} \partial[\mathbf{A}] \cdot\left(\mathbf{P}_{\mathrm{T}}-\mathrm{q} \mathbf{A}\right) / \mathrm{m}_{0}
\end{gathered}
$$

SR 4-Tensor
(2,0)-Tensor $\mathrm{T}^{\mathrm{wv}}$ (1,1)-Tensor $\mathrm{T}^{\mu}{ }_{v}$ or $\mathrm{T}^{\prime}$ $(0,2)$-Tensor $\mathrm{T}_{\mathrm{uv}}$ $=\left[\begin{array}{c}\left.0,-e^{\mathrm{i}} / \mathrm{c}\right]\end{array}\right]$ $\left[+e^{i} / c,-\varepsilon^{i j} b^{k}\right]$
4-Tensor

## 4-(EM)VectorPotential $A=A^{\mu}=(\varphi / c, a)$

## SRQM Diagram:

```
\gamma = 1/Sqrt[1-\beta\cdot\beta]: Relativistic Gamma Identity
(\gamma-1/\gamma)=(\gamma\beta\cdot\beta): Manipulate into this form... still an identity
\gamma(\mp@subsup{\mathbf{P}}{T}{}\cdot\mathbf{U})+-(\mp@subsup{\mathbf{P}}{T}{}\cdot\mathbf{U})/\gamma=(\gamma\boldsymbol{\beta}\cdot\boldsymbol{\beta})(\mp@subsup{\mathbf{P}}{T}{}\cdot\mathbf{U})
\gamma(\mp@subsup{\mathbf{P}}{\textrm{T}}{}\cdot\mathbf{U})+-(\mp@subsup{\mathbf{P}}{\textrm{T}}{}\cdot\mathbf{U})/\gamma=(\mp@subsup{\mathbf{p}}{\textrm{T}}{}\cdot\mathbf{U})
 {H }+{L } = (p}\mp@subsup{\textrm{p}}{\textrm{T}}{}\cdot\mathbf{u})\mathrm{ : The Hamiltonian/Lagrangian connection
```

$\mathbf{H}=\gamma \mathbf{H}_{0}=\gamma\left(\mathbf{P}_{\mathrm{T}} \cdot \mathbf{U}\right)=\gamma((\mathbf{P}+\mathbf{q} \mathbf{A}) \cdot \mathbf{U})=$ The Hamiltonian with minimal coupling $\mathrm{L}=\mathrm{L}_{\mathrm{o}} / \gamma=-\left(\mathbf{P}_{\mathrm{T}} \cdot \mathbf{U}\right) / \gamma=-((\mathbf{P}+\mathrm{q} \mathbf{A}) \cdot \mathbf{U}) / \gamma=$ The Lagrangian with minimal coupling
$H_{0}=\left(\mathbf{P}_{\mathrm{T}} \cdot \mathbf{U}\right)=-\mathrm{L}_{\mathrm{o}}=\left(\mathbf{U} \cdot \mathbf{P}_{\mathrm{T}}\right):$ Rest Hamiltonian = Total RestEnergy $L_{0}=-\left(P_{\mathrm{T}} \cdot \mathbf{U}\right)=-\mathrm{H}_{0}$
$\partial_{\mathrm{P}_{\mathrm{T}}}\left[\mathrm{H}_{0}\right]=\partial_{\mathrm{P}_{\mathrm{T}}}\left[\mathbf{U} \cdot \mathbf{P}_{\mathrm{T}}\right]=\partial_{\mathrm{P}_{\mathrm{T}}}[\mathbf{U}] \cdot \mathbf{P}_{\mathrm{T}}+\mathbf{U} \cdot \partial_{\mathrm{P}_{\mathrm{T}}}\left[\mathbf{P}_{\mathrm{T}}\right]=0+\mathbf{U} \cdot \partial_{\mathrm{P}_{\mathrm{T}}}\left[\mathbf{P}_{\mathrm{T}}\right]=\mathbf{U}=\mathrm{d} / \mathrm{d} \tau[\mathbf{X}]$ Thus: $(\mathrm{d} / \mathrm{d} \tau)[\mathrm{X}]=\partial_{\mathrm{P}_{\mathrm{T}}}\left[\mathrm{H}_{0}\right]=\left(\partial / \partial \mathrm{P}_{\mathrm{T}}\right)\left[\mathrm{H}_{\mathrm{o}}\right]$
$\partial_{\mathrm{x}}\left[\mathrm{H}_{\mathrm{o}}\right]=\partial_{\mathrm{x}}\left[\mathbf{U} \cdot \mathbf{P}_{\mathrm{T}}\right]=\partial_{\mathrm{x}}[\mathrm{U}] \cdot \mathbf{P}_{\mathrm{T}}+\mathbf{U} \cdot \partial_{\mathrm{x}}\left[\mathbf{P}_{\mathrm{T}}\right]=0+\mathbf{U} \cdot \partial_{\mathrm{x}}\left[\mathbf{P}_{\mathrm{T}}\right]=\mathrm{d} / \mathrm{d} \tau\left[\mathbf{P}_{\mathrm{T}}\right]$ Thus: $(\mathrm{d} / \mathrm{d} \tau)\left[\mathrm{P}_{\mathrm{T}}\right]=\partial_{\mathrm{x}}\left[\mathrm{H}_{0}\right]=(\partial / \partial \mathrm{X})\left[\mathrm{H}_{0}\right]$

Relativistic Hamilton's Equations (4-Vector) $(\mathrm{d} / \mathrm{d} \tau)[\mathbf{X}]=\left(\partial / \partial \mathbf{P}_{\mathrm{T}}\right)\left[\mathrm{H}_{0}\right.$, $(\mathrm{d} / \mathrm{d} \tau)\left[\mathbf{P}_{\mathrm{T}}\right]=(\partial / \partial \underline{\mathbf{X}})\left[\mathrm{H}_{0}\right]$
$(\mathrm{d} / \mathrm{d} \tau)[\mathbf{X}]=\gamma(\mathrm{d} / \mathrm{dt})[\mathbf{X}]=\left(\partial / \partial \mathbf{P}_{\mathrm{T}}\right)\left[\mathrm{H}_{0}\right]=\left(\partial / \partial \mathbf{P}_{\mathrm{T}}\right)\left[\left(\mathbf{P}_{\mathrm{T}} \cdot \mathbf{U}\right)\right]=\mathbf{U}$ $(\mathrm{d} / \mathrm{d} \tau)\left[\mathrm{P}_{\mathrm{T}}\right]=\gamma(\mathrm{d} / \mathrm{dt})\left[\mathrm{P}_{\mathrm{T}}\right]=(\partial / \overline{\mathrm{X}})\left[\mathrm{H}_{\mathrm{O}}\right]=(\partial / \partial \underline{\mathbf{X}})\left[\left(\mathrm{P}_{\mathrm{T}} \cdot \mathbf{U}\right)\right]=\partial\left[\left(\mathrm{P}_{\mathrm{T}} \cdot \mathbf{U}\right)\right]$

Taking just the spatial components: $\gamma(\mathrm{d} / \mathrm{dt})[\mathbf{x}]=\left(\partial / \partial \mathbf{p}_{\mathrm{T}}\right)\left[\mathrm{H}_{0}\right]=\left(\partial / \partial \mathbf{p}_{\mathrm{I}}\right)(\mathrm{H} / \gamma)$ $\gamma(\mathrm{d} / \mathrm{dt})\left[\mathbf{p}_{\mathrm{T}}\right]=(\partial / \partial \mathbf{x})\left[\mathrm{H}_{0}\right]=(\partial / \partial \underline{\mathbf{x}})(\mathrm{H} / \gamma)$

Take the Classical limit $\{\gamma \rightarrow 1\}$
Classical Hamilton's Equations (3-vector) $(\mathrm{d} / \mathrm{dt})[\mathbf{x}]=\left(+\partial / \partial \mathbf{p}_{\mathrm{T}}\right)[\mathrm{H}]$ $(\mathrm{d} / \mathrm{dt})\left[\mathbf{p}_{\mathrm{T}}\right]=(-\partial / \partial \mathbf{x})[\mathrm{H}]$

$$
\begin{aligned}
& (\mathrm{d} / \mathrm{d} \tau)\left[\mathrm{P}_{\mathrm{T}}{ }^{\alpha}\right] \\
= & (\mathrm{d} / \mathrm{d} \tau)\left[\mathrm{P}^{\mathrm{a}}+\mathrm{q} A^{\alpha}\right] \\
= & {\left[\mathrm{F}^{\alpha}+\mathrm{q}(\mathrm{~d} / \mathrm{d} \tau) \mathrm{A}^{\alpha}\right] } \\
= & \mathrm{F}^{\alpha}+\mathrm{q}(\mathbf{U} \cdot \partial)^{\alpha} \mathrm{a}^{\alpha} \\
= & \mathrm{F}^{\alpha}+\mathrm{q}\left(\mathrm{U}_{\beta} \partial^{\beta}\right) \mathrm{A}^{\alpha}
\end{aligned}
$$

4-TotalMomentum

$$
P_{T}=\left(E_{T} / c=H / c, p_{T}\right)
$$

$$
=-\partial_{\mathrm{R}}\left[\mathrm{~S}_{\text {action }}\right]
$$

$$
=\left(-\partial_{\mathrm{t}} / \mathrm{c}\left[\mathrm{~S}_{\text {action }}\right], \nabla\left[\mathrm{S}_{\text {action }}\right]\right)
$$

$$
=-\partial_{u}\left[L_{0}\right]=\partial_{u}\left[H_{0}\right]
$$

4-(EM)VectorPotential $A=A^{\mu}=(\varphi / c, a)$

A Tensor Study of Physical 4-Vectors

```
Lorentz EM Force Equation:
dPa/d\tau= F
dPa/d\tau= F
```

Examine just the spatial components $\mathrm{F}^{\mathrm{i}}$ of 4-Force $\mathrm{F}=\mathrm{F}$ :
$F^{i}=q\left(\partial^{\prime} A^{\beta}-\partial^{\beta} A^{\prime}\right) U_{\beta}$
$\mathrm{F}^{\mathrm{i}}=\mathrm{q}\left(\partial^{\prime} \mathrm{A}^{0}-\partial^{0} \mathrm{~A}^{\mathrm{A}}\right) \mathrm{U}_{0}+\mathrm{q}\left(\partial^{\prime} \mathrm{A}^{\mathrm{A}}-\partial^{\prime} \mathrm{A}^{\mathrm{A}}\right) \mathrm{U}$
$\gamma f=\mathrm{q}(-\nabla[\varphi / \mathrm{c}]-(\partial / \mathrm{c}) \mathrm{a})(\gamma \mathrm{c})+\mathrm{q}(-\nabla[\mathrm{a} \cdot \mathbf{u}]-\mathrm{u} \cdot \nabla[\mathbf{a}]) \gamma$
$\mathbf{f}=\mathrm{q}(-\nabla[\varphi / \mathrm{c}]-(\partial / \mathrm{c}) \mathrm{a})(\mathrm{c})+\mathrm{q}(\mathbf{u} \cdot \nabla[\mathrm{a}]-\nabla[\mathbf{a} \cdot \mathbf{u}])$
$\mathbf{f}=\mathrm{q}(-\nabla[\varphi]-\partial \mathbf{a}+\mathbf{u} \cdot \nabla[\mathbf{a}]-\nabla[\mathbf{a} \cdot \mathbf{u}])$
$\mathbf{f}=\mathrm{q}(-\nabla[\varphi]-\partial \mathbf{a}+\mathbf{u} \times \mathrm{b})$
$\mathrm{f}=\mathrm{q}(\mathrm{e}+\mathrm{u} \times \mathrm{b})$
Take the limit of $\{|\nabla[\varphi]| \gg|\partial \mathbf{a}-\mathbf{u} \times \mathbf{b}|\}$
$\mathrm{f} \sim \mathrm{q}(-\nabla[\varphi])=-\nabla[q \varphi]=-\nabla[\mathrm{U}]=-$ Grad[Potential $]$

The Classical Force $=-$ Grad[Potential] when $\{|\nabla[\varphi]| \gg|\partial \mathbf{a}-\mathbf{u} \times \mathbf{b}|\}$ or when $\{\mathbf{a}=\mathbf{0}$, non-magnetic $\}$

The majority of non-gravitational, non-nuclear potentials dealt with in CM are those mediated by the EM potential.
ex. Spring Potential $\left\{\mathrm{U}=\mathrm{kx} x^{2} / 2\right\}$, then $\left\{\mathbf{f}=-\nabla\left[k x^{2} / 2\right]=-k x\right\}$ Hooke's Law


A Tensor Study of Physical 4-Vectors

A $\cdot \mathbf{U}=\varphi_{0}:$ RestScalar-Potential
$\mathrm{qA} \cdot \mathrm{U}=\mathrm{q} \varphi_{\mathrm{o}}=\mathrm{V}_{\mathrm{o}}:$ RestVoltage $=$ Electrical PotentialEnergy
Let $\left\{q \mathbf{A} \cdot \mathbf{U}=\mathrm{V}_{\mathrm{o}}=-\mathrm{kX} \cdot \mathbf{X} / 2\right\}$ then $\left\{\mathbf{A} \cdot \mathbf{U}=\varphi_{\mathrm{o}}=-(\mathrm{k} / \mathrm{q}) \mathbf{X} \cdot \mathbf{X} / 2\right\}$
RestHamiltonian $\mathrm{H}_{0}=\left(\mathbf{P}_{\mathbf{T}} \cdot \mathbf{U}\right)=\mathbf{P} \cdot \mathbf{U}+\mathrm{q} \mathbf{A} \cdot \mathbf{U}=\mathbf{P} \cdot \mathbf{U}-\mathrm{kX} \cdot \mathbf{X} / 2$
$\partial(\mathbf{A} \cdot \mathbf{U})=\partial(\mathbf{A}) \cdot \mathbf{U}+\mathbf{A} \cdot \partial(\mathbf{U})$
$\partial^{\alpha}\left(A^{\beta} U_{\beta}\right)=\partial^{\alpha}\left[A^{\beta}\right] U_{\beta}+A^{\beta} \partial^{\sigma}\left[U_{\beta}\right]$
$\partial^{\alpha}\left(A^{\beta} U_{\beta}\right)=\partial^{\alpha}\left[A^{\beta}\right]_{U_{\beta}}+0^{\alpha}$ : assuming conservative field $\partial^{\sigma}\left[U_{\beta}\right]=0^{\alpha}{ }_{\beta}$ $\partial^{\alpha}\left(A^{\beta} U_{\beta}\right)=\partial^{\alpha}\left[A^{\beta}\right]_{\beta}$
$\partial[-(k / q) X \cdot X / 2]=-(k / q) \mathbf{X}$
$\partial^{\alpha}\left(A^{\beta} U_{\beta}\right)=\partial^{\alpha}\left[A^{\beta}\right]_{\beta}=-(k / q) X^{\alpha}$
$F^{a}=q U_{\beta}\left(\partial^{a}\left[A^{\beta}\right]-\partial^{\beta}\left[A^{q}\right]\right)$ : Lorentz Force Eqn.
$\mathrm{F}^{\alpha}=\mathrm{q} \mathrm{U}_{\beta} \partial^{\sigma}\left[A^{\beta}\right]-q \mathrm{U}_{\beta} \partial^{\beta}\left[A^{\alpha}\right]$
$=-(k) X^{a}-q U_{\beta} \partial \partial^{\circ}\left[A^{a}\right]$
$\left.=-(\mathrm{k}) \mathrm{X}^{\mathrm{a}}-\mathrm{q}(\mathrm{d} / \mathrm{d} \tau)\left[\mathrm{A}^{\mathrm{a}}\right]\right)$
Take spatial part: $\gamma \mathbf{f}=-\mathrm{kx}-\mathrm{q}(\gamma \mathrm{d} / \mathrm{dt}[\mathrm{a}])$

```
Classical limit:
\gamma->1: |v| << c
d/dt[a] }->\mathbf{0}:3\mathrm{ -vector-potential changes very slowly
{\mathbf{A}\cdot\mathbf{U}=\mp@subsup{\varphi}{0}{}=-(\textrm{k}/\textrm{q})\mathbf{X}\cdot\mathbf{X}/2=-(\textrm{k}/2\textrm{q}){(\textrm{ct}\mp@subsup{)}{}{2}-\mathbf{x}\cdot\mathbf{x}}
For t = 0
\varphio}=-(k/2q){-x\cdotx}=(k/2q){x\cdotx
V
Spring Potential { U=kx2/2 }, then {f=-\nabla[kx2/2]=-kx } Hooke's Law
f=-kx}\mathrm{ : Spring Force acting on classical harmonic oscillator
RestHamiltonian
H
H
H
Tot = Rest + Potential
(d/d\tau)[X]
(d/d\tau)[P}[\mp@subsup{\textrm{T}}{\textrm{T}}{
RestLagrangian
L
(d/d\tau)\partialu[\mp@subsup{L}{0}{}]=\mp@subsup{\partial}{x}{[LL}]: Relativistic Euler-Lagrange Eqn
(d/d\tau)\partialu[-P\cdotU + kX\cdotX/2] = \partialx[-P\cdotU + kX\cdotX/2]
(d/d\tau)\partialu[-P\cdotU] = \partialx[kX·X/2]
(d/d\tau)[-P] = kX
[-F] = kX
F = -kX
```

(0,2)-Tensor T

Lorentz Scala

## SRQM: The Speed-of-Light (c) $\mathbf{c}^{2}$ Invariant Relations (part 1)

 of Physical 4-Vectors

The Speed-of-Light (c) is THE connection between Time and Space: dR = (cdt,dr)

This physical constant appears in several seemingly unrelated places. You don't notice these cool relations when you set $\mathrm{c} \rightarrow 1$. Also notice that the set of all these relations definitely rules out a variable speed-of-light.
(c) is an Invariant Lorentz Scalar constant.


Invariant 4-Gradient Magnitude $(\partial \cdot \partial)=-\left(m_{0} c / \hbar\right)^{2}=-(1 / A c)^{2}$
$\mathbf{U} \cdot \mathbf{U}=\gamma^{2}\left(\mathbf{c}^{2}-\mathbf{u} \cdot \mathbf{u}\right)=\mathbf{c}^{2}$
Speed of all things into the Future
$\left(\mathrm{E}_{\mathrm{o}} / \mathrm{m}_{0}\right)=\left(\gamma \mathrm{E}_{\mathrm{o}} / \gamma \mathrm{m}_{0}\right)=(\mathrm{E} / \mathrm{m})=\mathrm{c}^{2}$ Mass is concentrated Energy, $\mathrm{E}=\mathrm{mc}^{2}$
$\left|u^{*} v_{\text {phase }}\right|=\left|\mathrm{v}_{\text {group }}{ }^{*} \mathrm{v}_{\text {phase }}\right|=\mathrm{c}^{2}$ Particle-Wave "Duality" Correlation
$A^{2}\left(\omega^{2}-\omega_{0}^{2}\right)=\lambda^{2}\left(f^{2}-f_{0}^{2}\right)=c^{2}$
$\left(1 / \varepsilon_{0} \mu_{0}\right)=c^{2}$
Wavelength-Frequency Relation: $\lambda \mathrm{f}=\mathrm{c}$ for photons
Electric $\left(\varepsilon_{0}\right)$ and Magnetic ( $\mu_{\circ}$ ) EM Field Constants
$-\left(\hbar / m_{0}\right)^{2}(\partial \cdot \partial)=c^{2}$
$\left(\hbar / \mathrm{Acm}_{0}\right)^{2}=\mathrm{c}^{2}$
$2 G M / R_{s}=c^{2}$
$8 \pi G / k=c^{2}$
( $\mathrm{c}^{ \pm 1}$ * scalar, 3-vector) $=4$-Vector

Relativistic Quantum Wave Equation
Klein-Gordon (spin 0), Proca (spin 1), Maxwell (spin 1, mo $=0$ ) Factors to Dirac (spin $1 / 2$ ) Classical-limit ( $\mathbf{v} \mathbf{|} \ll \mathrm{c}$ ) to Schrödinger
Reduced Compton Wavelength: $A_{c}=\left(\hbar / m_{0} c\right)$
GR Black Hole Equation
$\mathrm{R}_{\mathrm{s}}=$ Schwarzschild Radius
G = GR GravitationalConst, M = BH Mass
GR Einstein Curvature Constant: $\mathrm{K}=8 \pi \mathrm{G} / \mathrm{c}^{2}$
Every Physical 4-Vector has a (c) factor to maintain equivalent dimensional units across the whole 4-Vector

(0,2)-Tensor $T^{\mu}$ $(0,1)$-Tensor $\mathrm{V}_{\mu}=\left(\mathrm{V}_{0},-\mathrm{v}\right)$ of Physical 4-Vectors

## SRQM: The Speed-of-Light (c) $\mathbf{c}^{2}$ Invariant Relations (part 2)

The Speed-of-Light (c) is THE connection between Time and Space: dR = (cdt,dr)

This physical constant appears in several seemingly unrelated places. You don't notice these cool relations when you set $\mathrm{c} \rightarrow 1$. Also notice that the set of all these relations definitely rules out a variable speed-of-light. (c) is an Invariant Lorentz Scalar constant.
$\mathbf{U} \cdot \mathbf{U}=\gamma^{2}\left(\mathrm{c}^{2}-\mathbf{u} \cdot \mathbf{u}\right)=\mathbf{c}^{2}$
Speed of all things into the Future
$\left(\mathrm{E}_{\mathrm{o}} / \mathrm{m}_{\mathrm{o}}\right)=\left(\gamma \mathrm{E}_{\mathrm{o}} / \gamma \mathrm{m}_{\mathrm{o}}\right)=(\mathrm{E} / \mathrm{m})=\mathrm{c}^{2}$ Mass is concentrated Energy, $\mathrm{E}=\mathrm{mc}^{2}$
$\left|u * v_{\text {phase }}\right|=\left|V_{\text {group }} * v_{\text {phase }}\right|=c^{2}$ Particle-Wave "Duality" Correlation
$A^{2}\left(\omega^{2}-\omega_{0}^{2}\right)=\lambda^{2}\left(f^{2}-f_{0}^{2}\right)=c^{2}$
$\left(1 / \varepsilon_{0} \mu_{0}\right)=c^{2}$
Wavelength-Frequency Relation: $\lambda \mathrm{f}=\mathrm{c}$ for photons
Electric $\left(\varepsilon_{0}\right)$ and Magnetic ( $\mu_{\circ}$ ) EM Field Constants
Relativistic Quantum Wave Equation
Klein-Gordon (spin 0), Proca (spin 1), Maxwell (spin $1, m_{0}=0$ Factors to Dirac (spin $1 / 2$ ) Classical-limit (|v|<<c) to Schrödinger
Reduced Compton Wavelength: $A_{c}=\left(\hbar / m_{0} c\right)$
GR Black Hole Equation
$\mathrm{R}_{\mathrm{s}}=$ Schwarzschild Radius
G = GR GravitationalConst, M = BH Mass
GR Einstein Curvature Constant mass density form): $\mathrm{K}=8 \pi \mathrm{G} / \mathrm{c}^{2}$
Every Physical 4-Vector has a (c) factor to maintain equivalent dimensional units across the whole 4-Vector
 Scalar Product

$E=m c^{2}$
$E_{0} / m_{0}=\hbar \omega_{0} / m_{0}$
$=\left(\hbar / A_{c} m_{0}\right)^{2}$

$-\partial_{\mathrm{t}} \varphi / \nabla \cdot a$
in Lorenz Gauge


Waves
$\mathbf{R} \cdot \mathbf{R} / \tau^{2}$ $\mathrm{dR} \cdot \mathrm{dR} / \mathrm{d} \tau^{2}$
ProperTime Differential
(1,0)-Tensor $\mathrm{V}^{\mu}=\mathbf{V}=\left(\mathrm{v}^{0}, \mathrm{v}\right)$ SR 4-CoVector:OneForm $(0,1)$-Tensor $\mathrm{V}_{\mu}=\left(\mathrm{v}_{0},-\mathrm{v}\right)$
= Lorentz Scalar Invariant

## SRQM 4-Vector Study: 4-ThermalVector

The 4-ThermalVector $\Theta$ is used in Relativistic Thermodynamics.
My prime motivation for the form of this 4 -Vector is that the probability distributions calculated by statistical mechanics ought to be covariant functions since they are based on counting arguments.
$F($ state $) \sim e^{\wedge}-\left(E / k_{B} T\right)=e^{\wedge}-(\beta E)$, with this $\beta=1 / k_{B} T$, (not v/c)
A covariant way to get this is the Lorentz Scalar Product of the 4-Momentum $\mathbf{P}$ with the 4-ThermalVector $\mathbf{O}$. $F($ state $) \sim \mathrm{e}^{\wedge}-(\mathrm{P} \cdot \mathbf{O})=\mathrm{e}^{\wedge}-\left(\mathrm{E}_{\mathrm{o}} / k_{\mathrm{B}} \mathrm{T}_{\mathrm{O}}\right)$

This also gets Boltzmann's constant $\left(k_{B}\right)$ out there with the other Lorentz Scalars like (c) and ( $\overline{\text { ) }}$
see (Relativistic) Maxwell-Jüttner distribution

$f[\mathrm{P}]=\mathrm{N}_{\mathrm{o}} /\left(2 \mathrm{c}\left(\mathrm{m}_{0} \mathrm{C}\right)^{3} \mathrm{~K}_{[2]}\left[\mathrm{m}_{0} c \Theta_{0}\right]\right)^{*}\left(\mathrm{~m}_{0} c \Theta_{0} / 2 \pi\right)^{*} \mathrm{e}^{-(P \cdot \cdot)}$
$f[P]=\left(\Theta_{0}\right) N_{0}\left(4 \pi c\left(m_{0} c\right)^{2} K_{12}\left[m_{0} c \Theta_{0}\right]\right)^{*} e^{-(P \cdot O)}$
$f[P]=c N_{0} /\left(4 \pi \mathrm{~K}_{\mathrm{B}} \mathrm{T}_{0}\left(\mathrm{~m}_{0} \mathrm{c}\right)^{2} \mathrm{~K}_{\mathrm{L} 2}\left[\mathrm{~m}_{0} \mathrm{c}_{\mathrm{o}}\right]\right)^{*} \mathrm{e}^{-(P \cdot 0)}$
$f[P]=N_{o} /\left(4 \pi K_{B} T_{0} m_{0}{ }^{2} c K_{12}\left[m_{0} c^{2} / k_{B} T_{0}\right]\right)^{*} e^{-(P \cdot \theta)}$
It is possible to find this distribution written in multiple ways because many authors don't show constants, which is quite annoying. Show the damn constants people! $\left(\mathrm{k}_{\mathrm{B}}\right),(\mathrm{c}),(\hbar)$ deserve at least that much respect. See also: Cooper-Frye Distribution

4-Momentum
$P=(m c, p)=(E / c, p)=m_{0} U$
$p=(m \mathrm{c}, \mathrm{p})=(\mathrm{E} / \mathrm{c}, \mathrm{p})=\mathrm{m}_{0} \mathbf{U}$
$\square$


Rest Inverse TemperatureEnergy $\beta=1 / k_{B}$

SR 4-Tensor (2,0)-Tensor T ${ }^{\mu v}$ (1,1)-Tensor $T^{\mu}{ }_{v}$ or $T_{\mu}{ }^{v}$ $(0,2)$-Tensor $T_{\mu v}$

SR 4-Scala
(0,0)-Tensor S or S.
Lorentz Scalar

These are totally separate uses of ( $\beta$ )

## Trace $\left[T^{\mu \mathrm{v}}\right]=\eta_{\mu \mathrm{v}} T^{\mu \mathrm{v}}=\mathrm{T}_{\mu \mu}^{\mu}=\mathrm{T}$

$\mathbf{V} \cdot \mathbf{V}=\mathrm{V}^{\mu} \eta_{\mu \mathrm{v}} \mathrm{V}^{\mathrm{v}}=\left[\left(\mathrm{v}^{0}\right)^{2}-\mathbf{v} \cdot \mathbf{v}\right]=\left(\mathrm{v}^{0}{ }_{\mathrm{o}}\right)^{2}$
= Lorentz Scalar Invariant

## SRQM 4-Vector Study: 4-ThermalVector Ideal Gas Law

A Tensor Study of Physical 4-Vectors

The 4-ThermalVector is used in Relativistic Thermodynamics.
It can be used in a manifestly-invariant tensor derivation of the Ideal Gas Law $\left(\mathrm{P}_{\circ}\right) 0=\mathrm{N}$

The definition of the 4-ThermalVector matches the original definition of the Planck-Einstein temperature transformation rule.

4-ThermalVector $\boldsymbol{O}=\left(\mathrm{c} /\left[\mathrm{k}_{\mathrm{B}} \mathrm{T}\right], \mathrm{u} /\left[\mathrm{k}_{\mathrm{B}} \mathrm{T}\right)=\left(1 /\left[\mathrm{k}_{\mathrm{B}} \mathrm{T}_{0}\right]\right) \mathrm{U}=\left(1 /\left[\mathrm{k}_{\mathrm{B}} \mathrm{T}_{\mathrm{o}}\right]\right) \mathrm{y}(\mathrm{c}, \mathrm{u})=\mathrm{v}\left(\mathrm{c} /\left[\mathrm{k}_{\mathrm{B}} \mathrm{T}_{0}\right.\right.\right.$, which gives $(1 / T)=\gamma\left(1 / T_{0}\right)$ or $T=T_{0} / \mathrm{Y}$. The temperature transforms like a volume, $\mathrm{V}=\mathrm{V}_{0} / \mathrm{Y}$.

Examine the Ideal Gas Law.
$\mathrm{P} V=\mathrm{N} \mathrm{k}_{\mathrm{B}} \mathrm{T}$
$(P)(V)=(N)\left(k_{B}\right)(T)$
$\left(\mathrm{P}_{\mathrm{o}}\right)\left(\mathrm{V}_{\mathrm{o}} / \mathrm{Y}\right)=\left(\mathrm{N}_{\mathrm{o}}\right)\left(\mathrm{K}_{\mathrm{B}}\right)\left(\mathrm{T}_{\mathrm{o}} / \mathrm{Y}\right)$
because Lorentz Scalars: $\left\{P=P_{\circ}: N=N_{o}:\left(k_{B}\right)\right.$ is a physical constant $\}$
$\mathrm{P}_{\mathrm{o}} \mathrm{V}_{\mathrm{o}} / \mathrm{Y}=\mathrm{N}_{\mathrm{o}} \mathrm{K}_{\mathrm{B}} \mathrm{T}_{\mathrm{o}} / \mathrm{Y}$
$\mathrm{P}_{\mathrm{o}} \mathrm{V}_{0}=\mathrm{N}_{\mathrm{o}} \mathrm{k}_{\mathrm{B}} \mathrm{T}_{\mathrm{o}}$
Rearrange: $\left\{P / k_{B} T=N / V=n\right\}$ and write in Manifestly-Invariant-Tensor-Form:
( P ) $0=\mathrm{N}$
$\left(\mathrm{P}_{\mathrm{o}}\right)\left(1 /\left[\mathrm{k}_{\mathrm{B}} \mathrm{T}_{\mathrm{0}}\right]\right) \mathrm{U}=\left(\mathrm{n}_{\mathrm{o}}\right) \mathrm{U}$
$\left(\mathrm{P}_{\mathrm{o}} /\left[\mathrm{k}_{\mathrm{B}} \mathrm{T}_{\mathrm{o}}\right]\right)=\left(\mathrm{n}_{\mathrm{o}}\right)$
$\left(\mathrm{P}_{\mathrm{o}} /\left[\mathrm{k}_{\mathrm{B}} \mathrm{T}_{\mathrm{o}}\right]\right)=\left(\mathrm{N}_{\mathrm{o}} / \mathrm{V}_{0}\right)$
$\mathrm{P}_{\mathrm{o}} \mathrm{V}_{0}=\mathrm{N}_{\mathrm{o}} \mathrm{K}_{\mathrm{B}} \mathrm{T}_{\mathrm{o}}$
Pressure $\left(\mathrm{P}_{\mathrm{o}}\right)=(-1 / 3) \mathrm{H}_{\mu v} \mathrm{~T}^{\mu v}$ $H_{v v}=$ Spatial-Projection 4-Tensor $T^{\text {pv }}=$ PerfectFluid StressEnergy 4-Tensor


SR 4-Scalar
(0,0)-Tensor S or So
Lorentz Scalar

Note that the temperature here is relativistically direction-specific, unlike in the classical use of temperature.

## SRQM 4-Vector Study: 4-ThermalVector Unruh-Hawking Radiation

The 4-ThermalVector is used in Relativistic Thermodynamics.
It can be used in a partial derivation of Unruh-Hawking Radiation (up to a numerical constant).
Let a "Unruh-DeWitt thermal detector" be in the Momentarily-Comoving-Rest-Frame (MCRF) of a constant spatial acceleration (a), in which $|\mathbf{u}| \rightarrow 0, \gamma \rightarrow 1, \gamma^{\prime} \rightarrow 0$.
$4-$ Acceleration $_{\text {MCRF }}=$ A $_{\text {MCRF }}=$ AMCRF $^{\mu}=(0, a)_{\text {MCRF }}$
Take the Lorentz Scalar Product with the 4-ThermalVector
$\mathbf{A}_{\text {MCRF }} \cdot \mathbf{O}=(0, \mathrm{a})_{\text {MCRF }} \cdot\left(\mathrm{c} / \mathrm{k}_{\mathrm{B}} \mathrm{T}, \mathrm{u} / \mathrm{k}_{\mathrm{B}} \mathrm{T}\right)=\left(-\mathrm{a} \cdot \mathbf{u} / \mathrm{k}_{\mathrm{B}} \mathrm{T}\right)=$ Lorentz Scalar Invariant
The $(\mathbf{u})$ here is part of the 4 -ThermalVector: the 3 -velocity of the thermal radiation. (not from $\mathbf{A}_{\text {mcRF }}$ ) Let the thermal radiation be photonic:EM in nature, so $|\mathrm{u}|=\mathrm{c}$, and in a direction opposing the acceleration of the "thermal detector", which removes the minus sign.
$A_{\text {MCRF }} \cdot \Theta_{\text {radiation }}=\left(\mathrm{ac} / \mathrm{k}_{\mathrm{B}} \mathrm{T}\right)=$ Invariant Lorentz Scalar
Use Dimensional Analysis to find appropriate Lorentz Scalar Invariant with same units: $[$ Invariant Units $]=\left[\mathrm{m} / \mathrm{s}^{2}\right] \cdot[\mathrm{m} / \mathrm{s}] /\left[\mathrm{kg} \cdot \mathrm{m}^{2} / \mathrm{s}^{2}\right]=[1 / \mathrm{kg} \cdot \mathrm{s}] \sim \mathrm{c}^{2} / \mathrm{h}=[\mathrm{m} / \mathrm{s}]^{2} /\left[\mathrm{kg} \cdot \mathrm{m}^{2} / \mathrm{s}\right]$
$\mathrm{A}_{\text {MCRF }} \cdot \Theta_{\text {radiation }}=\left(\mathrm{ac} / \mathrm{k}_{\mathrm{B}} \mathrm{T}\right)=$ Invariant $\sim \mathrm{c}^{2} / \hbar$
Temperature $T \sim \hbar a / k_{\mathrm{B}} \mathrm{C}$, \{from EM radiation, only from the dir. of acceleration\}
Further methods give the constant of proportionality (1/2T):
See (Imaginary Time, Euclideanization, Wick Rotation, Matsubara Frequency) See (Thermal QFT, Bogoliubov transformation)
$T_{\text {unruh }}=\hbar a / 2 \pi \mathrm{k}_{\mathrm{B}} \mathrm{c}$ \{due to constant Minkowski-hyperbolic acceleration\} $T_{\text {Hawking }}=\hbar g / 2 \pi \mathrm{~K}_{\mathrm{B}} \mathrm{C}$ \{due to gravitational acceleration $\left.\mathrm{a}=\mathrm{g}\right\}$
$\mathrm{T}_{\text {Schwarschild }}$ BH $=\hbar \mathrm{c}^{3} / 8 \pi \mathrm{GMk}_{\mathrm{B}}\left\{\right.$ Temp at BH Event Horizon, $\left.\mathrm{g}=\mathrm{GM} / \mathrm{Rs}_{\mathrm{s}}{ }^{2}, \mathrm{R}_{\mathrm{s}}=2 \mathrm{GM} / \mathrm{c}^{2}\right\}$ $\mathrm{T}_{\mathrm{SR}}=-\hbar(\mathrm{a} \cdot \mathrm{u}) / 2 \pi \mathrm{k}_{\mathrm{B}} \mathrm{C}^{2}\left\{\right.$ correct version from 4 -Vector derivation $\left.\mathrm{A}_{\text {MCRF }} \cdot O_{\text {radiation }}=2 \pi \mathrm{c}^{2} / \hbar\right\}$


SR 4-Tensor (2,0)-Tensor T ${ }^{\text {pv }}$ (1,1)-Tensor $T^{\mu}{ }_{v}$ or $T_{\mu}$
$(0,2)$-Tensor $T_{\mu v}$

SR 4-Scalar
(0,0)-Tensor S or S
Lorentz Scalar

Note that the temperature here is relativistically direction-specific, unlike in the classical use of temperature.

Trace $\left[T^{\mu \mathrm{V}}\right]=\eta_{\mu \mathrm{V}} T^{\mu \mathrm{VV}}=T_{\mu}^{\mu}=T$
$\mathbf{V} \cdot \mathbf{V}=\mathrm{V}^{\mathrm{V}} \eta_{\mathrm{pv}} \mathrm{V}^{\mathrm{V}}=\left[\left(\mathrm{v}^{0}\right)^{2}-\mathbf{v} \cdot \mathbf{v}\right]=\left(\mathrm{v}_{0}^{0}\right)^{2}$ $=$ Lorentz Scalar Invariant

## SRQM 4-Vector Study: 4-ThermalVector Unruh-Hawking Radiation



A Tensor Study of Physical 4-Vectors

Temperature $\mathrm{T} \sim \hbar \mathrm{\hbar} / \mathrm{k}_{\mathrm{B}} \mathrm{C}$, \{from EM radiation, only from the dir. of acceleration\}
Further methods give the constant of proportionality ( $1 / 2 \pi$ ): See (Imaginary Time, Euclideanization, Wick Rotation, Matsubara Frequency) See (Thermal QFT, Bogoliubov transformation)
$T_{\text {Unruh }}=\hbar a / 2 \pi k_{\mathrm{B}} \mathrm{C}$ \{due to constant Minkowski-hyperbolic acceleration\}
$T_{\text {Hawking }}=\hbar \mathrm{g} / 2 \pi \mathrm{~m}_{\mathrm{B}} \mathrm{C}$ \{due to gravitational acceleration $\left.\mathrm{a}=\mathrm{g}\right\}$
$T_{\text {schwarsschild } \mathrm{BH}}=\hbar \mathrm{c}^{3} / 8 \pi \mathrm{GMk}_{\mathrm{B}}\left\{\right.$ Temp at BH Event Horizon, $\left.\mathrm{g}=\mathrm{GM} / \mathrm{Rs}^{2}, \mathrm{R}_{\mathrm{s}}=2 \mathrm{GM} / \mathrm{c}^{2}\right\}$
$\mathrm{T}_{\mathrm{SR}}=-\hbar(\mathrm{a} \cdot \mathbf{u}) / 2 \pi \mathrm{k}_{\mathrm{B}} \mathrm{C}^{2}\left\{\right.$ correct version from 4 -Vector derivation $\left.\mathbf{A}_{\text {MCRF }} \cdot O_{\text {radiaion }}=2 \pi \mathrm{c}^{2} / \hbar\right\}$

Alternate forms:
$A_{\text {MCRF }} \cdot O_{\text {radiation }}=2 \pi C^{2 / h}$
$\left(1 / k T_{o}\right) A_{\text {MCRF }} \cdot \mathbf{U}=2 \pi C^{2} / \hbar$
$\left(1 / k T_{0}\right) A_{\text {MCRF }} \cdot \mathbf{U}=2 \pi \omega_{0} c^{2} / \hbar \omega_{0}$
$\mathbf{A}_{\text {MCRF }} \cdot \mathbf{U}=2 \pi \omega_{0} C^{2}$
$\mathbf{A}_{\text {MCRF }} \cdot \mathbf{U}=2 \pi(\mathbf{K} \cdot \mathbf{U}) \mathrm{c}^{2}$
$A_{\text {MCRF }}=2 \pi(K) C^{2}$
$A_{\text {MCRF }}=\left(2 \pi C^{2}\right) \mathrm{K}=\left(2 \pi C^{2} / \hbar\right) \mathrm{P}$
$(\mathrm{dP} / \mathrm{d} \tau)_{\text {MCRF }} \cdot \Theta_{\text {radiaioon }}=2 \pi \omega_{\mathrm{c}}$
$F_{\text {MCRF }} \cdot O_{\text {raciaiaion }}=2 \pi \omega_{0}:\left\{\right.$ for $m_{0}=$ constant $\}$
$(0,2)$-Tensor $T_{\mu v}$

## The $2 \pi$ factor is interesting

There are cases when the dimensional units must match. see 4-Momentum related to 4-WaveVector:
P=ћK
$\rightarrow[\mathrm{J} \cdot \mathrm{s} / \mathrm{m}]=[\mathrm{J} \cdot \mathrm{s} / \mathrm{rad}][\mathrm{rad} / \mathrm{m}]$
$\hbar=\mathrm{h} / 2 \pi \quad \rightarrow[\mathrm{~J} \cdot \mathrm{~s} / \mathrm{rad}]=[\mathrm{J} \cdot \mathrm{s} / \mathrm{cyc}]^{*}[1 \mathrm{cyc} / 2 \pi \mathrm{rad}]$
And other where the $2 \pi$ factor has implicit [rad] units. see Circles \& Spheres:


4-ThermalVector
4-InverseTempMomentum
$\boldsymbol{\Theta}=(\theta, \theta)=\left(\mathrm{c} / \mathrm{k}_{\mathrm{B}} T, \mathrm{u} / \mathrm{k}_{\mathrm{B}} T\right)=\left(\theta_{0} / \mathrm{c}\right) \mathbf{U}=\left(\beta_{0}\right) \mathbf{U}=\left(1 / \mathrm{k}_{\mathrm{B}} T_{0}\right) \mathbf{U}$


4-Acceleration $\mathbf{A}=\mathrm{A}^{\mu}=\gamma\left(\mathrm{c} \gamma^{\prime}, \gamma^{\prime} \mathbf{u}+\gamma \mathrm{a}\right)$ $=\mathrm{d} \mathbf{U} / \mathrm{d} \tau=\mathrm{d}^{2} \mathbf{R} / \mathrm{d} \tau^{2}$

## 4-Acceleration MCRF A $_{\text {MCRF }}=$ A $_{\text {MCRF }}{ }^{\mu}=(0, a)_{\text {MCRF }}$

$(1,0)$-Tensor $\mathrm{V}^{\mu}=\mathbf{V}=\left(\mathrm{v}^{0}, \mathrm{v}\right)$ SR 4-CoVector:OneForm $(0,1)$-Tensor $\mathrm{V}_{\mu}=\left(\mathrm{v}_{0},-\mathrm{v}\right)$

Note that the temperature here is relativistically direction-specific, unlike in the classical use of temperature.

## The QM/QFT $\leftrightarrow$ SM Correspondence, via the Wick Rotation

The operator which governs how a quantum system evolves in time, the time evolution operator, and the density operator, a time-independent object which describes the statistical state of a many-particle system in an equilibrium state (with temperature T) can be related via arithmetic substitutions:

Quantum

## Mechanics


where T , called Euclidean Time (Imaginary Time) is cyclic with period $\beta,(0 \leq \mathrm{T} \leq+\beta)$.
In Quantum Mechanics (or Quantum Field Theory), the Hamiltonian H acts as the generator of the Lie group of time translations while in Statistical Mechanics the role of the same Hamiltonian H is as the Boltzmann weight in an ensemble.

Time Evolution Operator
$\mathrm{U}(\mathrm{t})=\sum_{\mathrm{n}=0 ., \mathrm{m}}\left[\mathrm{e}^{\wedge}-\left(\mathrm{i} \mathrm{E}_{\mathrm{n}} \mathrm{t} / \hbar\right)\right]|\mathrm{n}\rangle\langle\mathrm{n}|=\mathrm{e}^{\wedge}$-( $\left.\mathrm{i} \mathrm{Ht} / \hbar\right)$
Partition Function (time-independent function of state)
$\mathrm{Z}=\sum_{\mathrm{n}=0 . \infty}\left[\mathrm{e}^{\wedge}-\left(\mathrm{E}_{\mathrm{n}} / \mathrm{k}_{\mathrm{B}} \mathrm{T}\right)\right]=\operatorname{Trace}\left[\mathrm{e}^{\wedge}-(\mathrm{i} \mathrm{Ht} / \hbar)\right]$

In the Matsubara Formalism, the basic idea (due to Felix Bloch) is that the expectation values of operators in a canonical ensemble:
$<A>=\operatorname{Tr}[\exp (-\beta H) A] /$
Tr $[\exp (-\beta H)]$
may be written as expectation values in ordinary quantum field theory (QFT), where the configuration is evolved by an
imaginary time $\mathrm{T}=-\mathrm{it}(0 \leq \mathrm{T} \leq \beta)$.
One can therefore switch to a spacetime with Euclidean signature, where the above trace (Tr [.]) leads to the requirement that all bosonic and fermionic fields be periodic and antiperiodic, respectively,
with respect to the Euclidean time direction with periodicity $\beta=\hbar /\left(k_{B} T\right)$.
This allows one to perform calculations with the same tools as in ordinary quantum field theory, such as functional integrals and Feynman diagrams, but with compact Euclidean time.

Note that the definition of normal ordering has to be altered.
In momentum space, this leads to the replacement of continuous frequencies by discrete imaginary (Matsubara) frequencies:
Bosonic
$\omega_{n}=(n)(2 \pi / \beta)$
Fermionic
$\omega_{n}=(n+1 / 2)(2 \pi / \beta)$
and, through the de Broglie relation $\mathrm{E}=\hbar \omega$,
to a discretized $E M$ thermal energy spectrum $E_{n}=\hbar \omega_{n}=n\left(2 \pi k_{B} T\right)$.


## SRQM 4-Vector Study:

 4-ThermalVector

A Tensor Study of Physical 4-Vectors

## The QM/QFT $\leftrightarrow$ SM Correspondence

The operator which governs how a quantum system evolves in time, the time evolution operator, and the density operator, a time-independent object which describes the statistical state of a many-particle system in an equilibrium state (with temperature T) can be related via arithmetic substitutions:

where t , called Euclidean Time (Imaginary Time) is cyclic with period $\beta$, ( $0 \leq \mathrm{t} \leq+\beta$ ).
In Quantum Mechanics (or Quantum Field Theory), the Hamiltonian H acts as the generator of the Lie group of time translations while in Statistical Mechanics the role of the same Hamiltonian H is as the Boltzmann weight in an ensemble.


## SRQM 4-Vector Study:

 SR 4-CoVector:OneForm $(0,1)$-Tensor $\mathrm{V}_{\mu}=\left(\mathrm{v}_{0},-\mathrm{v}\right)$

## SRQM 4-Vector Study:



## SRQM 4-Vector Study: 4-EntropyFlux

The 4-EntropyVector is used in Relativistic Thermodynamics.
Pure Entropy is a Lorentz Scalar in all frames
 $(1,1)$-Tensor $T^{\mu}{ }_{v}$ or $T_{\mu}{ }^{v}$ $(0,1)$-Tensor $\mathrm{V}_{\mu}=\left(\mathrm{v}_{0},-\mathrm{v}\right)$

Up to this point, we have mostly been exploring the SR aspects of 4-Vectors.
It is now time to show how RQM and QM fit into the works...
This is SRQM, [ SR $\rightarrow$ QM ]
RQM \& QM are derivable from principles of SR
Let that sink in...
Quantum Mechanics is derivable from Special Relativity

$$
\mathrm{GR} \rightarrow \mathrm{SR} \rightarrow \mathrm{RQM} \rightarrow \mathrm{QM} \rightarrow\{\mathrm{CM} \& \mathrm{EM}\}
$$

## SRQM Diagram:

## Special Relativity $\rightarrow$ Quantum Mechanics

## 4-Gradient=Alteration of SR <Events>

 SR SpaceTime "Flat" Minkowski 4D Metric SR SpaceTime Dimension=4 SR Lorentz Transforms SR Action $\rightarrow$ 4-Momentum SR Phase $\rightarrow 4$-WaveVector SR ProperTime Derivative SR \& QM Invariant Waves $\partial \cdot \partial=(\partial / c)^{2}-\nabla \cdot \nabla$$=-\left(m_{0} c / \hbar\right)^{2}=-\left(\omega_{0} / c\right)^{2}$


SR d'Alembertian \& Klein-Gordon Relativistic Quantum Wave Relation Schrödinger QWE is $\{|\mathbf{v}| \ll \mathrm{c}\}$ limit of KG QWE **[ SR $\rightarrow$ QM ]**

4-WaveVector=Substantiation of SR Wave <Events> oscillations proportional to mass:energy \& 3-momentum

4-WaveVector $\mathrm{K}^{\mu}$ $\mathbf{K}=(\omega / c, k)=\left(\omega / c, \omega \hat{n} / v_{\text {phase }}\right)$ $=(1 / c \mp, \hat{n} / A)=\left(\omega_{0} / c^{2}\right) \mathbf{U}=P / h$


START HERE*


4-Position=Location of SR <Events> in SpaceTime


4-Velocity=Motion
ProperTime of SR <Events>



Matter Wave


4-WaveVector Complex Plane-Waves (-i) $K_{T}=-\partial[\Phi]$ K = iə

$$
\mathrm{K} \cdot \mathrm{~K}=(\omega / \mathrm{c})^{2}-\mathrm{k} \cdot \mathrm{k}
$$

$=\left(m_{0} c / \hbar\right)^{2}=\left(\omega_{0} / c\right)^{2}=\left(1 / c \mp_{0}\right)^{2}$

SR 4-Tensor
(2,0)-Tensor T ${ }^{\mu v}$ (1,1)-Tensor $T^{\mu}{ }_{v}$ or $T_{\nu}{ }^{v}$ $(0,2)$-Tensor $T_{\mu}$

SR 4-Vector (1,0)-Tensor $\mathrm{V}^{\mu}=\mathbf{V}=\left(\mathrm{v}^{0}, \mathbf{v}\right)$ SR 4-CoVector:OneForm $(0,1)$-Tensor $\mathrm{V}_{\mu}=\left(\mathrm{v}_{0},-\mathrm{v}\right)$

Existing SR Rules
QM Principles

## SRQM Diagram:

## Special Relativity $\rightarrow$ Quantum Mechanics

 RoadMap of SR $\rightarrow$ QM (w/ EM Potential)SR $\rightarrow$ RQM Klein-Gordon Relativistic Quantum Particle in EM Potential d'Alembertian Wave Equation
$\partial \cdot \partial=\left(\partial_{t} / c\right)^{2}-\nabla \cdot \nabla$
$=\left(\partial_{\mathrm{T}}+(\mathrm{iq} / \hbar) \mathrm{A}\right) \cdot\left(\partial_{\mathrm{T}}+(\mathrm{iq} / \hbar) \mathbf{A}\right)$
$=-\left(\omega_{0} / c\right)^{2}=-\left(m_{0} c / \hbar\right)^{2}$ $=\left(\partial_{\tau} / c\right)^{2}$

M
Limit: $\{|\mathrm{v}| \ll \mathrm{c}\}$ $\left(i \hbar \partial_{\mathrm{T}}\right) \sim\left[\mathrm{q} \varphi+\left(\mathrm{m}_{0} \mathrm{c}^{2}\right)+\left(\mathrm{i} \hbar \nabla_{\mathrm{T}}+\mathrm{qa}\right)^{2} /\left(2 \mathrm{~m}_{0}\right)\right]$ $\left(\mathrm{i} \hbar \partial_{\mathrm{T}}\right) \sim\left[\mathrm{V}+\left(\mathrm{i} \hbar \nabla_{\mathrm{T}}+\mathrm{qa}\right)^{2} /\left(2 \mathrm{~m}_{\mathrm{o}}\right)\right]$ with potential $V=\mathrm{q} \varphi+\left(\mathrm{m}_{0} \mathrm{c}^{2}\right)$ $=$ Schrödinger QM Equation (EM potential) **[ SR $\rightarrow$ QM $]^{* *}$ $\partial=\left(\partial_{\mathrm{t}} / \mathrm{c},-\nabla\right)=-\mathrm{iK}$
*START HERE*: 4-Position=Location of SR <Events> in SpaceTime

A


$$
=\left(m_{0} \mathrm{c} / \hbar\right)^{2}=\left(\omega_{0} / \mathrm{c}\right)^{2}
$$

4-Momentum=Substantiation
of SR Particle <Events> mass:energy \& 3-momentum

4-Vector SRQM Interpretation $(0,1)$-Tensor $\mathrm{V}_{\mu}=\left(\mathrm{v}_{0},-\mathrm{v}\right)$ <br> \section*{SRQM Basic Idea (part 1) <br> \section*{SRQM Basic Idea (part 1) SR $\rightarrow$ Relativistic Wave Eqn} SR $\rightarrow$ Relativistic Wave Eqn} that Special Relativity plus a few empirical facts lead to Relativistic Wave The basic idea is to show that Special Relativity plus a few empirical facts lead to Relativistic Wave
Equations, and thus RQM, without using any assumptions or axioms from Quantum Mechanics.

## Start only with the concepts of SR, no concepts from QM:

(1) SR provides the ideas of Invariant Intervals and ( c ) as a Physical Constant, as well as:

Poincaré Invariance, Minkowski 4D SpaceTime, ProperTime, ProperLength, Physical SR 4-Vectors.

## Note empirical facts which can relate the SR 4 -Vectors from the following:

(2a) Elementary matter particles each have RestMass, ( $m_{0}$ ), a physical constant which can be measured by experiment: eg. in collisions, cyclotrons, Compton Scattering, etc.
(2b) There is a physical constant, ( $\hbar$ ), which can be measured by classical experiment - eg. the Photoelectric Effect, the inverse Photoelectric Effect, LED's=Injection Electroluminescence, Duane-Hunt Law in Bremsstralung, the Watt/Kibble-Balance, Electron Diffraction, Incandescence, Stern-Gerlach, Compton Scattering, Atomic Line Spectra, etc. All known particles types obey this constant.
(2c) The use of imaginary:complex numbers (i) and differential operators $\left\{\partial_{\mathrm{t}} \& \nabla \rightarrow\left(\partial_{\mathrm{x}}, \partial_{\mathrm{y}}, \partial_{\mathrm{z}}\right)\right\}$ in wave-type equations comes from pure mathematics: not necessary to assume any QM Axioms

[^3]If one has a Relativistic Wave Equation, such as the Klein-Gordon equation, then one has RQM, and thence QM via the low-velocity limit $\{|\mathrm{v}| \ll \mathrm{c}\}$.

The physical and mathematical properties of QM, usually regarded as axiomatic, are inherent in the Klein-Gordon RWE itself (i.e. derivable from it).

QM Principles emerge not from \{ QM Axioms + SR $\rightarrow$ RQM \}, but from \{ SR + Empirical Facts $\rightarrow$ RQM $\}$.

The result is a paradigm shift from the idea of \{ SR and QM as separate theories \} to \{ QM derived from SR \} - leading to a new interpretation of QM:
The SRQM or [SR $\rightarrow$ QM] Interpretation.
GR $\rightarrow$ (low-mass limit = \{curvature $\sim 0\}$ limit $) \rightarrow$ SR
SR $\rightarrow$ (+ a few empirical facts giving Lorentz Invariant Scalars) $\rightarrow$ RQM
RQM $\rightarrow$ (low-velocity limit $\{|\mathrm{v}| \ll c\}) \rightarrow$ QM
The results of this analysis will be facilitated by the use of SR 4-Vectors

## Properties united in SR:4D SpaceTime

 Time:Space
## Time, Space

(c*when, where) = SR location of <Event>
Temporal velocity, Spatial velocity
SR motion of <Event>, max speed $=c$

## Mass:Energy, Momentum

 used in 4-Momentum Conservation $\Sigma P_{\text {final }}=\Sigma P_{\text {initial }}$
## Angular Frequency, WaveNumber

 used in Relativistic Doppler Shift$\omega_{\text {obs }}=\omega_{\text {emit }} /[\gamma(1-\beta \cos [\theta])], k=\omega / c_{\text {for photons }}$

## Temporal Partial, Spatial Partial

 used in SR Continuity Eqns., ProperTime eg. $\partial \cdot \boldsymbol{A}=0$ means $\boldsymbol{A}$ is locally conservedAll of these are standard SR 4-Vectors, which can be found and used in a totally relativistic context, with no mention or need of QM.
I want to emphasize that these objects are ALL relativistic in origin.

## Lorentz Scalar Invariant

$\mathbf{R} \cdot \mathbf{R}=(\mathrm{ct})^{2}-\mathbf{r} \cdot \mathbf{r}=\left(\mathrm{ct} \mathrm{t}_{0}\right)^{2}=(\mathrm{ct})^{2}$
$\mathbf{U} \cdot \mathbf{U}=\gamma^{2}\left(\mathbf{c}^{2}-\mathbf{u} \cdot \mathbf{u}\right)=\mathbf{c}^{2}$
$\mathbf{P} \cdot \mathbf{P}=(E / c)^{2}-\mathbf{p} \cdot \mathbf{p}=\left(E_{o} / c\right)^{2}=\left(m_{0} c\right)^{2}$
$\mathbf{K} \cdot \mathbf{K}=(\omega / c)^{2}-\mathbf{k} \cdot \mathbf{k}=\left(\omega_{o} / c\right)^{2}$
$\partial \cdot \partial=\left(\partial_{t} / c\right)^{2}-\nabla \cdot \nabla=\left(\partial_{t} / c\right)^{2}$

## What it means in SR...

SR Invariant Interval, ProperTime
<Event> Motion Invariant Magnitude (c)

## Einstein Invariant Mass:Energy Relation

Wave/Dispersion Invariance Relation
The d'Alembert Invariant Operator

All 4-Vectors have invariant magnitudes, found by taking the scalar product of the 4 -Vector with itself. Quite often a simple expression can be found by examining the case when the spatial part is zero. This is usually found when the 3 -velocity is zero. The temporal part is then specified by its "rest" value.

For example: $\mathbf{P} \cdot \mathbf{P}=(\mathrm{E} / \mathrm{c})^{2}-\mathbf{p} \cdot \mathbf{p}=\left(\mathrm{E}_{\mathrm{o}} / \mathrm{c}\right)^{2}=\left(\mathrm{m}_{0} \mathrm{c}\right)^{2}$
$\mathrm{E}=\sqrt{ }\left[\left(\mathrm{E}_{\mathrm{o}}\right)^{2}+\mathbf{p} \cdot \mathbf{p} \mathrm{c}^{2}\right]$, from above relation
$\mathrm{E}=\gamma \mathrm{E}$ 。
, using $\left\{\gamma=1 / \sqrt{ }\left[1-\beta^{2}\right]=\sqrt{ }\left[1+\gamma^{2} \beta^{2}\right]\right\}$ and $\{\beta=v / c\}$
meaning the relativistic energy E is equal to the relative gamma factor $\gamma$ * the rest energy $\mathrm{E}_{\circ}$

## SR + A few empirical facts: SRQM Overview

## Empirical Fact What it means in SR...

## SR 4-Vector

4-Position $\mathbf{R}=(\mathrm{ct}, \mathrm{r})$; alt. $\mathbf{X}=(\mathrm{ct}, \mathbf{x})$	$\mathbf{R} \in<$ Event>; alt. $\mathbf{X}$	Location of 4D SpaceTime <Event>
4-Velocity $\mathbf{U}=\gamma(\mathrm{c}, \mathbf{u})$	$\mathbf{U}=\mathrm{d} \mathbf{R} / \mathrm{d} \tau$	Motion of 4D SpaceTime <Event>
4-Momentum $\mathbf{P}=(\mathrm{E} / \mathrm{c}, \mathrm{p})=(\mathrm{mc}, \mathrm{p})$	$\mathbf{P}=\mathrm{m}_{0} \mathbf{U}$	<Events> described as Particles
4-WaveVector $\mathbf{K}=(\omega / \mathrm{c}, \mathrm{k})$	$\mathbf{K}=\mathbf{P} / \hbar$	<Events> described as Waves
4-Gradient $\partial=\left(\partial_{\mathrm{t}} / \mathrm{c},-\nabla\right)$	$\partial=-\mathrm{i} \mathbf{K}$	Alteration of 4D SpaceTime <Event>

The Axioms of SR, which is actually a GR limiting-case, lead us to the use of Minkowski SpaceTime and Physical 4-Vectors, which are elements of Minkowski Space = (4D Time-Space).

Empirical Observation leads us to the transformation relations between the components of these SR 4-Vectors, and to the chain of relations between the 4-Vectors themselves. These relations all use Lorentz Scalar Invariant Constants, whose values are measured empirically. They are manifestly invariant relations, true in all reference frames...

The combination of these SR objects and their relations is enough to derive RQM.

## SRQM Chart:

## Special Relativity $\rightarrow$ Quantum Mechanics

## SRQM: The [ SR $\rightarrow$ QM ] Interpretation of Quantum Mechanics

Special Relativity (SR) Axioms: Invariant Interval + LightSpeed (c) as Universal Physical Constant lead to SR, although technically SR is itself the Minkowski-SpaceTime low-curvature:"flat" limiting-case of GR.
$\left\{\mathrm{c}, \tau, \mathrm{m}_{\mathrm{o}}, \hbar, \mathrm{i}\right\}=\left\{\mathrm{c}:\right.$ SpeedOfLight, $\tau$ : ProperTime, $\mathrm{m}_{0}$ : RestMass, $\hbar:$ Dirac/PlanckReducedConstant( $\overline{\mathrm{h}=\mathrm{h} / 2 \pi), \text { i: ImaginaryNumber\}: }}$ are all Empirically-Measured SR Lorentz-Invariant Physical and/or Mathematical Constants $\quad \mathrm{i}=+\sqrt{[-1]}=(0,1)_{\text {complext }}$

Standard SR 4-Vectors:
Related by these SR Lorentz Invariants:

4-Position	$\mathbf{R}=$ (ct, r)	$\epsilon<$ Event> $\in$ <Time Space>	$(\mathbf{R} \cdot \mathbf{R})=(\mathrm{c} \tau)^{2}=\left(\mathrm{i} \mid \mathrm{r}_{\mathrm{o}}\right)^{2}$
4-Velocity	$\mathbf{U}=\gamma(\mathrm{c}, \mathrm{u})$	$=(\mathrm{U} \cdot \partial) \mathbf{R}=(\mathrm{d} / \mathrm{dr}) \mathrm{R}=\mathrm{dR} / \mathrm{d} \tau$	$(\mathbf{U} \cdot \mathbf{U})=(\mathrm{c})^{2}$
4-Momentum	$\mathbf{P}=(\mathrm{E} / \mathrm{c}, \mathrm{p})$	$=\mathrm{m}_{0} \mathbf{U}$	$(P \cdot P)=\left(m_{0} c\right)^{2}$
4-WaveVector	$\mathbf{K}=(\omega / \mathrm{c}, \mathrm{k})$	$=P / \hbar$	$(\mathrm{K} \cdot \mathrm{K})=\left(\mathrm{m}_{0} \mathrm{C} /\right)^{2} \quad$ KG Equation:
4-Gradient	$\partial=\left(\partial_{\mathrm{t}} / \mathrm{c},-\nabla\right)$	$=-\mathrm{i} \mathrm{K}$	$(\partial \cdot \partial)=\left(-\mathrm{im} \mathrm{o}_{0} / \hbar\right)^{2}=-\left(\mathrm{m}_{0} \mathrm{c} / \hbar\right)^{2}=\mathrm{QM}$ Relation $\rightarrow \mathrm{RQM} \rightarrow \mathrm{QM}$

SR + Empirically Measured Physical Constants lead to RQM via the (KG) Klein-Gordon Quantum Eqn, and thence to QM via the low-velocity limit $\{|\mathbf{v}| \ll \mathrm{c}\}$, giving the Schrödinger Eqn. This fundamental KG Relation also leads to the other

## Quantum Wave Equations:

spin=0 boson field $=4$-Scalar: spin=1/2 fermion field $=4$-Spinor: spin=1 boson field $=4$-Vector:

> RQM (massless, no rest-frame, Lorentzian)
> $\left\{|\mathbf{v}|=\mathrm{c}: \mathrm{m}_{0}=0\right\}$

Free Scalar Wave (Higgs) Weyl
Maxwell (EM photonic)

RQM (with non-zero mass, Lorentzizn)
$\left\{0<=|\mathbf{v}|<c: m_{0}>0\right\}$
Klein-Gordon (KG)
Dirac (RQM w/ EM charge)
Proca

QM (ilimitcase from ROM, Gallean)
$\left\{0<=|\mathrm{v}| \ll \mathrm{c}: \mathrm{m}_{0}>0\right\}$
Schrödinger (regular QM)
Pauli (QM w/ EM charge) <br> \title{
SRQM Diagram: <br> \title{
SRQM Diagram: RoadMap of SR (4-Vectors)
}
4-Position
$\mathbf{R = ( c t , r )}$
$\in<$ Event $>$

$$
\text { Trace[TV] }=\eta_{\mu v} T^{\mu v}=T^{\mu}=T
$$

$$
\begin{aligned}
\mathbf{V} \cdot \mathbf{V} & =V^{\top} \eta_{\mu \mathrm{v}} V^{v}=\left[\left(v^{0}\right)^{2}-\mathbf{v} \cdot \mathrm{v}\right]=\left(\mathrm{v}^{0}\right)^{2} \\
& =\text { Lorentz Scalar Invariant }
\end{aligned}
$$

## SRQM Diagram: RoadMap of SR (Connections)



## SRQM Diagram:

 RoadMap of SR (Free Particle)4-Gradient=Alteration of SR <Events> SR SpaceTime "Flat" Minkowski 4D Metric SR SpaceTime Dimension=4 SR Lorentz Transforms SR Action $\rightarrow 4$-Momentum SR Phase $\rightarrow 4$-WaveVector SR Proper Time Derivative SR Invariant Waves

SR Wave <Events> have 4-WaveVector=Substantiation oscillations proportional to mass:energy \& 3-momentum

## $\omega_{0} / E_{0}$


<Events> have 4-Velocity=Motion in SR SpaceTime as both particles \& waves of Physical 4-Vectors

SciRealm.or
John B. Wiso
SciRealm@aol.co


4-Gradient=Alteration of SR <Events> SR SpaceTime "Flat" Minkowski 4D Metric SR SpaceTime Dimension=4 SR Lorentz Transforms SR Action $\rightarrow 4$-Momentum SR Phase $\rightarrow 4$-WaveVector SR Proper Time Derivative SR Invariant Waves

$$
\begin{aligned}
\partial \cdot \partial & =\left(\partial_{\tau} / c\right)^{2}-\nabla \cdot \nabla \\
& =\left(\partial_{\tau} / c\right)^{2}
\end{aligned}
$$

d'Alembertian Free Particle Wave Equation


*START HERE*: <Events> have 4-Position=Location in SR SpaceTime

<Events> have 4-Velocity=Motion in SR SpaceTime as both particles \& waves


$$
\begin{aligned}
\mathbf{K} \cdot \mathbf{K} & =(\omega / \mathrm{c})^{2}-\mathbf{k} \cdot \mathbf{k} \\
& =\left(\omega_{0} / \mathrm{c}\right)^{2}
\end{aligned}
$$

4-WaveVector=Substantiation oscillations proportional to mass:energy \& 3-momentum

$(0,2)$-Tensor $\mathrm{T}_{\mu \nu}$

## SRQM Diagram:

 RoadMap of SR (EM Potential)
$\partial_{[ }\left[R^{\mu}\right]=\Lambda^{\mu^{\prime}}$
Lorentz
*START HERE*: <Events> have 4-Pnsition=Location in SR SpaceTime


4-Position


EM Faraday $\partial^{u} A^{v}-\partial^{2} A^{\mu}=F^{\mu v}$ 4-Tensor <Events> have 4 -Velocity=Motion in SR SpaceTime as both particles \& waves

$$
\begin{aligned}
\partial \cdot \partial & =\left(\partial_{\mathrm{t}} / \mathrm{c}\right)^{2}-\nabla \cdot \nabla \\
& =\left(\partial_{\tau} / c\right)^{2}
\end{aligned}
$$

d'Alembertian
Particle
Wave Equation
in EM Potential
$K \cdot K=(\omega / c)^{2}-k \cdot k$
$=\left(\mathbf{K}_{\mathrm{T}}-\left(\mathrm{q} \omega_{0} / \mathrm{E}_{0}\right) \mathbf{A}\right) \cdot\left(\mathrm{K}_{\mathrm{T}}-\left(q \omega_{0} / \mathrm{E}_{0}\right) \mathbf{A}\right)$
$=\left(\omega_{0} / c\right)^{2}$

SR Particle <Events> have 4-Momentum=Substantiation mass:energy \& 3-momentum

SR 4-Tensor
(2,0)-Tensor T ${ }^{\mu v}$ (1)-Tensor $\mathrm{T}_{v}{ }_{v}$ or $\mathrm{T}_{\nu}$ $(0,2)$-Tensor $\mathrm{T}_{\mu v}$

SR 4-Vector (1,0)-Tensor $\mathrm{V}^{\mu}=\mathbf{V}=\left(\mathrm{v}^{0}, \mathbf{v}\right)$ SR 4-CoVector:OneForm $(0,1)$-Tensor $\mathrm{V}_{\mu}=\left(\mathrm{v}_{0},-\mathrm{v}\right)$

## SRQM Diagram:

## Special Relativity $\rightarrow$ Quantum Mechanics

 RoadMap of SR $\rightarrow$ QM (w/ EM Potential)SR $\rightarrow$ RQM Klein-Gordon Relativistic Quantum Particle in EM Potential d'Alembertian Wave Equation
$\partial \cdot \partial=\left(\partial_{\mathrm{A}} \mathrm{l}\right)^{2}-\nabla \cdot \nabla$
$=\left(\partial_{\mathrm{T}}+(\mathrm{iq} / \hbar) \mathbf{A}\right) \cdot\left(\partial_{\mathrm{T}}+(\mathrm{iq} / \hbar) \mathbf{A}\right)$
$=-\left(\omega_{0} / c\right)^{2}=-\left(m_{0} c / \hbar\right)^{2}$

$$
=\left(\partial_{\tau} / \mathrm{c}\right)^{2}
$$

Limit: $\{|\mathbf{v}| \ll c\}$ $\left(i \hbar \partial_{\mathrm{T}}\right) \sim\left[\mathrm{q} \varphi+\left(\mathrm{m}_{0} \mathrm{c}^{2}\right)+\left(\mathrm{i} \hbar \nabla_{\mathrm{T}}+\mathrm{qa}\right)^{2} /\left(2 \mathrm{~m}_{0}\right)\right]$ $\left(\mathrm{i} \hbar \partial_{\mathrm{T}}\right) \sim\left[\mathrm{V}+\left(\mathrm{i} \hbar \nabla_{\mathrm{T}}+\mathrm{qa}\right)^{2} /\left(2 \mathrm{~m}_{\mathrm{o}}\right)\right]$ with potential $\mathrm{V}=\mathrm{q} \varphi+\left(\mathrm{m}_{0} \mathrm{c}^{2}\right)$ $=$ Schrödinger QM Equation (EM potential) **[ SR $\rightarrow$ QM $]^{* *}$
*START HERE*: 4-Position=Location of SR <Events> in SpaceTime


$$
=\left(m_{0} \mathrm{c} / \hbar\right)^{2}=\left(\omega_{0} / \mathrm{c}\right)^{2}
$$

4-Momentum=Substantiation
of SR Particle <Events> mass:energy \& 3-momentum

4-Vector SRQM Interpretation SR 4-CoVector:OneForm $(0,1)$-Tensor $\mathrm{V}_{\mu}=\left(\mathrm{v}_{0},-\mathrm{v}\right)$

## SRQM Study:

 The Empirical 4-Vector Facts| SR 4-Vector | Empirical Fact | Discoverer | Physics |
| :---: | :---: | :---: | :---: |
| 4-Position | $\mathbf{R} \in<$ Event> | Newton+ Einstein | [ t \& r] Time \& Space <time> \& <location> [ $R=(c t, r)$ ] SpaceTime as $4 D=(1+3) D$ |
| 4-Velocity | $\mathbf{U}=\mathrm{dR} / \mathrm{d} \tau$ | Newton Einstein | $\begin{array}{lc}{[\mathbf{v}=\dot{r}=d r / d t]} & \text { Calculus of motion } \\ {[\mathbf{U}=\gamma(\mathrm{c}, \mathrm{u})=\mathrm{dR} / \mathrm{d} \tau]} & \text { Gamma \& Proper Time }\end{array}$ |
| 4-Momentum | $\mathbf{P}=\mathrm{m}_{0} \mathbf{U}$ | Newton Einstein | $\left[\begin{array}{l}p=m v] \\ {\left[\mathbf{P}=(E / c, p)=m_{0} \mathbf{U}\right]}\end{array} \quad\right.$ Classical Mechanics SR Mechanics |
| 4-WaveVector | $K=P / \hbar$ | Planck Einstein de Broglie ? |  |
| 4-Gradient | $\partial=-i K$ | Schrödinger | [ $\omega=\mathrm{i} \partial_{\mathrm{t}}, \mathbf{k}=-\mathrm{i} \nabla$ ] (SR) Wave Mechanics <br> [ $\mathbf{P}=(\mathrm{E} / \mathrm{c}, \mathrm{p})=i \hbar \partial=i \hbar\left(\partial_{t} / \mathrm{c},-\nabla\right)$ ] (QM) 4-Vecctor |

(1) The SR 4-Vectors and their components are related to each other via constants
(2) We have not taken any 4 -vector relation as axiomatic, the constants come from experiment.
(3) $c, \tau, m_{0}, \hbar$ come from physical experiments, (-i) comes from the general mathematics of waves

## Empirical Fact

## What it means in SRQM...

$\mathbf{R} \in<$ Event $>$ SpaceTime:LightCone = Unified Concepts
$\mathbf{U}=\mathrm{dR} / \mathrm{d} \tau$
4-Velocity $\mathbf{U}=\gamma(\mathrm{c}, \mathbf{u})$
$\mathbf{P}=m_{0} \mathbf{U}$
4-Momentum $\mathbf{P}=(\mathrm{E} / \mathrm{c}, \mathrm{p})$
4-WaveVector K = ( $\omega / \mathrm{c}, \mathrm{k}) \quad \mathbf{K}=\mathbf{P} / \hbar$
4-Gradient $\partial=\left(\partial_{t} / c,-\nabla\right)$
$\partial=-\mathrm{iK}$

Three old-paradigm QM Axioms:
Particle-Wave Duality $[(\mathbf{P})=\hbar(\mathbf{K})]$, Unitary Evolution $[\partial=(-i) \mathbf{K}]$, Operator Formalism $[(\partial)=-i \mathbf{K}]$ are actually just empirically-found constant relations between known SR 4-Vectors.
Note that these constants are in fact all Lorentz Scalar Invariants.
Minkowski Space and 4-Vectors also lead to idea of Lorentz Invariance. A Lorentz Invariant is a quantity that always has the same value, independent of the motion or orientation of inertial observers.
Lorentz Invariants can typically be derived using the scalar product relation.
$\mathbf{U} \cdot \mathbf{U}=\mathrm{c}^{2}, \mathbf{U} \cdot \boldsymbol{\partial}=\mathrm{d} / \mathrm{d} \tau, \mathbf{P} \cdot \mathbf{U}=\mathrm{E}_{\mathrm{o}}=\mathrm{m}_{0} \mathrm{C}^{2}$, etc.
A very important Lorentz invariant is the Proper Time $\tau$, which is defined as the time displacement between two points on a worldline that is at-rest wrt. an observer. It is used in the relations between 4-Position $\mathbf{R}, 4$-Velocity $\mathbf{U}=\mathrm{dR} / \mathrm{d} \tau$, and 4-Acceleration $\mathbf{A}=\mathrm{dU} / \mathrm{d} \tau$.

## Lorentz Invariant

$$
\begin{aligned}
& \mathbf{R} \cdot \mathbf{R}=(c t)^{2}-\mathbf{r} \cdot \mathbf{r}=(\mathrm{c} \tau)^{2} \\
& \mathbf{U} \cdot \mathbf{U}=\gamma^{2}\left(\mathrm{c}^{2}-\mathbf{u} \cdot \mathbf{u}\right)=\mathrm{c}^{2} \\
& \mathbf{P} \cdot \mathbf{P}=\left(m_{0} c\right)^{2}=\left(E_{0} / c\right)^{2} \\
& \mathbf{K} \cdot \mathbf{K}=\left(m_{0} c / \hbar\right)^{2}=\left(\omega_{0} / c\right)^{2} \\
& \partial \cdot \boldsymbol{}=\left(-i m_{0} c / \hbar\right)^{2}=-\left(m_{0} c / \hbar\right)^{2}
\end{aligned}
$$

What it means in SRQM...
SR Invariant Interval
Events move into future at magnitude c
Einstein Mass:Energy Relation
Matter-Wave Dispersion Relation
The Klein-Gordon Equation $\rightarrow$ RQM!
$\mathbf{U}=\mathrm{dR} / \mathrm{d} \tau$
Remember, everything after 4-Velocity was just a constant times the last 4-vector, and the Invariant Magnitude of the 4-Velocity is itself a constant
$\mathbf{P}=\mathrm{m}_{0} \mathbf{U}, \mathbf{K}=\mathbf{P} / \hbar, \partial=-i \mathbf{K}$, so e.g. $\mathbf{P} \cdot \mathbf{P}=\mathrm{m}_{0} \mathbf{U} \cdot \mathrm{~m}_{0} \mathbf{U}=\mathrm{m}_{0}{ }^{2} \mathbf{U} \cdot \mathbf{U}=\left(\mathrm{m}_{0} \mathrm{c}\right)^{2}$


SR 4-Tensor
(2,0)-Tensor T ${ }^{\mu \mathrm{v}}$ (1,1)-Tensor $\mathrm{T}^{\mu}{ }_{v}$ or $\mathrm{T}_{\nu}$
$(0,2)$-Tensor $T$ $(0,1)$-Tensor $\mathrm{V}_{\mu}=\left(\mathrm{V}_{0},-\mathrm{v}\right)$ of Physical 4-Vectors

The 4-Vector Wave-Particle relation is inherent in all particle types: Einstein-de Broglie $\mathbf{P}=(\mathrm{E} / \mathrm{c}, \mathrm{p})=\hbar \mathrm{K}=\hbar(\omega / \mathrm{c}, \mathrm{k})$.
All waves can superpose, interfere, diffract: Water waves, gravitational waves, photonic waves of all frequencies, etc. In all cases: experiments using single particles build the diffraction/interference pattern over the course many iterations.
$P \cdot P=\left(m_{0} c\right)^{2}=\left(E_{0} / c\right)^{2}$


Photonic-Photonic Diffraction?: Delbruck scattering \& Light-by-light scattering
Normally, photons do not interact, but at high enough relative energy, virtual particles can form which allow interaction.

## Hold on, aren't you getting the " $\hbar$ " from a QM Axiom?

## What it means...

## SR 4-Vector SR Empirical Fact

## 4-WaveVector $\quad \mathbf{K}=(\omega / c, k)=\left(\omega / c, \omega \hat{n} / v_{\text {phase }}\right)=\left(\omega_{0} / c^{2}\right) \mathbf{U} \quad$ Wave-Particle Duality

( $\hbar$ ) is actually an empirically measurable quantity, just like (e) or (c). It can be measured classically from the photoelectric effect, from the inverse photoelectric effect, from LED's (injection electroluminescence), from Atomic Line Spectra (Bohr Atom), from the Duane-Hunt Law in Bremsstrahlung, from Electron Diffraction in crystals, from the Watt/Kibble-Balance, from Incandescent Blackbody Intensity-Temperature Relations, from Compton Scattering, from the Stern-Gerlach experiment, etc.
See (http://scirealm.org/Physics-PlanckConstantViaLEDs.html)
For the LED experiment, one uses several different LED's, each with its own characteristic wavelength
One then makes a chart of each LED's wavelength ( $\lambda$ ) vs the threshold or activation voltage ( $V$ ) needed to make that individual LED emit.
One finds that: $\left\{\lambda=h^{*} c /\left(e^{*} V\right)\right\}$ or $\left\{e^{*} V=h^{*} c / \lambda\right\}$, where (e)=ElectronCharge, (c)=LightSpeed, and (h) is simply a slope that can be measured.
Consider this as a [black-box] where no assumption about $Q M$ is made. However, we know the classical $\operatorname{SR}$ relations $\left\{E=e^{*} V\right\}$, and $\left\{\lambda^{*} f=c\right\}$.
The data force one to conclude that $\left\{E=h^{\star} f=\hbar^{\star} \omega=\hbar \omega\right\}$.
Applying our 4-Vector knowledge, we recognize this as the temporal components of an SR 4-Vector relation. (E/c,...) = $\hbar(\omega / c, \ldots)$
Due to manifest Tensor Invariance, this means that 4-Momentum $\boldsymbol{P}=(E / c, p)=\hbar \boldsymbol{K}=\hbar(\omega / c, k)=\hbar * 4$-WaveVector $\boldsymbol{K}$.
The spatial component (due to De Broglie) follows naturally from the temporal component (due to Einstein) via to the nature of 4-Vector (Tensor) mathematics.
This is also derivable from pure SR 4-Vector (Tensor) arguments: $\mathbf{P}=\mathrm{m}_{0} \mathbf{U}=\left(\mathrm{E}_{0} / \mathrm{c}^{2}\right) \mathbf{U}$ and $\mathbf{K}=\left(\omega_{o} / \mathrm{c}^{2}\right) \mathbf{U}$
Since $\mathbf{P}$ and $\mathbf{K}$ are both Lorentz Scalar proportional to $\mathbf{U}$, then by the rules of tensor mathematics, $\mathbf{P}$ must also be Lorentz Scalar proportional to $\mathbf{K}$ i.e. Tensors obey certain mathematical structures:

Transitivity\{if $\mathrm{a} \sim \mathrm{b}$ and $\mathrm{b} \sim \mathrm{c}$, then $\mathrm{a} \sim \mathrm{c}\}$ \& Euclideaness: $\{i f \mathrm{a} \sim \mathrm{c}$ and $\mathrm{b} \sim \mathrm{c}$, then $\mathrm{a} \sim \mathrm{b}\}$
This invariant proportional constant is empirically measured to be ( $\AA$ ),
for each known particle type, whether massive ( $m_{0}>0$ ) or massless ( $m_{0}=0$ ):
$\mathbf{P}=m_{0} \mathbf{U}=\left(\mathbf{E}_{\mathrm{o}} / \mathrm{c}^{2}\right) \mathbf{U}=\left(\mathrm{E}_{\mathrm{o}} / \mathrm{c}^{2}\right) /\left(\omega_{o} / \mathrm{c}^{2}\right) \mathbf{K}=\left(\mathrm{E}_{\mathrm{o}} / \omega_{0}\right) \mathbf{K}=\left(\gamma \mathrm{E}_{\mathrm{o}} / \gamma \omega_{\mathrm{o}}\right) \mathbf{K}=(\mathrm{E} / \omega) \mathbf{K}=(\hbar) \mathbf{K}$
also from standard SR Lorentz 4-Vector Scalar Products:
$(\mathbf{P} \cdot \mathbf{U}) /(\mathbf{K} \cdot \mathbf{U})=\mathrm{E}_{0} / \omega_{0} \rightarrow|\mathbf{P} / / / \mathbf{K}|=\mathrm{E}_{\mathrm{o}} / \omega_{\mathrm{o}}=(\mathrm{\hbar})$
$(\mathbf{P} \cdot \mathbf{K}) /(\mathbf{K} \cdot \mathbf{K})=\mathrm{m}_{0} \omega_{0} /\left(\omega_{0} / \mathrm{c}\right)^{2} \rightarrow|\mathbf{P}| /|\mathbf{K}|=\mathrm{E}_{0} / \omega_{0}=(\hbar)$
$(\mathbf{P} \cdot \mathbf{P}) /(\mathbf{K} \cdot \mathbf{P})=\left(\mathrm{m}_{0} \mathrm{C}\right)^{2} /\left(\mathrm{m}_{0} \omega_{0}\right) \rightarrow|\mathbf{P}| /|\mathbf{K}|=E_{0} / \omega_{0}=(\hbar)$
$(\mathbf{P} \cdot \mathbf{R}) /(\mathbf{K} \cdot \mathbf{R})=(-$ Saction,free $) /\left(-\Phi_{\text {phase }, \text { plane }}\right) \rightarrow|\mathbf{P} / / / \mathbf{K}|=\mathrm{E}_{\mathrm{o}} / \omega_{\mathrm{o}}=(\hbar)$


SR 4-Vector	SR Empirical Fact	What it means...
4-WaveVector	$\mathbf{K}=(\omega / c, k)=\left(\omega / c, \omega \hat{n} / v_{\text {phase }}\right)=\left(\omega_{0} / c^{2}\right) \mathbf{U}$	Wave-Particle Duality

$\mathbf{K}$ is a standard SR 4-Vector, used in generating the SR formulae:

## Relativistic Doppler Effect:

$\omega_{\text {obs }}=\omega_{\text {emit }} /[\gamma(1-\beta \cos [\theta])], \quad|\mathbf{k}|=\mathrm{k}=\omega / \mathrm{c}_{\text {for photons }}$

## Relativistic Aberration Effect:

$\cos \left[\theta_{\text {obs }}\right]=\left(\cos \left[\theta_{\text {emit }}\right]+|\boldsymbol{\beta}|\right) /\left(1+|\beta| \cos \left[\theta_{\text {emith }}\right]\right)$
The 4-WaveVector $\mathbf{K}$ can be derived in terms of periodic motion, where families of surfaces move through space as time increases, or alternately, as families of hypersurfaces in SpaceTime, formed by all events passed by the wave surface. The 4 -WaveVector is everywhere in the direction of propagation of the wave surfaces.
$\mathbf{K}=-\partial\left[\Phi_{\text {phase,planewave }}\right]$
From this structure, one obtains relativistic/wave optics without ever mentioning QM.

## SRQM:

SR 4-Vector	SR Empirical Fact	What it means...
4-Gradient	$\partial=\left(\partial_{\mathrm{t}} / \mathrm{c},-\nabla\right)=-\mathrm{iK}$	Unitary Evolution of States   Operator Formalism

$[\partial=-\mathrm{iK}]$ gives the sub-equations $\left[\partial_{\mathrm{t}}=-\mathrm{i} \omega\right]$ and $[\nabla=\mathrm{ik}]$, and is certainly the main equation that relates QM and SR by allowing Operator Formalism. But, this is a basic equation regarding the general mathematics of plane-waves; not just quantum-waves, but anything that can be mathematically described by plane-waves and superpositions of plane-waves...
This includes purely SR waves, an example of which would be EM plane-waves (i.e. photons)...
$\psi(t, r)=a e^{\wedge}[i(\mathbf{k} \cdot r-\omega t)]$ : Standard mathematical plane-wave equation
$\partial_{\mathrm{t}}[\psi(\mathrm{t}, \mathrm{r})]=\partial_{\mathrm{t}}\left[\mathrm{ae}{ }^{\wedge}[\mathrm{i}(\mathbf{k} \cdot \mathrm{r}-\omega \mathrm{t})]\right]=(-\mathrm{i} \omega)\left[\mathrm{ae}^{\wedge}[\mathrm{i}(\mathbf{k} \cdot \mathrm{r}-\omega \mathrm{t})]\right]=(-\mathrm{i} \omega) \psi(\mathrm{t}, \mathrm{r})$, or $\left[\partial_{\mathrm{t}}=-\mathrm{i} \omega\right]$
$\nabla[\psi(\mathrm{t}, \mathrm{r})]=\nabla\left[\mathrm{ae}{ }^{\wedge}[\mathrm{i}(\mathbf{k} \cdot \mathbf{r}-\omega \mathrm{t})]\right]=(\mathrm{ik})\left[\mathrm{ae} \mathrm{e}^{\wedge}[\mathrm{i}(\mathbf{k} \cdot \mathbf{r}-\omega \mathrm{t})]\right]=(\mathrm{ik}) \psi(\mathrm{t}, \mathrm{r})$, or $[\nabla=\mathrm{ik}]$
In the more economical SR notation:
$\partial[\Psi(R)]=\partial\left[a e^{\wedge}(-\mathrm{iK} \cdot \mathbf{R})\right]=(-\mathrm{iK})\left[\mathrm{ae}^{\wedge}(-\mathrm{iK} \cdot \mathbf{R})\right]=(-\mathrm{iK}) \Psi(\mathrm{R})$, or in 4-Vector shorthand $[\partial=-\mathrm{iK}]$
This one is more of a mathematical empirical fact, but regardless, it is not axiomatic.
It can describe purely SR waves, again without any mention of QM.

SR 4-Vector	SR Empirical Fact	What it means...
4-Gradient	$\partial=\left(\partial_{\mathrm{t}} / \mathrm{c},-\nabla\right)=-\mathrm{iK}$	4D Gradient Operator

$\left[\partial=\left(\partial_{\mathrm{t}} / \mathrm{c},-\nabla\right)\right]$ is the SR 4-Vector Gradient Operator. It occurs in a purely relativistic context without ever mentioning QM.
$\partial \cdot \mathbf{X}=\partial^{\mu} \eta_{\mu v} X^{v}=\left(\partial_{t} / c,-\nabla\right) \cdot(c t, x)=\left(\partial_{t} / c[c t]-(-\nabla \cdot \mathbf{x})\right)=\left(\partial_{t}[t]+\nabla \cdot \mathbf{x}\right)(1)+(3)=4$
The 4-Divergence of the 4-Position gives the dimensionality of SpaceTime.
$\partial[\mathbf{X}]=\partial^{\mu}\left[X^{\nu}\right]=\left(\partial_{t} / \mathrm{c},-\nabla\right)[(\mathrm{ct}, \mathbf{x})]=\left(\partial_{t} / \mathrm{c}[\mathrm{ct}],-\nabla[\mathbf{x}]\right)=\operatorname{Diag}\left[1,-\mathrm{I}_{(3)}\right]=\eta^{\mu v}$
The 4-Gradient acting on the 4-Position gives the Minkowski Metric Tensor
$\partial \cdot J=\partial^{\mu} \eta_{\mu v}{ }^{\nu v}=\left(\partial_{\mathrm{t}} / \mathrm{c},-\nabla\right) \cdot(\rho \mathrm{c}, \mathrm{j})=\left(\partial_{\mathrm{t}} / \mathrm{c}[\rho \mathrm{c}]-(-\nabla \cdot \mathbf{j})\right)=\left(\partial_{\mathrm{t}}[\rho]+\nabla \cdot \mathbf{j}\right)=0$
The 4-Divergence of the 4-CurrentDensity is equal to 0 for a conserved current. It can be rewritten as $\left(\partial_{t}[\rho]=-\nabla \cdot j\right)$, which means that the time change of ChargeDensity is balanced by the space change or divergence of CurrentDensity. It is a Continuity Equation, giving local conservation of ChargeDensity. It is related to Noether's Theorem.

## SRQM:

## Hold on, doesn't using " $\partial$ " in an Equation of Motion presume a QM Axiom?

SR 4-Vector	SR Empirical Fact	What it means...
4-(Position)Gradient	$\partial_{R}=\partial=\left(\partial_{\mathrm{t}} / \mathrm{c},-\nabla\right)=-\mathrm{iK}$	4D Gradient Operator

Klein-Gordon Relativistic Quantum Wave Equation
$\partial \cdot \partial[\Psi]=-\left(m_{0} c / \hbar\right)^{2}[\Psi]=-\left(\omega_{0} / c\right)^{2}[\Psi]$
Relativistic Euler-Lagrange Equations
$\partial_{\mathrm{R}}[\mathrm{L}]=(\mathrm{d} / \mathrm{d} \tau) \partial_{u}[\mathrm{~L}]:\{$ particle format $\}$
$\partial_{[\phi[ }[\mathcal{L}]=\left(\partial_{\mathrm{R}}\right) \partial_{\left[\mathrm{l}_{\mathrm{R}}(\Phi)\right.}[\mathcal{L}]:\{$ density format $\}$
$\left[\partial=\left(\partial_{\downarrow} / \mathrm{c},-\nabla\right)\right]$ is the SR 4-Vector (Position)Gradient Operator.
It occurs in a purely relativistic context without ever mentioning QM.
There is a long history of using the gradient operator on classical physics functions, in this case the Lagrangian. And, in fact, it is another area where the same mathematics is used in both classical and quantum contexts.

## SRQM Diagram:

The QM Schrödinger Relation P = iћ $\partial$

This is derived from the combination of:

The Einstein-de Broglie Relation P = ћK

K = i $\partial$
$\mathbf{P}=(\mathrm{E} / \mathrm{c}, \mathrm{p})=\mathrm{i} \hbar \partial=\mathrm{i} \hbar\left(\partial_{\downarrow} / \mathrm{c},-\nabla\right)$
\{temporal\} E = iћ ${ }_{\text {t }}$
\{spatial\} $\mathrm{p}=-i \hbar \nabla$
These are the standard QM Schrödinger Relations.

It is this Lorentz Scalar Invariant relation (in) which connects the 4-Momentum to the 4-Gradient, making it into a QM operator.

Note that these 4-Vectors are already connected in multiple
 ways in standard SR

Trace $\left[T^{v V}\right]=\eta_{w v} T^{\text {NV }}=T_{\mu}^{\mu_{\mu}}=T$
$\mathbf{V} \cdot \mathbf{V}=\mathrm{V}^{\mathrm{V}} \eta_{\mathrm{pv}} \mathrm{V}^{\mathrm{V}}=\left[\left(\mathrm{v}^{0}\right)^{2}-\mathbf{v} \cdot \mathbf{v}\right]=\left(\mathrm{v}_{0}^{0}\right)^{2}$
= Lorentz Scalar Invariant

# Review of SR 4-Vector Mathematics 

4-Gradient $\boldsymbol{\partial}=\left(\partial_{l} / \mathrm{c},-\mathrm{V}\right)$
4-Position $\mathbf{X}=(\mathrm{ct}, \mathrm{x})$
$\partial \cdot \partial=\left(\partial_{l} / c\right)^{2}-\nabla \cdot \nabla=-\left(\omega_{0} / c\right)^{2}$
$\left.\mathbf{X} \cdot \mathbf{X}=\left((\mathrm{ct})^{2}-\mathbf{x} \cdot \mathbf{x}\right)=(\mathrm{ct})\right)^{2}=(\mathrm{c} \tau)^{2}:$ Invariant Interval Measure
4-Velocity U = $\gamma(\mathrm{c}, \mathrm{u})$
$\mathbf{U} \cdot \mathbf{U}=\gamma^{2}\left(\mathrm{c}^{2}-\mathbf{u} \cdot \mathbf{u}\right)=(\mathrm{c})^{2}$
4-Momentum $\mathbf{P}=(E / c, p)=\left(E_{d} / c^{2}\right) \mathbf{U}$
$\mathbf{P} \cdot \mathbf{P}=(E / c)^{2}-\mathbf{p} \cdot \mathbf{p}=\left(E_{o} / c\right)^{2}$
4-WaveVector $\mathbf{K}=(\omega / \mathrm{c}, \mathrm{k})=\left(\omega_{o} / \mathrm{c}^{2}\right) \mathbf{U}$
$\mathbf{K} \cdot \mathbf{K}=(\omega / c)^{2}-\mathbf{k} \cdot \mathbf{k}=\left(\omega_{0} / c\right)^{2}$
$\partial \cdot \mathbf{X}=\left(\partial_{\imath} / c,-\nabla\right) \cdot(c t, x)=\left(\partial_{\imath} / c[c t]-(-\nabla \cdot \mathbf{x})\right)=1-(-3)=4:$
$\mathbf{U} \cdot \boldsymbol{\partial}=\gamma(\mathrm{c}, \mathrm{u}) \cdot\left(\partial_{\mathrm{t}} / \mathrm{c},-\nabla\right)=\gamma\left(\partial_{\mathrm{t}}+\mathrm{u} \cdot \nabla\right)=\gamma(\mathrm{d} / \mathrm{dt})=\mathrm{d} / \mathrm{d} \tau:$
$\partial[\mathbf{X}]=\left(\partial_{\imath} / c,-\nabla\right)(c t, x)=\left(\partial_{/} / c[c t],-\nabla[\mathbf{x}]\right)=\operatorname{Diag}[1,-1]=\eta^{\mu v}:$
$\partial[\mathbf{K}]=\left(\partial_{\imath} / c,-\nabla\right)(\omega / c, k)=\left(\partial_{\imath} / c[\omega / c],-\nabla[\mathbf{k}]\right)=[[0]]$
$\mathbf{K} \cdot \mathbf{X}=(\omega / c, k) \cdot(c t, \mathbf{x})=(\omega t-\mathbf{k} \cdot \mathbf{x})=\varphi$ :
$\partial[\mathbf{K} \cdot \mathbf{X}]=\partial[\mathbf{K}] \cdot \mathbf{X}+\mathbf{K} \cdot \partial[\mathbf{X}]=\mathbf{K}=-\partial[\varphi]:$
$(\partial \cdot \partial)[K \cdot X]=\left((\partial / / c)^{2}-\nabla \cdot \nabla\right)(\omega t-k \cdot \mathbf{x})=0$
$(\partial \cdot \partial)[K \cdot X]=\partial \cdot(\partial[K \cdot X])=\partial \cdot K=0:$
let $f=a e^{\wedge} b(K \cdot X)$ :
then $\partial[f]=(-i \mathbf{K}) \mathrm{ae}^{\wedge}-\mathrm{i}(\mathbf{K} \cdot \mathbf{X})=(-i \mathbf{K}) \mathrm{f}: \quad(\partial=-i \mathbf{K})$ :
and $\partial \cdot \partial[f]=(-i)^{2}(\mathbf{K} \cdot \mathbf{K}) f=-\left(\omega_{0} / \mathrm{c}\right)^{2 f}$ :
$(\partial \cdot \partial)=\left(\partial_{\mathrm{t}} / \mathrm{c}\right)^{2}-\nabla \cdot \nabla=-\left(\omega_{0} / c\right)^{2}$ :

Dimensionality of SpaceTime
Derivative wrt. ProperTime is Lorentz Scalar
The Minkowski Metric
Phase of SR Wave
Neg 4-Gradient of Phase gives 4-WaveVector

Wave Continuity Equation, No sources or sinks
Standard mathematical plane-waves if $\{b=-i\}$ Unitary Evolution, Operator Formalism

The Klein-Gordon Equation $\rightarrow$ RQM

Note that no QM Axioms are assumed: This is all just pure SR 4-vector (tensor) manipulation

## Review of SR 4-Vector Mathematics

```
Klein-Gordon Equation: \(\partial \cdot \partial=(\partial / c)^{2}-\nabla \cdot \nabla=-\left(m_{0} c / \hbar\right)^{2}=-\left(\omega_{o} / c\right)^{2}=-\left(1 / A_{c}\right)^{2}\)
Let \(\mathbf{X}_{T}=(c t+c \Delta t, x)\), then \(\partial\left[\mathbf{X}_{\mathrm{T}}\right]=\left(\partial_{/} / c,-\nabla\right)(\mathrm{ct}+\mathrm{c} \Delta \mathrm{t}, \mathrm{x})=\operatorname{Diag}\left[1,-\mathrm{I}_{(3)}\right]=\partial[\mathbf{X}]=\eta^{\mu v}\)
so \(\partial\left[\mathbf{X}_{\mathbf{T}}\right]=\partial[\mathbf{X}]\) and \(\partial[\mathbf{K}]=[[0]]\)
let \(\mathrm{f}=\mathrm{ae} \mathrm{e}^{\wedge}-\mathrm{i}\left(\mathbf{K} \cdot \mathbf{X}_{\mathrm{T}}\right)\), the time translated version
\((\partial \cdot \partial)[f]\)
\(\partial \cdot(\partial[f])\)
\(\partial \cdot\left(\partial\left[e^{\wedge}-i\left(K^{\prime} \cdot \mathbf{X}_{\mathrm{T}}\right)\right]\right)\)
\(\partial \cdot\left(\mathrm{e}^{\wedge}-i\left(\mathbf{K} \cdot \mathbf{X}_{\mathrm{T}}\right) \partial\left[-i\left(\mathbf{K} \cdot \mathbf{X}_{\mathrm{T}}\right)\right]\right)\)
-iə.(fo[K•X \(\mathrm{X}_{\mathrm{T}}\))
\(\left.\left.-i \partial[f]\left[\mathrm{K} \cdot \mathbf{X}_{\mathrm{T}}\right]\right)+\Psi(\partial \cdot \partial)\left[\mathbf{K} \cdot \mathbf{X}_{\mathrm{T}}\right]\right)\)
(-i) \()^{2 f\left(\partial\left[K \cdot X_{T}\right]\right)^{2}+0}\)
\((-i)^{2 f}\left(\partial[\mathrm{~K}] \cdot \mathbf{X}_{\mathrm{T}}+\mathrm{K} \cdot \partial\left[\mathbf{X}_{\mathrm{T}}\right]\right)^{2}\)
\((-i)^{2} f(0+K \cdot \partial[X])^{2}\)
\((-i)^{2 f(K)}{ }^{2}\)
-(K•K)f
\(-\left(\omega_{0} / c\right)^{2 f}\)
```


## What does the Klein-Gordon Equation give us?

Relativistic Quantum Wave Equation: $\partial \cdot \partial=\left(\partial_{\mathrm{t}} / \mathrm{c}\right)^{2}-\nabla \cdot \nabla=-\left(\mathrm{m}_{0} \mathrm{c} / \hbar\right)^{2}=\left(\mathrm{i} \mathrm{m}_{0} \mathrm{c} / \hbar\right)^{2}=-\left(\omega_{0} / \mathrm{c}\right)^{2}$
The Klein-Gordon Eqn is itself the Relativistic Quantum Equation for spin=0 particles (4-Scalars) Factoring the KG Eqn leads to the RQM Dirac Equation for spin=1/2 particles (4-Spinors) Applying the KG Eqn to a 4-Vector field leads to the RQM Proca Equation for spin=1 particles (4-Vectors)

Taking the low-velocity-limit of the KG leads to the standard QM non-relativistic Schrödinger Eqn, for spin=0 Taking the low-velocity-limit of the Dirac leads to the standard QM non-relativistic Pauli Eqn, for spin=1/2

Setting RestMass $\left\{m_{0} \rightarrow 0\right\}$ leads to the RQM Free Wave Eqn., Weyl Eqn., and Free Maxwell ( Standard EM) Eqn.
In all of these cases, the equations can be modified to work with various potentials by using more SR 4-Vectors, and more empirically found relations between them, e.g. the Minimal Coupling Relations: 4 -TotalMomentum $P_{\mathrm{T}}=\mathbf{P}+q \mathbf{A}$, where $\mathbf{P}$ is the particle 4-Momentum, $(q)$ is a charge, and $\mathbf{A}$ is a 4-VectorPotential, typically the 4-EMVectorPotential.

Also note that generating QM from RQM (via a low-energy limit) is much more natural than attempting to "relativize or generalize" a given NRQM equation. Facts assumed from a non-relativistic equation may or may not be applicable to a relativistic one, whereas the relativistic facts are still true in the low-velocity limiting-cases. This leads to the idea that QM is an approximation only of a more general RQM, just as SR is an approximation only of GR.

## SRQM:

Relativistic Quantum Wave Eqns.

A Tensor Study of Physical 4-Vectors

## Relativistic Matter-like

Mass > 0

## Klein-Gordon

Higgs Bosons, maybe Axions
$\left(\partial \cdot \partial+\left(m_{0} c / \hbar\right)^{2}\right) \Psi=\left[\partial_{\mu}+i m_{0} c / \hbar\right]\left[\partial^{\mu}-i m_{0} c / \hbar\right] \Psi=0$
with minimal coupling
$\left(\left(i \hbar \partial_{\mathrm{t}}-\mathrm{q} \varphi\right)^{2}-\left(\mathrm{m}_{0} \mathrm{c}^{2}\right)^{2}-\mathrm{c}^{2}(-\mathrm{i} \hbar \nabla-q \mathrm{a})^{2}\right) \Psi=0$
?Axions? are KG with EM invariant src term $\left(\partial \cdot \partial+\left(\mathrm{m}_{\mathrm{ao}}\right)^{2}\right) \Psi=-\kappa \mathbf{e} \cdot \mathbf{b}=-\operatorname{kcSqrt}\left[\operatorname{Det}\left[F^{\mu v}\right]\right]$
$L=\left(-\hbar^{2} / m_{0}\right) \partial^{\mu} \Psi^{*} \partial_{v} \Psi-m_{0} c^{2} \Psi^{*} \Psi$

## Weyl

Idealized Matter Neutinos
$(\boldsymbol{\sigma} \cdot \partial) \boldsymbol{\Psi}=0$
factored to
Right \& Left Spinors
$(\boldsymbol{\sigma} \cdot \partial) \boldsymbol{\Psi}_{\mathrm{R}}=0,(\overline{\boldsymbol{\sigma}} \cdot \partial) \boldsymbol{\Psi}_{\mathrm{L}}=0$
$L=i \boldsymbol{\Psi}^{\dagger}{ }_{\mathrm{R}} \sigma^{\mu} \partial_{\mu} \boldsymbol{\Psi}_{\mathrm{R}}, L=i \boldsymbol{\Psi}_{\mathrm{L}} \bar{\sigma}^{\mu} \partial_{\mu} \boldsymbol{\Psi}_{\mathrm{L}}$

## Maxwell

Photons/Gluons
$(\partial \cdot \partial) \mathbf{A}=0$ free
$(\partial \cdot \partial) \mathbf{A}=\mu_{o} \mathbf{J}$ w current src where $\partial \cdot \mathbf{A}=0$

## Dirac

Matter Leptons/Quarks
(iy. $\partial-\mathrm{m}_{0} \mathrm{c} / \hbar$ ) $\boldsymbol{\Psi}=0$
$\left(\gamma \cdot \partial+i m_{0} c / \hbar\right) \boldsymbol{\Psi}=0$
with minimal coupling (iy $\left.\cdot(\partial+i q A)-m_{0} c / \hbar\right) \boldsymbol{\Psi}=0$
$L=i \hbar c \overline{\boldsymbol{\Psi}^{\mu}} \partial_{\mu} \boldsymbol{\Psi}-\mathrm{m}_{0} \mathrm{c}^{2} \overline{\boldsymbol{\Psi}} \boldsymbol{\Psi}$

## Proca

Force Bosons
$\left(\partial \cdot \partial+\left(m_{0} c / \hbar\right)^{2}\right) \mathbf{A}=0$
where $\partial \cdot \mathbf{A}=0$
$\partial^{\mu}\left(\partial^{\mu} A^{v}-\partial^{v} A^{\mu}\right)+\left(m_{0} c / \hbar\right)^{2} A^{v}=0$

## Non-Relativistic Limit ( $|v| \ll c$ )

Mass >0

## Schrödinger

Common NRQM Systems
$\left(i \hbar \partial_{\mathrm{t}}+\left[\hbar^{2} \nabla^{2} / 2 m_{0}-\mathrm{V}\right]\right) \Psi=0$
with minimal coupling
$\left(\mathrm{i} \hbar \partial_{\mathrm{t}}-\mathrm{q} \varphi-\left[(\mathbf{p}-\mathrm{qa})^{2}\right] / 2 \mathrm{~m}_{\mathrm{o}}\right) \Psi=0$

## Pauli

Common NRQM Systems w Spin
$\left(i \hbar \partial_{\mathrm{t}}-\left[(\boldsymbol{\sigma} \cdot \mathbf{p})^{2}\right] / 2 \mathrm{~m}_{\circ}\right) \boldsymbol{\Psi}=0$
with minimal coupling
$\left(i \hbar \partial_{\mathrm{t}}-\mathrm{q} \varphi-\left[(\boldsymbol{\sigma} \cdot(\mathbf{p}-\mathbf{q} \mathbf{a}))^{2}\right] / 2 \mathrm{~m}_{\mathrm{o}}\right) \boldsymbol{\Psi}=0$

## Field

Representation

Scalar
(0-Tensor)
$\psi=\psi\left[\mathrm{K}_{\mu} \mathrm{X}^{\mu}\right]$
$=\Psi[\Phi]$

Spinor $\boldsymbol{\Psi}=\boldsymbol{\Psi}\left[\mathrm{K}_{\mu} \mathrm{X}^{\mu}\right]$ $=\boldsymbol{\Psi}[\Phi]$

4-Vector
(1-Tensor)
$A=A^{v}=A^{v}\left[K_{\mu} X^{\mu}\right]$
$=A^{\wedge}[\Phi]$

# Factoring the KG Equation $\rightarrow$ Dirac Eqn 

Klein-Gordon Equation: $\partial \cdot \partial=\left(\partial_{\imath} / c\right)^{2}-\nabla \cdot \nabla=-\left(m_{0} c / \hbar\right)^{2}$
Since the 4-vectors are related by constants, we can go back to the 4-Momentum description/representation:

```
(\partial/l c) 2}-\nabla\cdot\nabla=-(\mp@subsup{m}{0}{}c/\hbar\mp@subsup{)}{}{2
(E/c)}\mp@subsup{)}{}{2}-p\cdotp=(\mp@subsup{m}{0}{}c\mp@subsup{)}{}{2
E
Factoring: [E - c\alpha\cdotp - \beta(moc}\mp@subsup{c}{}{2})][E+c\alpha\cdotp+\beta(\mp@subsup{m}{0}{}\mp@subsup{c}{}{2})]=
E & p are quantum operators,
\alpha & \beta are matrices which must obey \mp@subsup{\alpha}{i}{}\beta=-\beta\mp@subsup{\alpha}{i}{},\mp@subsup{\alpha}{i}{};\mp@subsup{\alpha}{j}{}=-\mp@subsup{\alpha}{j}{}\mp@subsup{\alpha}{i}{},\mp@subsup{\alpha}{i}{2}=\mp@subsup{\beta}{}{2}=I
The left hand term can be set to 0 by itself, giving..
[E-c \alpha\cdotp-\beta(moc}\mp@subsup{c}{}{2})]=0,\mathrm{ which is the momentum-representation form of the Dirac equation
Remember: P}\mp@subsup{P}{}{\mu}=(\mp@subsup{p}{}{0},p)=(E/c,p)\mathrm{ and }\mp@subsup{\alpha}{}{\mu}=(\mp@subsup{\alpha}{}{0},\alpha)\mathrm{ where }\mp@subsup{\alpha}{}{0}=\mp@subsup{I}{(2)}{
```



```
[\alpha}\mp@subsup{\alpha}{}{\mu}\mp@subsup{P}{\mu}{}-\beta(\mp@subsup{m}{0}{}c)]=[i\hbar\mp@subsup{\alpha}{}{\mu}\mp@subsup{\partial}{\mu}{}-\beta(\mp@subsup{m}{0}{}c)]=
\mp@subsup{\alpha}{}{\mu}}\mp@subsup{\partial}{\mu}{}=-\beta(imoc/\hbar
Transforming from Pauli Spinor (2 component) to Dirac Spinor (4 component) form:
Dirac Equation: (}\mp@subsup{\gamma}{}{\mu}\mp@subsup{\partial}{\mu}{\prime})[\psi]=-(imoc/\hbar)
Thus, the Dirac Eqn is guaranteed by construction to be one solution of the KG Eqn
```

The KG Equation is at the heart of all the various relativistic wave equations, which differ based on mass and spin values, but all of them respect $E^{2}-c^{2} p \cdot p-\left(m_{0} C^{2}\right)^{2}=0$

## SRQM Study:

## Lots of Relativistic Quantum Wave Equations

Relativistic Quantum Wave Equation: $\partial \cdot \partial=\left(\partial_{\mathrm{l}} / \mathrm{c}\right)^{2}-\nabla \cdot \nabla=-\left(m_{0} \mathrm{c} / \hbar\right)^{2}=\left(\mathrm{im} \mathrm{m}_{0} \mathrm{c} / \hbar\right)^{2}=-\left(\omega_{0} / \mathrm{c}\right)^{2}$
$\partial \cdot \partial=-\left(m_{0} c / \hbar\right)^{2}$
The Klein-Gordon Eqn is itself the Relativistic Quantum Equation for spin=0 particles \{Higgs\} (4-Scalars) Factoring the KG Eqn ("square root method") leads to the RQM Dirac Equation for spin=1/2 particles (4-Spinors) Applying the KG Eqn to a SR 4-Vector field leads to the RQM Proca Equation for spin=1 particles (4-Vectors)

Setting RestMass $\left\{\mathrm{m}_{0} \rightarrow 0\right.$ leads to the:
RQM Free Wave (4-Scalar massless)
RQM Weyl (4-Spinor massless)
Free Maxwell Eqns (4-Vector massless) = Standard EM
So, the same Relativistic Quantum Wave Equation is simply applied to different SR Tensorial Quantum Fields See Mathematical_formulation_of_the_Standard_Model at Wikipedia:

| 4-Scalar (massive) | Higgs Field $\varphi$ | $\left[\partial \cdot \partial=-\left(m_{0} c / \hbar\right)^{2}\right] \varphi$ | Free Field Eqn $\rightarrow$ Klein-Gordon Eqn | $\partial \cdot \partial[\varphi]=-\left(m_{0} c / \hbar\right)^{2} \varphi$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 4-Vector (massive) | Weak Field $Z^{\mu}, W^{ \pm \mu}$ | $\left[\partial \cdot \partial=-\left(m_{0} c / \hbar\right)^{2}\right]^{\mu}$ | Free Field Eqn $\rightarrow$ Proca Eqn | $\partial \cdot \partial\left[Z^{\mu}\right]=-\left(m_{0} c / \hbar\right)^{2} Z^{\mu}$ |
| 4-Vector (massless $\left.m_{0}=0\right)$ | Photon Field $A^{\mu}$ | $[\partial \cdot \partial=0] A^{\mu}$ | Free Field Eqn $\rightarrow$ EM Wave Eqn | $\partial \cdot \partial\left[A \cdot \mu=0^{\mu}\right.$ |
| 4-Spinor (massive) | Fermion Field $\psi$ | $\left[\gamma \cdot \partial=-i m_{0} c / \hbar\right] \Psi$ | Free Field Eqn $\rightarrow$ Dirac Eqn | $V \cdot \partial[\Psi]=-\left(i m_{0} c / \hbar\right) \Psi$ |

*The Fermion Field is a special case, the Dirac Gamma Matrices $Y^{\mu}$ and 4-Spinor field $\Psi$ work together to preserve Lorentz Invariance.

## SRQM Study:

## Lots of Relativistic Quantum Wave Equations A lot of RQM!

Relativistic Quantum Wave Equation: $\partial \cdot \partial=\left(\partial_{\mathrm{l}} / \mathrm{c}\right)^{2}-\nabla \cdot \nabla=-\left(m_{0} \mathrm{c} / \hbar\right)^{2}=\left(\mathrm{im} \mathrm{m}_{0} \mathrm{c} / \hbar\right)^{2}=-\left(\omega_{0} / \mathrm{c}\right)^{2}$
$\partial \cdot \partial=-\left(m_{0} c / \hbar\right)^{2}$
$(\partial \cdot \partial) \mathrm{A}^{\mathrm{v}}=0^{\mathrm{v}}$ : The Free Classical Maxwell EM Equation \{no source, no spin effects\}
$(\partial \cdot \partial) \mathrm{A}^{v}=\mu_{0} \mathrm{~J}^{\mathrm{v}}$ : The Classical Maxwell EM Equation \{with 4-Current J source, no spin effects\}
$(\partial \cdot \partial) A^{\vee}=q\left(\bar{\Psi} \gamma^{\vee} \Psi\right)$ : The QED Maxwell EM Spin-1 Equation \{with QED source, including spin effects\}
So, the same Relativistic Quantum Wave Equation is simply applied to different SR Tensorial Quantum Fields See Mathematical_formulation_of_the_Standard_Model at Wikipedia:

4-Scalar (massive)	Higgs Field $\varphi$	$\left[\partial \cdot \partial=-\left(m_{0} c / \hbar\right)^{2}\right] \varphi$
4-Vector (massive)	Weak Field $Z^{\mu}, W^{ \pm \mu}$	$\left[\partial \cdot \partial=-\left(m_{0} c / \hbar\right)^{2}\right] Z^{\mu}$
4-Vector (massless $\left.m_{0}=0\right)$	Photon Field $A^{\mu}$	$[\partial \cdot \partial=0] A^{\mu}$
4-Spinor (massive)	Fermion Field $\psi$	$\left[\gamma \cdot \partial=-i m_{0} c / \hbar\right] \Psi$

$$
\begin{array}{ll}
\text { Free Field Eqn } \rightarrow \text { Klein-Gordon Eqn } & \partial \cdot \partial[\varphi]=-\left(m_{0} c / \hbar\right)^{2} \varphi \\
\text { Free Field Eqn } \rightarrow \text { Proca Eqn } & \partial \cdot \partial\left[Z^{\mu}\right]=-\left(m_{0} c / \hbar\right)^{2} Z^{\mu} \\
\text { Free Field Eqn } \rightarrow \text { EM Wave Eqn } & \partial \cdot \partial\left[A^{\mu}\right]=0^{\mu} \\
\text { Free Field Eqn } \rightarrow \text { Dirac Eqn } & \mathrm{v} \cdot \partial[\Psi]=-\left(i m_{0} c / \hbar\right) \psi
\end{array}
$$

*The Fermion Field is a special case, the Dirac Gamma Matrices $\mathrm{Y}^{\mu}$ and 4-Spinor field $\Psi$ work together to preserve Lorentz Invariance.
We can also do the same physics using Lagrangian Densities.
Proca Lagrangian Density $L=-(1 / 2)\left(\partial_{\mu} B^{*}{ }_{v}-\partial_{v} B^{*}{ }_{\mu}\right)\left(\partial^{v} B^{v}-\partial^{v} B^{\mu}\right)+\left(m_{0} c^{c} / \hbar\right)^{2} B^{*}{ }_{v} B^{v}:$ with $B^{\mu}=(\varphi / c, a)[(c t, r)]$ is a generalized complex 4-(Vector)Potential
KG Lagrangian Density $L=-\eta_{-}^{\mu v}\left(\partial_{\mu} \psi^{*}-\partial_{\nu} \psi\right)-\left(m_{0} c / \hbar\right)^{2} \psi^{*} \psi$ : with $\psi=\psi[R]=\psi[(c t, r)]$
Dirac Lagrangian Density $L=\bar{\Psi}\left(\gamma_{\mu} \mathrm{P}^{\mu}-\mathrm{m}_{0} \mathrm{c} / \hbar\right) \psi$ : with $\psi=$ a spinor $\psi[(c t, r)]$
QED Lagrangian Density $L=\Psi\left(i \hbar \gamma_{\mu} D^{\mu}-m_{0} c\right) \psi-(1 / 4) F_{\mu v} F^{\mu v}$ : with $D^{\mu}=\partial^{\mu}+i q A^{\mu}+i q B^{\mu}$ and $A^{\mu}=E M$ field of the $e^{\mu}, B^{\mu}=$ external source EM field
(0,2)-Tensor T

SR 4-Scalar
(0,0)-Tensor S or So
Lorentz Scalar

In relativistic quantum mechanics and quantum field theory, the Bargmann-Wigner equations describe free particles of arbitrary spin j , an integer for bosons ( $j=1,2,3 \ldots$ ) or half-integer for fermions ( $j=1 / 2,3 / 2,5 / 2 \ldots$ ). The solutions to the equations are wavefunctions, mathematically in the form of multi-component spinor fields.

Bargmann-Wigner equations: $\left(-\gamma^{\mu} P_{\mu}+m c\right)_{\text {ar ar }} \Psi_{a 11 . . a^{\prime} r . . . a 2 j}=0$
In relativistic quantum mechanics and quantum field theory, the Joos-Weinberg equation is a relativistic wave equations applicable to free particles of arbitrary spin $j$, an integer for bosons ( $j=1,2,3 \ldots$ ) or half-integer for fermions $(j=1 / 2,3 / 2,5 / 2 \ldots)$. The solutions to the equations are wavefunctions, mathematically in the form of multi-component spinor fields. The spin quantum number is usually denoted by s in quantum mechanics, however in this context j is more typical in the literature.

Joos-Weinberg equation: $\left[\gamma^{\mu 1 \mu 2 \ldots \ldots 2 j} P_{\mu 1} P_{\mu 2} \ldots P_{\mu 2 j}+(m c)^{2 j}\right] \Psi=0$

The primary difference appears to be the expansion in either the wavefunctions for (BW) or the Dirac Gamma's for (JW) For both of these: A state or quantum field in such a representation would satisfy no field equation except the Klein-Gordon equation.

Yet another form is the Duffin-Kemmer-Petiau Equation vs Dirac Equation DKP Eqn $\{\operatorname{spin} 0$ or 1$\}$ : $\left(i \hbar \beta^{a} \partial_{\alpha}-m_{o} c\right) \Psi=0$, with $\beta^{a}$ as the DKP matrices Dirac Eqn (spin $1 / 2\}$ : $\left(i \hbar \gamma^{\alpha} \partial_{\alpha}-m_{0} c\right) \Psi=0$, with $\gamma^{\alpha}$ as the Dirac Gamma matrices

SR 4-Tensor
(2,0)-Tensor $\mathrm{T}^{\mu \mathrm{v}}$ (1)-Tensor $\mathrm{T}^{\mu}{ }_{v}$ or $\mathrm{T}_{\mu}{ }^{\nu}$
(0,2)-Tensor T

SR 4-Scalar
(0,0)-Tensor S or So
Lorentz Scalar
Lorentz Scala

## Definition <br> Unites

$\mathbf{R}=(\mathrm{ct}, \mathrm{r}) ;$ alt. $\mathbf{X}=(\mathrm{ct}, \mathrm{x})$
$\mathbf{U}=\gamma(\mathrm{c}, \mathrm{u})$
$\mathbf{P}=(\mathrm{E} / \mathrm{c}, \mathrm{p})=(\mathrm{mc}, \mathrm{p})$
$K=(\omega / c, k)=\left(\omega / c, \omega \hat{n} / v_{\text {phase }}\right)$
$\partial=\left(\partial_{\mathrm{t}} / \mathrm{c},-\nabla\right)$
$\mathbf{A}=(\varphi / \mathrm{c}, \mathrm{a})$
$\boldsymbol{P}_{\text {tot }}=(E / c+q \varphi / c, p+q a)$
$\mathbf{K}_{\text {tot }}=(\omega / \mathrm{c}+(\mathrm{q} / \hbar) \varphi / \mathrm{c}, \mathrm{k}+(\mathrm{q} / \hbar) \mathrm{a})$
$\mathbf{J}=(\mathrm{c}, \mathrm{j})=\mathrm{q} \mathbf{J}_{\text {prob }}$
$J_{\text {prob }}=\left(c \rho_{\text {prob }}\right.$, j $\left._{\text {prob }}\right)$
Time, Space

Gamma, Velocity
Energy:Mass, Momentum
Frequency, WaveNumber
Temporal Partial, Space Partial
Scalar Potential, Vector Potential
Energy-Momentum inc. EM fields
Freq-WaveNum inc. EM fields
Charge Density, Current Density
QM Probability (Density, Current Density)

## Empirical Fact

4-Position
4-Velocity
4-Momentum
4-WaveVector
4-Gradient

4-VectorPotential
4-TotalMomentum
4-TotalWaveVector
4-CurrentDensity

4-Probability
CurrentDensity
$\mathbf{R}=(c t, r)$
$\mathbf{U}=\mathrm{dR} / \mathrm{d} \tau$
$\mathbf{P}=\mathrm{m}_{0} \mathbf{U}=\left(\mathrm{E}_{0} / \mathrm{c}^{2}\right) \mathbf{U}$
$K=P / \hbar=\left(\omega_{0} / c^{2}\right) \mathbf{U}$
$\partial=-i K$
$\mathbf{A}=(\varphi / \mathrm{c}, \mathrm{a})=\left(\varphi_{o} / \mathrm{c}^{2}\right) \mathbf{U}$
$\boldsymbol{P}_{\text {tot }}=\mathbf{P}+q \mathbf{A}$
$\mathbf{K}_{\text {tot }}=\mathbf{K}+(q / \hbar) \mathbf{A}$
$\mathbf{J}=\rho_{0} \mathbf{U}=q \mathbf{J}_{\text {prob }}$ $\partial \cdot J=0$
$J_{\text {prob }}=\left(C \rho_{\text {prob }}, \mathrm{J}_{\text {prob }}\right)$
$\partial \cdot J_{\text {prob }}=0$

## What it means...

SpaceTime as Single United Concept
Velocity is Proper Time Derivative
Mass-Energy-Momentum Equivalence
Wave-Particle Duality
Unitary Evolution of States
Operator Formalism, Complex Waves
Potential Fields...
Energy-Momentum inc. Potential Fields
Freq-WaveNum inc. Potential Fields
ChargeDensity-CurrentDensity Equivalence CurrentDensity is conserved

QM Probability from SR
Probability Worldlines are conserved

## Minimal Coupling = Potential Interaction Klein-Gordon Eqn $\rightarrow$ Schrödinger Eqn

$\mathbf{P}_{\mathbf{T}}=\mathbf{P}+\mathbf{Q}=\mathbf{P}+q \mathbf{A}$
$K=i \partial$
$\mathbf{P}=\hbar K$
P = iћ $\partial$
$\mathbf{P}=(E / \mathrm{c}, \mathrm{p})=\mathbf{P}_{\mathrm{T}}-\mathrm{q} \mathbf{A} \quad=\left(E_{T} / \mathrm{c}-\mathrm{q} \varphi / \mathrm{c} \quad, \mathrm{p}_{\mathrm{T}}-\mathrm{q} a\right)$
$\partial=\left(\partial_{V} / C,-V\right)=\partial_{T}+(\mathrm{iq} / \hbar) \mathbf{A}=\left(\partial_{T} / \mathrm{C}+(\mathrm{iq} / \hbar) \varphi / \mathrm{c},-\mathrm{V}_{\mathrm{T}}\right.$
$\partial \cdot \partial=\left(\partial_{l} / c\right)^{2}-\nabla^{2}=-\left(m_{0} c / \hbar\right)^{2}:$
$P \cdot P=(E / c)^{2}-p^{2}=\left(m_{o} c\right)^{2}$ :
$E^{2}=\left(m_{0} c^{2}\right)^{2}+c^{2} p^{2}:$
$E \sim\left[\left(m_{0} c^{2}\right)+p^{2} / 2 m_{0}\right]:$
$\left(E_{T}-q \varphi\right)^{2}=\left(m_{0} c^{2}\right)^{2}+c^{2}\left(p_{T}-q a\right)^{2}:$
$\left(E_{T}-q \varphi\right) \sim\left[\left(m_{0} c^{2}\right)+\left(p_{T}-q a\right)^{2} / 2 m_{0}\right]:$
$\left(i \hbar \partial_{\mathrm{T}}-\mathrm{q} \varphi\right)^{2}=\left(m_{0} \mathrm{c}^{2}\right)^{2}+\mathrm{c}^{2}\left(-\mathrm{i} \hbar \nabla_{\mathrm{T}}-\mathrm{qa}\right)^{2}:$ $\left(i \hbar \partial_{\mathrm{T}}-\mathrm{q} \varphi\right) \sim\left[\left(\mathrm{m}_{0} \mathrm{c}^{2}\right)+\left(-i \hbar \nabla_{\mathrm{T}}-\mathrm{qa}\right)^{2} / 2 \mathrm{~m}_{\mathrm{o}}\right]:$
$\left(\mathrm{i} \hbar \partial_{\mathrm{TT}}\right) \sim\left[\mathrm{q} \varphi+\left(\mathrm{m}_{0} \mathrm{c}^{2}\right)+\left(\mathrm{i} \hbar \nabla_{\mathrm{T}}+\mathrm{qa}\right)^{2} / 2 \mathrm{~m}_{0}\right]:$
$\left(\mathrm{i} \hbar \partial_{\mathrm{TT}}\right) \sim\left[\mathrm{V}+\left(\mathrm{i} \hbar \nabla_{\mathrm{T}}+\mathrm{qa}\right)^{2} / 2 \mathrm{~m}_{\mathrm{o}}\right]:$
$\left(\mathrm{i} \hbar \partial_{\mathrm{tT}}\right) \sim\left[\mathrm{V}-\left(\hbar \nabla_{\mathrm{T}}\right)^{2} / 2 \mathrm{~m}_{\mathrm{o}}\right]$ :

## Minimal Coupling: Total = Dynamic + Charge_Coupled to 4-(EM)VectorPotential Complex Plane-Waves

Einstein-de Broglie QM Relations

## Schrödinger Relations

$=\hbar K=i \hbar \partial$

The Klein-Gordon RQM Wave Equation (relativistic QM)
Einstein Mass:Energy:Momentum Equivalence

## Relativistic

Low velocity limit $\{|v| \ll c\}$ from $(1+x)^{n} \sim\left[1+n x+O\left(x^{2}\right)\right]$ for $|x| \ll 1$
Relativistic with Minimal Coupling
Low velocity with Minimal Coupling
Relativistic with Minimal Coupling
Low velocity with Minimal Coupling
The better statement is that the Schrödinger Eqn is the limiting low-velocity case of the more general KG Egn, not that the KG Eqn is the relativistic generalization of the Schrödinger Eqn
Low velocity with Minimal Coupling
$\mathrm{V}=\mathrm{q} \varphi+\left(\mathrm{m}_{0} \mathrm{c}^{2}\right)$
Typically the 3-vector-potential a ~ 0 in many situations

## SRQM: Once one has a Relativistic Wave Eqn...

Klein-Gordon Equation: $\partial \cdot \partial=\left(\partial_{l} / c\right)^{2}-\nabla \cdot \nabla=\left(-i m_{0} c / \hbar\right)^{2}=-\left(m_{0} c / \hbar\right)^{2}=-\left(\omega_{0} / c\right)^{2}$
Once we have derived a RWE, what does it imply?
The KG Eqn. was derived from the physics of SR plus a few empirical facts. It is a $2^{\text {nd }}$ order, linear, wave PDE that pertains to physical objects of reality from SR.

Just being a linear wave PDE implies all the mathematical techniques that have been discovered to solve such equations generally: Hilbert Space, Superpositions, <Bra|,|Ket> notation, wavevectors, wavefunctions, etc. These things are from mathematics in general, not only and specifically from an Axiom of QM.

Therefore, if one has a physical RWE, it implies the mathematics of waves, the formalism of the mathematics, and thus the mathematical Principles and Formalism of QM. Again, QM Axioms are not required - they emerge from the physics and math...

# Once one has a Relativistic Wave Eqn... 

## From the Wikipedia page on [Photon Polarization]

Photon polarization is the quantum mechanical description of the classical polarized sinusoidal plane electromagnetic wave. An individual photon can be described as having right or left circular polarization, or a superposition of the two. Equivalently, a photon can be described as having horizontal or vertical linear polarization, or a superposition of the two.

The description of photon polarization contains many of the physical concepts and much of the mathematical machinery of more involved quantum descriptions and forms a fundamental basis for an understanding of more complicated quantum phenomena. Much of the mathematical machinery of quantum mechanics, such as state vectors, probability amplitudes, unitary operators, and Hermitian operators, emerge naturally from the classical Maxwell's equations in the description. The quantum polarization state vector for the photon, for instance, is identical with the Jones vector, usually used to describe the polarization of a classical wave. Unitary operators emerge from the classical requirement of the conservation of energy of a classical wave propagating through lossless media that alter the polarization state of the wave. Hermitian operators then follow for infinitesimal transformations of a classical polarization state.

Many of the implications of the mathematical machinery are easily verified experimentally. In fact, many of the experiments can be performed with pairs of polarized sunglass-lenses.

The connection with quantum mechanics is made through the identification of a minimum packet size, called a photon, for energy in the electromagnetic field. The identification is based on the theories of Planck and the interpretation of those theories by Einstein. The correspondence principle then allows the identification of momentum and angular momentum (called spin), as well as energy, with the photon.

## Principle of Superposition：

Klein－Gordon Equation：$\partial \cdot \partial=\left(\partial_{\mathrm{t}} / \mathrm{c}\right)^{2}-\nabla \cdot \nabla=\left(-i m_{0} \mathrm{c} / \hbar\right)^{2}=-\left(m_{0} \mathrm{c} / \hbar\right)^{2}=-\left(\omega_{0} / \mathrm{c}\right)^{2}$
The Extended Superposition Principle for Linear Equations

Suppose that the non－homogeneous equation，where $L$ is linear，is solved by some particular $u_{p}$ Suppose that the associated homogeneous problem is solved by a sequence of $u_{i .} i=\{0,1,2, \ldots\}$ $L\left(u_{p}\right)=C ; L\left(u_{0}\right)=0, L\left(u_{1}\right)=0, L\left(u_{2}\right)=0 \ldots$
Then $u_{p}$ plus any linear combination of the $u_{n}$ satisfies the original non－homogeneous equation： $L\left(u_{p}+\sum a_{n} u_{n}\right)=C$ ，
where $a_{n}$ is a sequence of（possibly complex）constants and the sum is arbitrary．
ニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニ

Note that there is no mention of partial differentiation．Indeed，it＇s true for any linear equation， algebraic or integro－partial differential－whatever．

QM superposition is not axiomatic，it emerges from the mathematics of the Linear PDE The Klein－Gordon Equation is a $2^{\text {nd－}}$－order LINEAR Equation．
This is the origin of superposition in QM．

Klein-Gordon Equation: $\partial \cdot \partial=\left(\partial_{\mathrm{t}} / c\right)^{2}-\nabla \cdot \nabla=\left(-i m_{0} c / \hbar\right)^{2}=-\left(m_{0} c / \hbar\right)^{2}=-\left(\omega_{0} / c\right)^{2}$
$\mathbf{K} \cdot \mathbf{K}=(\omega / c)^{2}-\mathbf{k} \cdot \mathbf{k}=\left(\omega_{o} / \mathrm{c}\right)^{2}$ : The particular solution (w/ rest mass)
$\mathbf{K}_{\mathrm{n}} \cdot \mathbf{K}_{\mathrm{n}}=\left(\omega_{\mathrm{n}} / \mathrm{c}\right)^{2}-\mathbf{k}_{\mathrm{n}} \cdot \mathrm{k}_{\mathrm{n}}=0$ : The homogenous solution for a (virtual photon?) microstate n Note that $\mathbf{K}_{\mathbf{n}} \cdot \mathbf{K}_{\mathbf{n}}=0$ is a null 4 -vector (photonic)

Let $\Psi_{\mathrm{p}}=\mathrm{A} e^{\wedge}-\mathrm{i}(\mathbf{K} \cdot \mathbf{X})$, then $\partial \cdot \partial\left[\Psi_{\mathrm{p}}\right]=(-\mathrm{i})^{2}(\mathbf{K} \cdot \mathbf{K}) \Psi_{\mathrm{p}}=-\left(\omega_{o} / \mathrm{c}\right)^{2} \Psi_{\mathrm{p}}$ which is the Klein-Gordon Equation, the particular solution...

Let $\Psi_{n}=A_{n} e^{\wedge}-i\left(\mathbf{K}_{n} \cdot \mathbf{X}\right)$, then $\partial \cdot \partial\left[\Psi_{n}\right]=(-i)^{2}\left(\mathbf{K}_{n} \cdot \mathbf{K}_{n}\right) \Psi_{n}=(0) \Psi_{n}$ which is the Klein-Gordon Equation homogeneous solution for a microstate n

We may take $\Psi=\Psi_{p}+\Sigma_{n} \Psi_{n}$
Hence, the Principle of Superposition is not required as an QM Axiom, it follows from SR and our empirical facts which lead to the Klein-Gordon Equation. The Klein-Gordon equation is a linear wave PDE, which has overall solutions which can be the complex linear sums of individual solutions - i.e. it obeys the Principle of Superposition. This is not an axiom - it is a general mathematical property of linear PDE's.
This property continues over as well to the limiting case $\{|\mathbf{v}| \ll c\}$ of the Schrödinger Equation.

## QM Hilbert Space:

 From the mathematics of wavesKlein-Gordon Equation: $\partial \cdot \partial=\left(\partial_{\star} / c\right)^{2}-\nabla \cdot \nabla=\left(-i m_{0} c / \hbar\right)^{2}=-\left(m_{0} c / \hbar\right)^{2}=-\left(\omega_{0} / c\right)^{2}$
Hilbert Space (HS) representation:
if $\mid \Psi>\varepsilon \mathrm{HS}$, then $\mathrm{c} \mid \Psi>\varepsilon \mathrm{HS}$, where c is complex number
if $\left|\Psi_{1}\right\rangle$ and $\mid \Psi_{2}>\varepsilon$ HS, then $\left|\Psi_{1}\right\rangle+\left|\Psi_{2}\right\rangle \varepsilon$ HS
if $\left.\left|\Psi>=\mathrm{c}_{1}\right| \Psi_{1}\right\rangle+\mathrm{c}_{2}\left|\Psi_{2}\right\rangle$, then $\langle\Phi \mid \Psi\rangle=\mathrm{c}_{1}\left\langle\Phi \mid \Psi_{1}\right\rangle+\mathrm{c}_{2}\left\langle\Phi \mid \Psi_{2}\right\rangle$ and $\langle\Psi|=\mathrm{c}_{1}{ }^{*}<\Psi_{1}\left|+\mathrm{c}_{2}{ }^{*}<\Psi_{2}\right|$
$\langle\Phi| \Psi>=\langle\Psi \mid \Phi\rangle$
$<\Psi \mid \Psi \gg=0$
if $\langle\Psi \mid \Psi\rangle=0$, then $|\Psi\rangle=0$
etc.
Hilbert spaces arise naturally and frequently in mathematics, physics, and engineering, typically as infinitedimensional function spaces. They are indispensable tools in the theories of partial differential equations, Fourier analysis, signal processing, heat transfer, ergodic theory, and Quantum Mechanics.

The QM Hilbert Space emerges from the fact that the KG Equation is a linear wave PDE - Hilbert spaces as solutions to PDE's are a purely mathematical phenomenon - no QM Axiom is required.

Likewise, this introduces the <bra|,|ket> notation, wavevectors, wavefunctions, etc.

## Note:

One can use Hilbert Space descriptions of Classical Mechanics using the Koopman-von Neumann formulation. One can not use Hilbert Space descriptions of Quantum Mechanics by using the Phase Space formulation of QM.

## SRQM Study:

## Canonical Commutation Relation:

Standard QM Canonical Commutation Relation:

```
[x, p
```

The Standard QM Canonical Commutation Relation is simply an axiom in standard QM. It is just given, with no explanation. You just had to accept it.

I always found that unsatisfactory.
There are at least 4 parts to it:
Where does the commutation ([ , ]) come from? Where does the imaginary constant (i) come from? Where does the Dirac:reduced-Planck constant ( $\AA$ ) come from? Where does the Kronecker Delta ( $\delta^{\text {ik }}$ ) come from?

> See the next page for SR enlightenment...
> The SR Metric is the source of "quantization". $(0,1)$-Tensor $\mathrm{V}_{\mu}=\left(\mathrm{v}_{0},-\mathrm{v}\right)$

# 咸 $8: 0$ Canonical QM Commutation Relation 

Let（f）be an arbitrary SR function $\mathbf{X}[f]=\mathbf{X f}, \quad \partial[f]=\partial[f]$
X，function or not，has no effect on（f）
$\partial=\partial[$ ］is definitely an SR function：operator
$\mathbf{X}[\partial[f]]=\mathbf{X}[f]$
$\partial[\mathbf{X}]=\partial[\mathbf{X}] f+\mathbf{X}[f]$
$\partial[\mathbf{X} f]-\mathbf{X} \partial[f]=\partial[\mathbf{X}] f$
$\partial[\mathbf{X}[f]]-\mathbf{X}[\partial[f]]=\partial[\mathbf{X}] f$
Recognize this as a commutation relation $[\partial, \mathbf{X}] f=\partial[\mathbf{X}] f$
$[\partial, \mathbf{X}]=\partial[\mathbf{X}] \quad$ Manifestly Invariant
$=\partial^{r}\left[X^{v}\right]$
$=(\partial / / c,-\nabla)[(c t, x)]$
$=\left(\partial_{\mathrm{l}} / \mathrm{c},-\partial_{\mathrm{x}},-\partial_{\mathrm{y}},-\partial_{z}\right)[(c t, x, y, z)]$
$=\operatorname{Diag}\{1,-1,-1,-1\}=\operatorname{Diag}\left[1,-\delta^{\mathrm{k}}\right]$
$=\eta^{\mathrm{LvV}}=$ Minkowski Metric

$\left[\partial^{\mu}, X^{\vee}\right]=\eta^{\mu \nu}$
$\left[i \hbar \partial^{\mu}, X^{V}\right]=i \hbar \eta^{\mu \nu}$
$\left[P^{\mu}, X^{V}\right]=i \hbar \eta^{\mu v}$
$\left[\mathrm{p}^{\mathrm{k}}, \mathrm{x}^{\mathrm{j}}\right]=-i \hbar \delta^{\mathrm{kj}}$

Tensor form：true for all observers Also true from empirical constants（i），（ $\dagger$ ） Empirical relation $\mathrm{P}^{\mu}=$ in $\partial^{\mu}$ $\left[p^{0}, x^{0}\right]=[E / c, c t]=[E, t]=i \hbar$
$\left[\mathrm{x}^{j}, \mathrm{p}^{\mathrm{k}}\right]=\mathrm{i} \mathrm{i}^{\mathrm{jk}}$ Position：Momentum $\quad[\mathrm{t}, \mathrm{E}]=-i \hbar(1)$ Time：Energy QM Commutation Relation QM Commutation Relation $\begin{array}{ll}(1,0) \text {－Tensor } V^{\mu}=\mathbf{V}=\left(\mathbf{v}^{0}, \mathbf{v}\right) & \text { SR 4－Scalar } \\ \text { SR 4－CoVector：OneForm } & (0,0) \text {－Tensor S or S。 }\end{array}$ $(0,0)$－Tensor S or So
Lorentz Scalar

SR 4－Tensor
$(2,0)$－Tensor T 1，1）－Tensor $T^{\mu}{ }_{v}$ or $T_{\mu}{ }^{v}$ $(0,1)$－Tensor $\mathrm{V}_{\mu}=\left(\mathrm{V}_{0},-\mathrm{v}\right)$

## Standard QM Canonical Commutation Relation:



As we have seen, this relation is generated from simple SR math.
$[\partial, \mathbf{X}]=\left[\partial^{\mu}, X^{\nu}\right]=\partial[\mathbf{X}]=\partial^{\mu}\left[X^{\nu}\right]=\left(\partial_{t} / c,-\nabla\right)[(c t, x)]=\left(\partial_{t} / c,-\partial_{x},-\partial_{y},-\partial_{z}\right)[(c t, x, y, z)]=\operatorname{Diag}\{1,-1,-1,-1\}=\operatorname{Diag}\left[1,-\delta^{\mathrm{j} k}\right]=\eta^{\mu v}=$ Minkowski Metric
$\left[\partial^{\mu}, X^{\wedge}\right]=\eta^{\mu v}$ : This, Minkowski SpaceTime, is where the [ .. , .. ] commutation comes from.
$\left[P^{\mu}, \mathrm{X}^{\mathrm{N}}\right]=\mathrm{i} \hbar \eta^{\mu v}$ : This is the more general 4D version, with the Standard QM version $\left[\mathrm{X}^{\mathrm{j}}, \mathrm{p}^{k}\right]=\mathrm{i} \hbar \delta^{\mathrm{jk}}$ being just the
The $\{\mathrm{i}, \hbar$ \} are empirically found Lorentz Scalar Invariants and physical constants, relating these 4-Vectors.
One of the great misconceptions on modern physics is that since QM is about "tiny" things, that ALL things should be built up from it.
That paradigm of course works well for many things:
Compounds are built-up from smaller molecules.
Molecules are built-up from smaller elements:atoms.
Elements:atoms are built-up from smaller protons, neutrons, and electrons.
Protons and neutrons are built-up from smaller quarks.
And all experiments to-date show that electrons and quarks appear to be point-like, with wave-type properties giving extent.
So, one can mistakenly think that "SpaceTime" must be made up of smaller "quantum" stuff as well.
However, that is not what the math says. The "quantization" paradigm doesn't apply to SpaceTime itself, just to properties of <events>. All of the "quantum"-sized things above, electrons and quarks, are material things, <events>, which move around "within" SpaceTime.
Their "quantization" comes about from the properties of the math and metric of SR.
The math does *NOT* say that SpaceTime itself is "quantized". It says that SR Minkowski SpaceTime is the source of "quantization".

SR 4-Tensor (2,0)-Tensor T ${ }^{\mu \nu}$ $(1,1)$-Tensor $T^{\mu}{ }_{v}$ or $T_{\mu}{ }^{v}$ (0,2)-Tensor $\mathrm{T}_{\mathrm{H}}$

SR 4-Scalar
(0,0)-Tensor S or So
Lorentz Scalar

## SRQM Study:

## Canonical Commutation Relation: Derived from SRQM

## [Linear,Linear] Momentum QM Canonical Commutation Relation:

$\left[\partial^{\mu}, \partial^{v}\right] f=\left(\partial^{u} \partial^{v}-\partial^{v} \partial^{\mu}\right) f=0^{\mu v f}$
$\left[\partial^{\mu}, \partial^{v}\right]=\left(\partial^{\mu} \partial^{v}-\partial^{v} \partial^{\mu}\right)=0^{\mu v}$ : Partials commute, or in this case, the 4-Gradients commute
$\left[i \hbar \partial^{\mu}, i \hbar \partial^{v}\right]=(i \hbar)^{2}\left(\partial^{\mu} \partial^{v}-\partial^{v} \partial^{\mu}\right)=(i \hbar)^{2} 0^{\mu v}=0^{\mu v}$
$\left[P^{\mu}, P^{v}\right]=(i \hbar)^{2}\left(\partial^{\mu} \partial^{v}-\partial^{v} \partial^{\mu}\right)=(i \hbar)^{2} 0^{\mu v}=0^{\mu v}$
$\left[P^{\mu}, P^{V}\right]=0^{\mu v}$ : see Poincaré Group:Algebra
\{ i , $\hbar$ \} do not "create" the actual [ .. , .. ] commutation bracket, 4-Vectors do.
$\{\mathrm{i}, \hbar\}$ are empirically found Scalar Invariants relating these 4-Vectors.
$\{\mathrm{i}, \hbar\}$ are physical constants which give correct dimensional units.

## 4-Gradient $\partial^{\mu}$ $\partial=\left(\partial_{\mathrm{t}} \mathrm{Ic},-\nabla\right)=\partial / \partial \mathrm{X}_{\mu}$

4-Position $\mathrm{X}^{\mu}$ X=(ct,r) $\in<$ Event $>$

SRQM: A treatise of SR $\rightarrow$ QM by John B. Wilson (SciRealm@aol.com)

## SRQM Study:

## Canonical Commutation Relation: Derived from SRQM

## [Angular,Linear] Momentum QM Canonical Commutation Relation:

Let $A^{\mu v}=X^{\wedge} \partial=X^{\mu} \partial^{v}-X^{v} \partial^{\mu}=$ Dimensionless version of 4-AngularMomentum, based on exterior product of 4-Position \& 4-Gradient
$i \hbar A^{\mu v}=X^{\wedge} i \hbar \partial=X^{\mu i} \hbar \partial^{v}-X^{v i \hbar} \partial^{\mu}=X^{\wedge} P=X^{\mu} P^{v}-X^{v} P^{\mu}=M^{\mu v}=4$-AngularMomentum, with $\{i, \hbar\}$ as Lorentz Scalar Invariants
$\left[A^{\mu v}, \partial^{\sigma}\right] f=A^{\mu v} \partial^{\sigma \sigma}-\partial^{\sigma} A^{u v f}=A^{\mu v} \partial^{\sigma}[f]-\partial^{\sigma}\left[A^{\mu v}\right] f-A^{\mu v} \partial^{\sigma}[f]=-\partial^{\sigma}\left[A^{\mu v}\right] f=-\partial^{\sigma}\left(X^{\mu} \partial^{v}-X^{v} \partial^{\mu}\right) f=\partial^{\sigma}\left(X^{v} \partial^{\mu}-X^{\mu} \partial^{v}\right) f=\left(\partial^{\sigma} X^{v} \partial^{\mu}-\partial^{\sigma} X^{\mu v}\right) f=\left(\eta^{\sigma v} \partial^{\mu}-\eta^{\sigma u} \partial^{v}\right) f$
$\left[A^{\mu v}, \partial^{\sigma}\right] f=\left(\eta^{\text {ov }} \partial^{\mu}-\eta^{\sigma \mu} \partial^{\text {rv }}\right) f$
$\left[A^{\mu v}, \partial^{\sigma}\right]=\left(\eta^{o v} \partial^{\mu}-\eta^{\text {ou }} \partial^{v}\right)$

$\left[A^{\mu v}, P^{\sigma}\right]=\left(\eta^{o v} P^{\mu}-\eta^{\sigma \mu} P^{v}\right)$
$\left[i^{\hbar} A^{\mu v}, P^{\circ}\right]=i \hbar\left(\eta^{o v} P^{\mu}-\eta^{\sigma \mu} P^{v}\right)$
$\left[M^{\mathrm{pv}}, \mathrm{P}^{\circ}\right]=\mathrm{i} \hbar\left(\eta^{\text {ov }} \mathrm{P}^{\mu}-\eta^{\sigma \mu} \mathrm{Pv}^{v}\right)$ : see Poincaré Group:Algebra
\{ i , $\hbar$ \} do not "create" the actual [ .. , .. ] commutation bracket, 4-Vectors do.
$\{\mathrm{i}, \hbar\}$ are empirically found Scalar Invariants relating these 4-Vectors.
$\{i, \hbar\}$ are physical constants which give correct dimensional units.


Complex
Plane-waves
$\mathrm{K}=\mathrm{i} \partial$


4-Position X $\mathbf{X = ( c t , r ) \in < E v e n t >}$


Einstein de Broglie
P =ћK
4-AngularMomentum
$M^{\alpha \beta}=X^{\alpha} P^{\beta}-X^{\beta} P^{\alpha}=X^{\wedge} P$

## SRQM Study:

## [Angular,Linear] Momentum QM Canonical Commutation Relation:

$\left[M^{\mathrm{pv}}, \mathrm{P}^{\mathrm{o}}\right]=\mathrm{i} \hbar\left(\eta^{\mathrm{ov}} \mathrm{P}^{\mu}-\eta^{\mathrm{ou}} \mathrm{P}^{\mathrm{v}}\right)$ : see Poincaré Group:Algebra
ex.
$\left[M^{\mathrm{ab}}, \mathrm{P}^{\mathrm{d}}\right]=\mathrm{i} \hbar\left(\eta^{\mathrm{db}} \mathrm{P}^{\mathrm{a}}+\eta^{\mathrm{da}} \mathrm{P}^{\mathrm{b}}\right)$ : Get the regular 3-angular-momenta via $L^{\mathrm{a}}=1 / 2 \varepsilon^{\mathrm{a}} \mathrm{jk}^{\mathrm{M}} \mathrm{M}^{\mathrm{ik}}$
$\left[1 / 2 \varepsilon^{\mathrm{c}}{ }_{a b} \mathrm{M}^{\mathrm{ab}}, \mathrm{P}^{\mathrm{d}}\right]=1 / 2 \varepsilon^{\mathrm{c}}{ }_{a b}{ }^{i \hbar}\left(\eta^{\mathrm{db}} \mathrm{P}^{\mathrm{a}}+\eta^{\mathrm{da}} \mathrm{P}^{\mathrm{b}}\right)$
$\left[L^{\mathrm{c}}, \mathrm{P}^{\mathrm{d}}\right]=1 / 2 \varepsilon^{\mathrm{c}}{ }_{\mathrm{ab}} i \hbar\left(\eta^{\mathrm{db}} \mathrm{Pa}^{\mathrm{a}}+\eta^{\mathrm{da}} \mathrm{P}^{\mathrm{b}}\right)$
$\left[L^{c}, P^{b}\right]=1 / 2 \varepsilon^{c} a b \hbar\left(\eta^{b b} P^{a}+\eta^{b a P^{b}}\right):$ chose first Minkowski to be non-zero, $d \rightarrow b$
$\left[L^{c}, P^{b}\right]=1 / 2 \varepsilon^{c}{ }_{a b} i \hbar\left(-P^{a}+\{0\} P^{b}\right)$
$\left[P^{b}, L^{c}\right]=1 / 2 \varepsilon^{\mathrm{c}}{ }_{a b} \mathrm{D}^{\circ}\left(\mathrm{P}^{\mathrm{a}}\right)$
ex.
$\left[M^{\mathrm{ab}}, \mathrm{P}^{\mathrm{d}}\right]=\mathrm{i} \hbar\left(\eta^{\mathrm{db}} \mathrm{P}^{\mathrm{a}}+\eta^{\mathrm{da}} \mathrm{P}^{\mathrm{b}}\right)$ : Get the regular 3-angular-momenta via $L^{\mathrm{a}}=1 / 2 \varepsilon^{\mathrm{a}} \mathrm{jk}^{\mathrm{K}} \mathrm{M}^{\mathrm{ik}}$
$\left[M^{\mathrm{a} 0}, \mathrm{P}^{0}\right]=\mathrm{i} \hbar\left(\eta^{00} \mathrm{P}^{\mathrm{a}}+\eta^{0 \mathrm{a}} \mathrm{P}^{0}\right)$


Complex
$\left[M^{a 0}, P^{0}\right]=\mathrm{i} \hbar\left(\{1\} \mathrm{P}^{\mathrm{a}}+\{0\} \mathrm{P}^{0}\right)$
Plane-waves
$\mathrm{K}=\mathrm{i} \partial$
$\left[\mathrm{K}^{\mathrm{a}}, \mathrm{P}^{0}\right]=\mathrm{i} \hbar\left(\mathrm{P}^{\mathrm{a}}\right)$
$\left[\mathrm{K}^{\mathrm{a}}, \mathrm{H} / \mathrm{c}\right]=\mathrm{i} \hbar\left(\mathrm{P}^{\mathrm{a}}\right)$
$\left[K^{a}, H\right]=i \hbar c\left(P^{\mathrm{a}}\right)$
$\left[H, K^{a}\right]=-i \hbar c\left(P^{a}\right)$



## SRQM Study:

## Canonical Commutation Relation: Derived from SRQM

[Angular,Angular] Momentum QM Canonical Commutation Relation:
Let $A^{\mu v}=X^{\wedge} \partial=X^{\mu} \partial^{v}-X^{v} \partial^{\mu}=$ Dimensionless version of 4-AngularMomentum, based on exterior product of 4-Position \& 4-Gradient

$\left[A^{\mu v}, X^{\sigma} \partial^{\rho}\right]=\left(X^{\mu} \partial^{v}-X^{v} \partial^{\mu}\right) X^{\sigma} \partial^{\rho}-X^{\sigma} \partial^{\rho}\left(X^{\mu} \partial^{v}-X^{v} \partial^{\mu}\right)=X^{\mu} \partial^{v} X^{\sigma} \partial^{\rho}-X^{v} \partial^{\mu} X^{\sigma} \partial^{\rho}-X^{\sigma} \partial^{\rho} X^{\mu} \partial^{v}+X^{\sigma} \partial^{\rho} X^{v} \partial^{\mu}=X^{\mu} \eta^{v \sigma} \partial^{\rho}-X^{v} \eta^{\mu \sigma} \partial^{\rho}-X^{\sigma} \eta^{\rho \mu} \partial^{v}+X^{\sigma} \eta^{\rho v} \partial^{\mu}$
$\left[A^{\mathrm{uv}}, X^{\rho} \partial^{\rho}\right]=\eta^{v \sigma} X^{\mu} \partial^{\rho}-\eta^{\mu \sigma} X^{v} \partial^{\rho}-\eta^{\rho \mu} X^{\sigma} \partial^{v}+\eta^{\rho v} X^{\sigma} \partial^{\mu}$
$\left[A^{\mu v}, X^{\rho} \partial^{\sigma}\right]=\eta^{\nu \rho} X^{\mu} \partial^{\sigma}-\eta^{\mu \rho} X^{v} \partial^{\sigma}-\eta^{\sigma \mu} X^{\rho} \partial^{v}+\eta^{\sigma v} X^{\rho} \partial^{\mu}$
$\left[A^{\mu v}, X^{\sigma} \partial^{\rho}-X^{\rho} \partial^{\sigma}\right]=\left(\eta^{\text {vo }} X^{\mu} \partial^{\rho}-\eta^{\mu \sigma} X^{v} \partial^{\rho}-\eta^{\rho \mu} X^{\sigma} \partial^{v}+\eta^{\rho v} X^{\sigma} \partial^{\mu}\right)-\left(\eta^{\text {vo }} X^{\mu} \partial^{\sigma}-\eta^{\mu \rho} X^{v} \partial^{\sigma}-\eta^{\sigma \mu} X^{\rho} \partial^{v}+\eta^{\sigma v} X^{\rho} \partial^{\mu}\right)$
$\left[A^{\mu v}, A^{\sigma \rho}\right]=\left(\eta^{v \sigma} X^{\mu} \partial^{\rho}-\eta^{\mu \sigma} X^{v} \partial^{\rho}-\eta^{\rho \mu} X^{\sigma} \partial^{v}+\eta^{\rho v} X^{\sigma} \partial^{\mu}-\eta^{\nu \rho} X^{\mu} \partial^{\sigma}+\eta^{\mu \rho} X^{v} \partial^{\sigma}+\eta^{\sigma \mu} X^{\rho} \partial^{v}-\eta^{\sigma v} X^{\rho} \partial^{\mu}\right)$
$\left[A^{\mu v}, A^{\sigma \rho}\right]=\left(\eta^{v \sigma} X^{\mu} \partial^{\rho}-\eta^{\sigma v} X^{\rho} \partial^{\mu}+\eta^{\sigma \mu} X^{\rho} \partial^{v}-\eta^{\mu \sigma} X^{v} \partial^{\rho}+\eta^{\mu \rho} X^{v} \partial^{\sigma}-\eta^{\rho \mu} X^{\sigma} \partial^{v}+\eta^{\rho v} X^{\sigma} \partial^{\mu}-\eta^{v \rho} X^{\mu} \partial^{\sigma}\right)$
$\left[A^{\mu v}, A^{\sigma \rho}\right]=\left(\eta^{v \sigma} A^{\mu \rho}+\eta^{\sigma \mu} A^{\rho v}+\eta^{\mu \rho} A^{v \sigma}+\eta^{\rho v} A^{\sigma \mu}\right)$
$\left[A^{\mu v}, i \hbar A^{\sigma \rho}\right]=\left(\eta^{v \sigma} i \hbar A^{\mu \rho}+\eta^{\sigma \mu i} \hbar^{\rho v} A^{\rho v}+\eta^{\mu \rho} i \hbar A^{v \sigma}+\eta^{\rho v i} \hbar A^{\sigma \mu}\right)$


Complex
$\left[A^{\mu v}, M^{\sigma \rho}\right]=\left(\eta^{v \sigma} M^{\mu \rho}+\eta^{\sigma \mu} M^{\mathrm{pv}}+\eta^{\mu \rho} \mathrm{M}^{\mathrm{v} \mathrm{\sigma}}+\eta^{\mathrm{pv}} \mathrm{M}^{\sigma \mu}\right)$
$\left[\AA^{\hbar \nu}, M^{\sigma \rho}\right]=i \hbar\left(\eta^{v \sigma} M^{\mu \rho}+\eta^{\sigma \mu} M^{\rho v}+\eta^{\mu \rho} M^{v \sigma}+\eta^{\rho v} M^{\sigma \mu}\right)$
$\left[M^{\mu v}, M^{\sigma \rho}\right]=i \hbar\left(\eta^{v \sigma} M^{\mu \rho}+\eta^{\sigma \mu} M^{\rho v}+\eta^{\mu \rho} M^{v \sigma}+\eta^{\rho v} M^{\sigma \mu}\right):$ see Poincaré Group:Algebra
\{ i , $\hbar$ \} do not "create" the actual [ .. , .. ] commutation bracket, 4-Vectors do.
$\{\mathrm{i}, \hbar\}$ are empirically found Scalar Invariants relating these 4-Vectors.
\{ i , $\hbar\}$ are physical constants which give correct dimensional units.


4-Momentum $\mathrm{P}^{\mu}$ $\mathbf{P}=(\mathrm{mc}, \mathrm{p})=(\mathrm{E} / \mathrm{c}, \mathrm{p})=\mathrm{m}_{0} \mathbf{U}$

## SRQM Study:

## Canonical Commutation Relation: Derived from SRQM

## Angular:Angular Momentum QM Canonical Commutation Relation:

$X^{\wedge} P=X^{\mu} P^{v}-X^{v} P^{\mu}=M^{\mu v}=4-$ AngularMomentum, with $\{i, \hbar\}$ as Lorentz Scalar Invariants
$\left[M^{\mu v}, M^{\sigma \rho}\right]=i \hbar\left(\eta^{v \sigma} M^{\mu \rho}+\eta^{\sigma \mu} M^{\rho v}+\eta^{\mu \rho} M^{v \sigma}+\eta^{\rho v} M^{\sigma \mu}\right)$
$\left[M^{i k}, M^{m n}\right]=i \hbar\left(\eta^{k m} M^{i n}+\eta^{m j} M^{n k}+\eta^{i n} M^{k m}+\eta^{n k} M^{m j}\right)$ : Look at just the spatial components
Get the regular 3-angular-momenta via $L^{a}=1 / 2 \varepsilon^{\mathrm{a}} \mathrm{jk} \mathrm{M}^{\mathrm{ik}}$


here we examine only the cases where the Minkowski Metric is non-zero, when $\eta^{i, j=}$ paired indices on the same level are not summed...

$\left[L^{a}, L^{b}\right]=-1 / 4 i \hbar\left(\varepsilon^{\mathrm{a}}{ }_{j k} \varepsilon^{\mathrm{b}}{ }_{k n} \mathrm{M}^{\mathrm{in}}+\varepsilon^{\mathrm{a}}{ }_{\mathrm{j}} \varepsilon^{\mathrm{b}}{ }_{j \mathrm{jn}} \mathrm{M}^{\mathrm{nk}}+\varepsilon^{\mathrm{a}}{ }_{\mathrm{j} k} \varepsilon^{\mathrm{b}}{ }_{\mathrm{m}} \mathrm{M}^{\mathrm{km}}+\varepsilon^{\mathrm{a}}{ }_{\mathrm{j} k} \varepsilon^{\mathrm{b}}{ }_{m k} \mathrm{M}^{\mathrm{mj}}\right)$


Complex
Plane-waves
$\mathrm{K}=\mathrm{i} \partial$
ex.
$\left[M^{i j}, M^{m n}\right]=i \hbar\left(\eta^{m i m} M^{i n}+\eta^{m} M^{n j}+\eta^{i n} M^{i m}+\eta^{n} M^{m i j}\right)$
$\left[M^{i j}, M^{m n}\right]=i \hbar\left(\eta^{m} M^{i n}-\eta^{m i} M^{i n}+\eta^{i n} M^{i m}-\eta^{\mathrm{m}} \mathrm{M}^{\mathrm{im}}\right)$ $\left[\mathrm{Mi}^{\mathrm{i}}, \mathrm{M}^{\mathrm{m}}\right]=0$
for the case of either 3-angular-momentum index matching itself. Not surprising since the 4-AngularMomentum is an Antisymmetric Tensor with zeroes along the diagonal.
ex.
$\left[M^{y z}, M^{2 x}\right]=i \hbar\left(\eta^{z z} M^{y x}+\eta^{2 y} M^{x z}+\eta^{v x} M^{2 z}+\eta^{x z} M^{2 y}\right)$
$\left[M^{y z}, M^{2 x}\right]=i \hbar\left(\eta^{z 2} M^{2 x}\right)$
$\left[M^{\mathrm{yz}}, \mathrm{M}^{\mathrm{zx}}\right]=\mathrm{i}\left(\mathrm{K}^{\mathrm{M}} \mathrm{M}^{\mathrm{xx}}\right)$
$\left[L^{\mathrm{L}}, \mathrm{L}^{\mathrm{V}}\right]=\mathrm{i} \hbar\left(\mathrm{L}^{2}\right)$



$\left[L^{a}, L^{b}\right]=1 / 4 \hbar \hbar\left(\varepsilon^{a}{ }_{e c} \varepsilon^{b}{ }_{c d}+\varepsilon^{a}{ }_{c d} \varepsilon^{b}{ }_{c e}+\varepsilon^{a}{ }_{c c} \varepsilon^{b}{ }_{d c}+\varepsilon^{a}{ }_{d c} \varepsilon^{b}{ }_{e c}\right) 1 / 2 \varepsilon^{d e}{ }_{c} L^{c}$
$\left[L^{\mathrm{a}}, L^{\mathrm{b}}\right]=1 / 4 i \hbar\left(\varepsilon^{\mathrm{a}}{ }_{e c} \delta^{\mathrm{be}}+\varepsilon^{\mathrm{a}}{ }_{c d} \delta^{\mathrm{bd}}+\varepsilon^{\mathrm{a}}{ }_{\mathrm{ce}} \delta^{\mathrm{be}}+\varepsilon^{\mathrm{a}}{ }_{d c}{ }^{\delta \mathrm{bd}}\right) L^{\mathrm{c}}$
$\left[L^{\mathrm{a}}, L^{\mathrm{b}}\right]=1 / 4 i \hbar\left(\varepsilon^{\mathrm{ab}}{ }_{c}+\varepsilon^{\mathrm{ab}}{ }_{c}+\varepsilon^{\mathrm{ab}}{ }_{c}+\varepsilon^{\mathrm{ab}}{ }_{c}\right) L^{\mathrm{c}}$

4-Position $X^{\mu}$
$X=(c t, r) \in<$ Event $>$

$\left[L^{\mathrm{a}}, \mathrm{L}^{\mathrm{b}}\right]=\mathrm{i} \hbar\left(\varepsilon^{\mathrm{ab}}{ }_{\mathrm{c}} \mathrm{L}^{\mathrm{c}}\right):$ Standard 3-angular-momentum commutation


4-AngularMomentum
$M^{\alpha \beta}=X^{\alpha} P^{\beta}-X^{\beta} P^{\alpha}=X^{\wedge} P$
 SR 4-CoVector:OneForm $(0,1)$-Tensor $\mathrm{V}_{\mu}=\left(\mathrm{v}_{0},-\mathrm{v}\right)$

## Heisenberg Uncertainty Principle: Viewed from SRQM

Heisenberg Uncertainty $\left.\left\{\sigma^{2} A^{2} \sigma_{B}\right\}>=(1 / 2)|<[A, B]>|\right\}$ arises from the non-commuting nature of certain operators.

The commutator is $[A, B]=A B-B A$, where $A \& B$ are functional "measurement" operators. The Operator Formalism arose naturally from our SR $\rightarrow$ QM path: [ $\partial=-\mathrm{iK}$ ].

The Generalized Uncertainty Relation: $\sigma_{f}^{2} \sigma_{g}{ }^{2}=(\Delta F){ }^{*}(\Delta G)>=(1 / 2)|\langle i[F, G]\rangle|$
The uncertainty relation is a very general mathematical property, which applies to both classical or quantum systems. From Wikipedia: Photon Polarization: "This is a purely mathematical result. No reference to a physical quantity or principle is required."

The Cauchy-Schwarz inequality asserts that (for all vectors $f$ and $g$ of an inner product space, with either real or complex numbers):
$\left.\sigma_{f}^{2} \sigma_{g}{ }^{2}=[\langle\mathrm{f} \mid \mathrm{f}\rangle \cdot\langle\mathrm{g} \mid \mathrm{g}\rangle]\right\rangle=|\langle\mathrm{f} \mid \mathrm{g}\rangle|^{2}$
But first, let's back up a bit; Using standard complex number math, we have:
$z=a+i b$
$z^{*}=a-i b$
$\operatorname{Re}(z)=a=\left(z+z^{*}\right) /(2)$
$\operatorname{Im}(z)=b=\left(z-z^{*}\right) /(2 i)$
$z^{*} z=|z|^{2}=a^{2}+b^{2}=[\operatorname{Re}(z)]^{2}+[\operatorname{lm}(z)]^{2}=\left[\left(z+z^{*}\right) /(2)\right]^{2}+\left[\left(z-z^{*}\right) /(2 i)\right]^{2}$
or
$|z|^{2}=\left[\left(z+z^{*}\right) /(2)\right]^{2}+\left[\left(z-z^{*}\right) /(2 i)\right]^{2}$
Now, generically, based on the rules of a complex inner product space we can arbitrarily assign:
$z=\langle f \mid g\rangle, z^{*}=\langle g \mid f\rangle$
Which allows us to write:
$\left.\left.\langle f \mid g\rangle\right|^{2}=[(\langle f \mid g\rangle+\langle g \mid f\rangle) /(2)]^{2}+[(\langle f \mid g\rangle-\langle g \mid f\rangle)\rangle(2 i)\right]^{2}$

```
We can also note that:
|f\rangle=F|\Psi\rangle and |g\rangle=G|}\psi
```

Thus,
$\left.|\langle\mathrm{f} \mid \mathrm{g}\rangle|^{2}=\left[\left(\langle\Psi| F^{*} \mathrm{G}|\Psi\rangle+\langle\Psi| \mathrm{G}^{*} \mathrm{~F}|\Psi\rangle\right) /(2)\right]^{2}+\left[\left(\langle\Psi| F^{*} \mathrm{G}|\Psi\rangle-\langle\Psi| \mathrm{G}^{*} \mathrm{~F}|\Psi\rangle\right\rangle\right)(2 \mathrm{i})\right]^{2}$
For Hermetian Operators.
$F^{*}=+F, G^{*}=+G$

For Anti-Hermetian (Skew-Hermetian) Operators...
$F^{*}=-F, G^{*}=-G$
Assuming that $F$ and $G$ are either both Hermetian, or both anti-Hermetian..
$\left.|\langle\mathrm{f} \mid \mathrm{g}\rangle|^{2}=[\langle\langle\Psi|( \pm) \mathrm{FG} \mid \Psi\rangle+\langle\Psi|( \pm) \mathrm{GF}|\Psi\rangle) /(2)\right]^{2}+[(\langle\Psi|( \pm) \mathrm{FG}|\Psi\rangle-\langle\Psi|( \pm)$ GF| $\left.\Psi\rangle) /(2 \mathrm{i})\right]^{2}$ $|\langle\mathrm{f} \mid \mathrm{g}\rangle|^{2}=[( \pm)(\langle\Psi| \mathrm{FG}|\Psi\rangle+\langle\Psi| \mathrm{GF}|\Psi\rangle) /(2)]^{2}+[( \pm)(\langle\Psi| \mathrm{FG}|\Psi\rangle-\langle\Psi| \mathrm{GF}|\Psi\rangle) /(2 i)]^{2}$

We can write this in commutator and anti-commutator notation...
$|\langle\mathrm{f} \mid \mathrm{g}\rangle|^{2}=[( \pm)(\langle\Psi|\{\mathrm{F}, \mathrm{G}\}|\Psi\rangle) /(2)]^{2}+[( \pm)(\langle\Psi|[\mathrm{F}, \mathrm{G}]|\Psi\rangle) /(2 \mathrm{i})]^{2}$
Due to the squares, the ( $\pm$ )'s go away, and we can also multiply the commutator by an ( $\mathrm{i}^{2}$ )

$$
\begin{aligned}
& |\langle\mathrm{f} \mid \mathrm{g}\rangle|^{2}=[(\langle\Psi|\{\mathrm{F}, \mathrm{G}\}|\Psi\rangle) / 2]^{2}+[(\langle\Psi|[\mathrm{F}, \mathrm{G}]|\Psi\rangle) / 2]^{2} \\
& |\langle\mathrm{f} \mid \mathrm{g}\rangle|^{2}=[(\langle\{\mathrm{F}, \mathrm{G}\}\rangle) / 2]^{2}+[(\langle\mathrm{i}[\mathrm{~F}, \mathrm{G}]\rangle) / 2]^{2}
\end{aligned}
$$

The Cauchy-Schwarz inequality again..
$\left.\sigma_{\mathrm{f}}{ }^{2} \sigma_{\mathrm{g}}{ }^{2}=[\langle\mathrm{f} \mid \mathrm{f}\rangle \cdot\langle\mathrm{g} \mid \mathrm{g}\rangle]\right\rangle=|\langle\mathrm{f} \mid \mathrm{g}\rangle|^{2}=[(\langle\{\mathrm{F}, \mathrm{G}\}\rangle) / 2]^{2}+[(\langle\mathrm{i}[\mathrm{F}, \mathrm{G}]\rangle) / 2]^{2}$
Taking the root:
$\left.\sigma_{\mathrm{f}}{ }^{2} \sigma_{\mathrm{g}}{ }^{2}\right\rangle=(1 / 2)|\langle\mathrm{i}[\mathrm{F}, \mathrm{G}]\rangle|$
Which is what we had for the generalized Uncertainty Relation.

# Heisenberg Uncertainty Principle: Simultaneous vs Sequential 

Heisenberg Uncertainty $\left\{\sigma_{A}^{2} \sigma_{B}^{2}>=(1 / 2)|<[A, B]>|\right\}$ arises from the non-commuting nature of certain operators.
$\left[\partial^{\mu}, X^{\prime}\right]=\partial[\mathrm{X}]=\eta^{\mu \mathrm{V}}=$ Minkowski Metric
$\left[P^{\mu}, X^{\dagger}\right]=\left[i \hbar \partial^{\mu}, X^{\nu}\right]=i \hbar\left[\partial^{\mu}, X^{V}\right]=i \hbar \eta^{\mu v}$
Consider the following:
Operator A acts on System $\mid \Psi>$ at SR Event A: A $|\Psi>\rightarrow| \Psi^{\prime}>$
Operator B acts on System $\mid \Psi^{\prime}>$ at SR Event B: B| $\Psi^{\prime}>\rightarrow \mid \Psi^{\prime \prime}>$
or $B A|\Psi>=B| \Psi '>=\mid \Psi ">$
If measurement Events $A$ \& $B$ are space-like separated, then there are observers who can see $\{A$ before $B, A$ simultaneous with $\mathrm{B}, \mathrm{A}$ after B \}, which of course does not match the quantum description of how Operators act on Kets

If Events A \& B are time-like separated, then all observers will always see A before B. This does match how the operators act on Kets, and also matches how $\mid \Psi>$ would be evolving along its worldline, starting out as $\mid \Psi>$, getting hit with operator A at Event A to become $|\Psi\rangle>$, then getting hit with operator B at Event B to become $\mid \Psi ">$.

The Uncertainty Relation here does NOT refer to simultaneous (space-like separated) measurements, it refers to sequential (time-like separated) measurements. This removes the need for ideas about the particles not having simultaneous properties. There are simply no "simultaneous measurements" of non-zero commuting properties on an individual system, a single worldline - they are sequential, and the first measurement places the system in such a state that the outcome of the second measurement will be altered wrt. if the order of the operations had been reversed.

## Pauli Exclusion Principle:

 Requires SR for the detailed explanationThe Pauli Exclusion Principle is a result of the empirical fact that nature uses identical (indistinguishable) particles, and this combined with the Spin-Statistics theorem from SR, leads to an exclusion principle for fermions (anti-symmetric, FermiDirac statistics) and an aggregation principle for bosons (symmetric, Bose-Einstein statistics). The Spin-Statistics Theorem is related as well to the CPT Theorem.

For large numbers and/or mixed states these both tend to the Maxwell-Boltzmann statistics. In the $\left\{\mathrm{kT} \gg\left(\varepsilon_{i}-\mu\right)\right\}$ limit, BoseEinstein reduces to Rayleigh-Jeans. The commutation relations here are based on space-like separation particle exchanges. Exchange operator $\mathrm{P}, \mathrm{P}^{2}=+1$, Since two exchanges bring one back to the original state. P thus has two eigenvalues ( $\pm 1$ ) and two eigenvectors $\{\mid$ Symm> , |AntiSymm> \}
P|Symm> = +|Symm>
P|AntiSymm> = -|AntiSymm>

Spin-Symmetry	Particle Type	Quantum Statistics	Classical $\left\{\mathrm{kT} \gg\left(\varepsilon_{i}-\mu\right)\right.$ \}
spin:(0,1, ..,N) bosons symmetric	Indistinguishable, Commutation relation [a,b] = ab-ba = -[b,a] = constant ( $a b=b a$ ) if commutes	Bose-Einstein:   $n_{i}=g_{i} /\left[e^{\left(\varepsilon_{i}-\mu\right) k T}-1\right]$ aggregation principle (condensation)	$\begin{aligned} & \text { Rayleigh-Jeans: from } e^{x} \sim(1+x+\ldots) \\ & n_{i}=g_{i} /\left[\left(\varepsilon_{i}-\mu\right) / k T\right] \end{aligned}$
		$\downarrow$ Limit as $\mathrm{e}^{\left(\varepsilon_{i}-\mu\right) / k T} \gg 1 \downarrow$	
Multi-particle Mixed	Distinguishable, or high temp, or low density	Maxwell-Boltzmann: $n_{i}=g_{i} /\left[e^{\left(\varepsilon_{i}-\mu\right) k T}+0\right]$	Maxwell-Boltzmann: $n_{i}=g_{i} /\left[e^{\left(\varepsilon_{i}-\mu\right) / k T}\right]$
		$\uparrow$ Limit as $\mathrm{e}^{\left(\varepsilon_{i}-\mu\right) \mathrm{kT}} \gg 1 \uparrow$	
spin:(1/2,3/2,..,N/2) fermions anti-symmetric	Indistinguishable, Anti-commutation relation $\{a, b\}=a b+b a=+\{b, a\}=$ constant ( $a b=-b a$ ) if anti-commutes	$\begin{aligned} & \text { Fermi-Dirac: } \\ & n_{i}=g_{i} /\left[e^{\left(\xi_{i}-\mu\right) k T}+1\right] \\ & \text { exclusion principle } \end{aligned}$	

## SRQM:

## 4-Vectors \& Minkowski Space Review

Complex 4-vectors are simply 4-Vectors where the components may be complex-valued
$\mathbf{A}=A^{\mu}=\left(a^{0}, a\right)=\left(a^{0}, a^{1}, a^{2}, a^{3}\right) \rightarrow\left(a^{t}, a^{x}, a^{y}, a^{2}\right)$
$B=B^{\mu}=\left(b^{0}, b\right)=\left(b^{0}, b^{1}, b^{2}, b^{3}\right) \rightarrow\left(b^{t}, b^{x}, b^{y}, b^{2}\right)$
Examples of 4-Vectors with complex components are the 4-Polarization and the 4ProbabilityCurrentDensity

Minkowski Metric $\mathrm{g}^{\mu \mathrm{V}} \rightarrow \eta^{\mu \mathrm{V}}=\eta_{\mu v} \rightarrow \operatorname{Diag}[1,-1,-1,-1]=\operatorname{Diag}\left[1,-I_{(3)}\right]$, which is the $\left\{\right.$ curvature~0 limit $=$ low-mass limit\} of the GR metric $\mathrm{g}^{\mu \mathrm{v}}$.

Applying the Metric to raise or lower an index also applies a complex-conjugation *
Scalar Product $=$ Lorentz Invariant $\rightarrow$ Same value for all inertial observers
$A \cdot B=\eta_{\mu v} A^{\mu} B^{v}=A_{v}{ }^{*} B^{v}=A^{\mu} B_{\mu}{ }^{*}=\left(a^{0 *} b^{0}-a^{*} \cdot b\right)$ using the Einstein summation convention
This reverts to the usual rules for real components However, it does imply that $\mathbf{A} \cdot \mathbf{B}=\mathbf{B} \cdot \mathbf{A}$


## Matter-like

$\mathrm{T}=\gamma(1, \beta)$
$\mathbf{T} \cdot \mathbf{T}=\gamma(1, \beta)^{*} \cdot \gamma(1, \beta)=\gamma^{2}\left(1^{2}-\beta \cdot \beta\right)=+1$ : It's a temporal 4 -vector

```
T
```

$\mathbf{T}_{P} \cdot \boldsymbol{T}_{P}=\gamma(1,-\beta)^{*} \cdot \gamma(1,-\beta)=\gamma^{2}\left(1^{2}-(-\beta) \cdot(-\beta)\right)=\gamma^{2}\left(1^{2}-\beta \cdot \beta\right)=1$
$\mathbf{T}_{T^{*}} \cdot \mathbf{T}_{T}=\gamma(-1, \beta) \cdot \gamma(-1, \beta)^{*}=\gamma^{2}\left((-1)^{2}-(\beta) \cdot(\beta)\right)=\gamma^{2}\left(1^{2}-\boldsymbol{\beta} \cdot \boldsymbol{\beta}\right)=1$
They all remain temporal 4 -vectors
$\mathbf{T}_{\mathrm{CPP}}=\mathbf{T}=\gamma(1, \beta)$
$\mathbf{T}_{\mathrm{CPT}} \cdot \mathbf{T}_{\mathrm{CPT}}=\mathbf{T} \cdot \mathbf{T}=1$

Light-like/Photonic
$\mathbf{N}=(1, n)$
$\mathbf{N} \cdot \mathbf{N}=(1, n)^{*} \cdot(1, n)=\left(1^{2}-n \cdot n\right)=(1-1)=0$ : lt's a null 4-vector
$N_{\mathrm{N}} \cdot \mathbf{N}_{\mathrm{c}}=(-1,-n) \cdot(-1,-n)^{*}=\left((-1)^{2}-(-n) \cdot(-n)\right)=\left(1^{2}-n \cdot n\right)=(1-1)=0$ $N_{p} \cdot N_{p}=(1,-n)^{*} \cdot(1,-n)=\left(1^{2}-(-n) \cdot(-n)\right)=\left(1^{2}-n \cdot n\right)=(1-1)=0$
$\left.\mathbf{N}_{\mathrm{T}} \cdot \mathbf{N}_{\mathrm{T}}=(-1, \mathrm{n}) \cdot(-1, \mathrm{n})^{*}=\left((-1)^{2}-\mathbf{n}\right) \cdot(\mathbf{n})\right)=\left(1^{2}-\mathbf{n} \cdot \mathbf{n}\right)=(1-1)=0$
They all remain null 4 -vectors
$\mathbf{N}_{\text {cpt }}=\mathbf{N}=(1, \mathrm{n})$
$\mathbf{N}_{\text {CPT }} \cdot \mathbf{N}_{\text {CPT }}=\mathbf{N} \cdot \mathbf{N}=\mathbf{0}$

Pairwise combinations:
$\mathbf{T}_{\mathrm{TP}}=\mathbf{T}_{\text {PT }}=\mathbf{T}_{\mathrm{C}}=\gamma(-1,-\beta)^{\star}$
$\mathbf{T}_{\mathrm{TC}}=\mathbf{T}_{\mathrm{CT}}=\mathbf{T}_{\mathrm{P}}=\gamma(1,-\beta)$
$\mathrm{T}_{\mathrm{PC}}=\mathrm{T}_{\mathrm{CP}}=\mathrm{T}_{\mathrm{T}}=\gamma(-1, \beta)^{*}$, a CP event is mathematically the same as a T event $\mathbf{T}_{\text {CPT }}=\mathbf{T}=\gamma(1, \beta) \quad \mathbf{T}_{\mathrm{CC}}=\mathbf{T}=\gamma(1, \beta) \quad \mathbf{T}_{\mathrm{PP}}=\mathbf{T}=\gamma(1, \beta) \quad \mathbf{T}_{\mathrm{TT}}=\mathbf{T}=\gamma(1, \beta)$

The Phase is a Lorentz Scalar Invariant - all observers must agree on its value $K \cdot X=(\omega / c, k) \cdot(c t, x)=(\omega t-k \cdot x)=-\Phi:$ Phase of SR Wave

We take the point of view of an observer operating on a particle at 4-Position $\mathbf{X}$, which has an initial 4-WaveVector $\mathbf{K}$. The 4-Position $\mathbf{X}$ of the particle,
the operation's event, will not change: we are applying the various operations only to the particle's 4-Momentum K.

Note that for matter particles $\mathbf{K}=\left(\omega_{0} / \mathrm{c}\right) \mathbf{T}$,
where $\mathbf{T}$ is the Unit-Temporal 4 -Vector $\mathbf{T}=\gamma(1, \beta)$, which defines the particle's worldline at each point.
The gamma factor ( $\gamma$ ) will be unaffected in the following operations,
since it uses the square of $\beta: \gamma=1 /$ Sqrt(1- $\beta \cdot \beta$ ).
For photonic particles, $K=(\omega / c) \mathbf{N}$,
where $\mathbf{N}$ is the "Unit"-Null 4 -Vector $\mathbf{N}=(1, \mathrm{n})$ and $\mathbf{n}$ is a unit-spatial 3 -vector. All operations listed below work similarly on the Null 4 -Vector.

Do a Time Reversal Operation: T
The particle's temporal direction is reversed \& complex-conjugated: $\mathbf{T}_{\mathrm{T}}=-\mathbf{T}^{*}=\gamma(-1, \beta)^{*}$

Do a Parity Operation (Space Reflection): P Only the spatial directions are reversed: $\mathrm{T}_{\mathrm{P}}=\gamma(1,-\beta)$

Do a Charge Conjugation Operation: C
Charge Conjugation actually changes all internal quantum \#'s: charge, lepton \#, etc.
Feynman showed this is the equivalent of a world-line reversal \& complex-conjugation: $\mathbf{T}_{\mathrm{C}}=\gamma(-1,-\beta)^{*}$

SR 4-Tensor (2,0)-Tensor T ${ }^{\mu v}$ (1,1)-Tensor $T^{\mu}{ }_{v}$ or $T_{\nu}$
$(0,2)$-Tensor $T_{\mu v}$ $(0,1)$-Tensor $V_{\mu}=\left(\mathrm{V}_{0},-\mathrm{v}\right) \quad$ Lorentz Scalar of Physical 4-Vectors

## SRQM: CPT Theorem vs (Parity) vs (Time)



After (PP) or (TT) or (CC)

## Original 4-Vector <br> $A=A^{\vee}=\left(a^{0}, a\right)$

Identity and Space-Parity are Unitary
Time-Reversal and Charge-Conjugation are Anti-Unitary.

SR 4-Tensor (2,0)-Tensor $\mathrm{T}^{\mu \nu}$ (1,1)-Tensor $\mathrm{T}^{\mu}$ vor $\mathrm{T}_{\mu}{ }^{v}$
$(0,2)$-Tensor $\mathrm{T}_{\mathrm{\mu v}}$

(\# of independent parameters = \# continuous symmetries = \# Lie Dimensions)
Poincaré Transformation Group aka. Inhomogeneous Lorentz Transformation Lie group of all affine isometries of SR:Minkowski Time-Space (preserve quadratic form $\eta_{\mu v}$ ) General Linear,Affine Transform $X^{\mu^{\prime}}=\Lambda^{\mu^{\prime}}{ }^{\prime} X^{v}+\Delta X^{\mu^{\prime}}$ with $\operatorname{Det}\left[\Lambda^{\mu^{\prime}}{ }_{v}\right]= \pm 1$
$(6+4=10)$


	$\mathrm{M}^{01}$	$\mathrm{M}^{02}$	$\mathrm{M}^{03}$	$\mathrm{P}^{0}$	
$\mathrm{M}^{10}$		$\mathrm{M}^{12}$	$\mathrm{M}^{13}$		$\mathrm{P}^{1}$
$\mathrm{M}^{20}$	$\mathrm{M}^{21}$		$\mathrm{M}^{23}$	$\mathrm{P}^{2}$	
$\mathrm{M}^{30}$	$\mathrm{M}^{31}$	$\mathrm{M}^{32}$		$\mathrm{P}^{3}$	

4-AngularMomentum $M^{\mathrm{tv}}=\mathrm{X}^{\mathrm{N}} \mathrm{A}^{\wedge} \mathrm{P}^{\mathrm{v}}=\mathrm{X}^{\mathrm{L}} \mathrm{P}^{\mathrm{v}}-\mathrm{X}^{\mathrm{v}} \mathrm{P}^{\mathrm{u}}$ $=$ Generator of Lorentz Transformations (6) $=\left\{\Lambda^{\nu_{v}} \rightarrow R^{v}{ }_{v}\right.$ Rotations (3) $+\Lambda^{\mu^{\prime}}{ }_{v} \rightarrow B^{w_{v}}$ Boosts (3) $\}$

4-LinearMomentum $\mathrm{P}^{\mu}$
$=$ Generator of Translation Transformations (4)

Det[ $\left.\Lambda \mu_{v}^{\prime}\right]$ ] +1 for Proper Lorentz Transforms
$\operatorname{Det}\left[\Lambda_{v}{ }_{v}^{\prime}\right]=-1$ for Improper Lorentz Transforms
Lorentz Matrices can be generated by a matrix M
with $\operatorname{Tr}[\mathrm{M}]=0$ which gives:
$\left\{\Lambda=e^{\wedge} \mathrm{M}=\mathrm{e}^{\wedge}(+\boldsymbol{\theta} \cdot \mathrm{J}-\boldsymbol{\zeta} \cdot \mathrm{K})\right\}$ $\left\{\wedge^{\top}=\left(e^{\wedge} M\right)^{\top}=e^{\wedge} M^{\top}\right\}$
$\left\{\wedge^{-1}=\left(e^{\wedge} M\right)^{-1}=e^{\wedge}-M\right\} \quad$ SR:Lorentz Transform
$\partial_{v}\left[R^{\mu^{\prime}}\right]=\partial R^{\mu^{\prime}} / \partial R^{v}=\Lambda^{\mu^{\prime}}{ }_{v}$
$\mathrm{M}=+\boldsymbol{\theta} \cdot \mathrm{J}-\zeta \cdot \mathrm{K}$
$B[\zeta]=e^{\wedge}(-\zeta \cdot K)$
$R[\theta]=e^{\wedge}(+\theta \cdot J)$

$$
\Lambda^{\mu_{v}}=\left(\Lambda^{-1}\right)_{v^{\mu}}: \Lambda^{\mu}{ }_{a}\left(\Lambda^{-1}\right)^{a_{v}}=\eta^{\mu}{ }_{v}=\delta
$$

$\eta_{\nu \nu} \wedge^{\mu}{ }_{a} \wedge^{v_{\beta}}=\eta_{\alpha \beta}$

Rotations $\mathrm{J}_{\mathrm{i}}=-\varepsilon_{\mathrm{imn}} \mathrm{M}^{\mathrm{mn}} / 2$, Boosts $\mathrm{K}_{\mathrm{i}}=\mathrm{M}_{\mathrm{i} 0}$
$\left[\left(R \rightarrow-R^{*}\right)\right]$ or $\left[\left(t \rightarrow-t^{*}\right) \&(r \rightarrow-r)\right]$ imply $q \rightarrow-q$ Feynman-Stueckelberg Interpretation
Amusingly, Inhomogeneous Lorentz adds homogeneity.

A Tensor Study of Physical 4-Vectors

## Hermitian Generators

 Noether's Theorem - ContinuityThe Hermitian Generators that lead to translations and rotations via unitary operators in QM...
These all ultimately come from the Poincaré Invariance $\rightarrow$ Lorentz Invariance that is at the heart of SR and Minkowski Space.

Infintesimal Unitary Transformation
$\hat{\mathbf{U}}_{\varepsilon}(\hat{\mathbf{G}})=\mathbf{I}+i \varepsilon \hat{\mathbf{G}}$
Finite Unitary Transformation
$\hat{\mathbf{U}}_{\mathrm{a}}(\hat{\mathbf{G}})=\mathrm{e}^{\wedge}(\mathrm{i} \alpha \hat{\mathbf{G}})$
let $\hat{\mathbf{G}}=\mathbf{P} / \hbar=\mathbf{K}$
let $\alpha=\mathbf{\Delta x}$
$\hat{\mathbf{U}}_{\Delta \mathbf{x}}(\mathbf{P} / \hbar) \Psi(\mathbf{X})=\mathrm{e}^{\wedge}(\mathrm{i} \Delta \mathbf{x} \cdot \mathbf{P} / \hbar) \Psi(\mathbf{X})=\mathrm{e}^{\wedge}(-\Delta \mathbf{x} \cdot \partial) \Psi(\mathbf{X})=\Psi(\mathbf{X}-\boldsymbol{\Delta x})$
Time component: $\hat{\mathbf{U}}_{\Delta c t}(P / \hbar) \Psi(c t)=e^{\wedge}(i \Delta t E / \hbar) \Psi(c t)=e^{\wedge}\left(-\Delta t \partial_{t}\right) \Psi(c t)=\Psi(c t-c \Delta t)=c \Psi(t-\Delta t)$
Space component: $\hat{U}_{\Delta \mathbf{x}}(\mathbf{p} / \hbar) \Psi(\mathbf{x})=\mathrm{e}^{\wedge}(\mathrm{i} \Delta \mathbf{x} \cdot \mathrm{p} / \hbar) \Psi(\mathbf{x})=\mathrm{e}^{\wedge}(\Delta \mathbf{x} \cdot \nabla) \Psi(\mathbf{x})=\Psi(\mathbf{x}+\Delta \mathbf{x})$
By Noether's Theorem, this leads to $\partial \cdot K=0$
We had already calculated
$(\partial \cdot \partial)[K \cdot \mathbf{X}]=\left(\left(\partial_{t} / \mathbf{c}\right)^{2}-\nabla \cdot \nabla\right)(\omega t-\mathbf{k} \cdot \mathbf{x})=0$
$(\partial \cdot \partial)[K \cdot X]=\partial \cdot(\partial[K \cdot X])=\partial \cdot K=0$
Poincaré Invariance also gives the Casimir invariants of mass and spin, and ultimately leads to the spin-statistics theorem of RQM.

## QM Correspondence Principle: Analogous to the GR and SR limits

Basically, the old school QM Correspondence Principle says that QM should give the same results as classical physics in the realm of large quantum systems, i.e. where macroscopic behavior overwhelms quantum effects. Perhaps a better way to state it is when the change of system by a single quantum has a negligible effect on the overall state.

There is a way to derive this limit, by using Hamilton-Jacobi Theory: $\left(\mathrm{i} \hbar \partial_{\mathrm{T}}\right)\left|\Psi>\sim\left[\mathrm{V}-\left(\hbar \nabla_{\mathrm{T}}\right)^{2} / 2 m_{\mathrm{o}}\right]\right| \Psi>$ : The Schrödinger NRQM Equation for a point particle (non-relativistic QM)

Examine solutions of form $\Psi=\Psi_{\circ} \mathrm{e}^{\wedge}(\mathrm{i} \Phi)=\Psi_{\circ} \mathrm{e}^{\wedge}(\mathrm{iS} / \hbar)$, where S is the QM Action $\partial_{t}[\Psi]=(i / \hbar) \Psi \partial_{[ }[S]$ and $\partial_{x}[\Psi]=(i / \hbar) \Psi \partial_{x}[S]$ and $\nabla^{2}[\Psi]=(i / \hbar) \Psi \nabla^{2}[S]-\left(\Psi / \hbar^{2}\right)(\nabla[S])^{2}$
(iћ) $\left.(\mathrm{i} / \hbar) \Psi \partial_{\mathrm{t}}[\mathrm{S}]=\mathrm{V} \Psi-\left(\hbar^{2} / 2 \mathrm{~m}_{0}\right)(\mathrm{i} / \hbar) \Psi \nabla^{2}[\mathrm{~S}]-\left(\Psi / \hbar^{2}\right)(\nabla[\mathrm{S}])^{2}\right)$
(i)(i) $\Psi \partial_{\mathrm{t}}[\mathrm{S}]=\mathrm{V} \Psi-\left(\left(\mathrm{i} \hbar / 2 \mathrm{~m}_{\circ}\right) \Psi \nabla^{2}[\mathrm{~S}]-\left(\Psi / 2 \mathrm{~m}_{\circ}\right)(\nabla[\mathrm{S}])^{2}\right)$
$\partial_{\mathrm{t}}[\mathrm{S}]=-\mathrm{V}+\left(\mathrm{i} \hbar / 2 \mathrm{~m}_{\circ}\right) \nabla^{2}[\mathrm{~S}]-\left(1 / 2 \mathrm{~m}_{\mathrm{o}}\right)(\nabla[\mathrm{S}])^{2}$
$\partial_{\mathrm{t}}[\mathrm{S}]+\left[\mathrm{V}+\left(1 / 2 \mathrm{~m}_{0}\right)(\nabla[\mathrm{S}])^{2}\right]=\left(\mathrm{i} \hbar / 2 \mathrm{~m}_{0}\right) \nabla^{2}[\mathrm{~S}]$ : Quantum Single Particle Hamilton-Jacobi $\partial_{t}[\mathrm{~S}]+\left[\mathrm{V}+\left(1 / 2 \mathrm{~m}_{\mathrm{o}}\right)(\nabla[\mathrm{S}])^{2}\right]=\quad 0 \quad$ : Classical Single Particle Hamilton-Jacobi

Thus, the classical limiting case is:
$\nabla^{2}[\Phi] \ll(\nabla[\Phi])^{2}$
$\hbar \nabla^{2}[S] \ll(\nabla[S])^{2}$
$\hbar \nabla \cdot p \ll(p \cdot p)$
$\nabla \cdot \mathbf{k} \ll(\mathbf{k} \cdot \mathbf{k})$
(pA) $\nabla \cdot p \ll(p \cdot p)$
$\partial_{[ }[\mathrm{S}]+\left[\mathrm{V}+\left(1 / 2 \mathrm{~m}_{0}\right)(\nabla[\mathrm{S}])^{2}\right]=\left(\mathrm{i} / 2 \mathrm{~m}_{0}\right) \nabla^{2}[\mathrm{~S}]:$ Quantum Single Particle Hamilton-Jacobi
$\partial_{\mathrm{i}}[\mathrm{S}]+\left[\mathrm{V}+\left(1 / 2 \mathrm{~m}_{0}\right)(\nabla[\mathrm{S}])^{2}\right]=0 \quad 0 \quad$ : Classical Single Particle Hamilton-Jacobi

Thus, the quantum $\rightarrow$ classical limiting-case is: \{all equivalent representations\}

$\hbar \nabla^{2}\left[\mathrm{~S}_{\text {action }}\right] \ll\left(\nabla\left[\mathrm{S}_{\text {action }}\right]\right)^{2}$	$\nabla^{2}\left[\Phi_{\text {phase }}\right] \ll\left(\nabla\left[\Phi_{\text {phase }}\right]\right)^{2}$
$\hbar \nabla \cdot \nabla\left[\mathrm{~S}_{\text {action }}\right] \ll\left(\nabla\left[\mathrm{S}_{\text {action }}\right]\right)^{2}$	$\nabla \cdot \nabla\left[\Phi_{\text {phase }}\right] \ll\left(\nabla\left[\Phi_{\text {phase }}\right]\right)^{2}$

$\hbar \nabla \cdot \mathbf{p} \quad \ll(\mathbf{p} \cdot \mathbf{p}) \quad \nabla \cdot \mathbf{k} \quad \ll(\mathbf{k} \cdot \mathbf{k})$
$(p A) \nabla \cdot p \quad \ll(p \cdot p)$
with
$\mathbf{P}=(\mathrm{E} / \mathrm{c}, \mathrm{p})=-\partial\left[\mathrm{S}_{\text {action }}\right]=-\left(\partial_{1} / \mathrm{c},-\nabla\right)\left[\mathrm{S}_{\text {action }}\right]=\left(-\partial_{/} / \mathrm{c}, \nabla\right)\left[\mathrm{S}_{\text {action }}\right]$
$\mathbf{K}=(\omega / \mathrm{c}, \mathrm{k})=-\partial\left[\Phi_{\text {phase }}\right]=-\left(\partial_{\mathrm{l}} / \mathrm{c},-\nabla\right)\left[\Phi_{\text {phase }}\right]=\left(-\partial_{/} / \mathrm{c}, \nabla\right)\left[\Phi_{\text {phase }}\right]$
This page needs some work. Source was from Goldstein

It is analogous to $\mathrm{GR} \rightarrow \mathrm{SR}$ in limit of low curvature (low mass), or $\mathrm{SR} \rightarrow \mathrm{CM}$ in limit of low velocity $\{|\mathrm{v}| \ll \mathrm{c}\}$.
It still applies, but is now understood as the same type of limiting-case as these others.
*Note* The commonly seen form of $(\mathrm{c} \rightarrow \infty, \hbar \rightarrow 0)$ as limits are incorrect!
c and $\hbar$ are universal constants - they never change.
If $c \rightarrow \infty$, then photons (light-waves) would have infinite energy $\{E=p c\}$. This is not true classically.
If $\hbar \rightarrow 0$, then photons (light-waves) would have zero energy $\{\mathrm{E}=\hbar \omega\}$. This is not true classically.
Always better to write the SR Classical limit as $\{|\mathbf{v}| \ll c\}$, the QM Classical limit as $\left\{\nabla^{2}\left[\Phi_{\text {phase }}\right] \ll\left(\nabla\left[\Phi_{\text {phase }}\right]\right)^{2}\right\}$
Again, it is more natural to find a limiting-case of a more general system than to try to unite two separate theories which may or may not ultimately be compatible. From logic, there is always the possibility to have a paradox result from combination of arbitrary axioms, whereas deductions from a single true axiom will always give true results.

Conservation of Probability : Probability Current : Charge Current Consider the following purely mathematical argument (based on Green's Vector Identity):
$\partial \cdot(\mathrm{f} \partial[\mathrm{g}]-\partial[f] \mathrm{g})=\mathrm{f} \partial \cdot \partial[\mathrm{g}]-\partial \cdot \partial[f] \mathrm{g}$ with (f) and (g) as SR Lorentz Scalar functions

## Proof:

$\partial \cdot(\mathrm{f} \partial \mathrm{g}]-\partial[f] \mathrm{g})$
$=\partial \cdot(\mathrm{f} \partial \mathrm{g}])-\partial \cdot(\partial[f] \mathrm{g})$
$=(f \partial \cdot \partial[g]+\partial[f] \cdot \partial[g])-(\partial[f] \cdot \partial[g]+\partial \cdot \partial[f] g)$
$=f \partial \cdot \partial[g]-\partial \cdot \partial[f]$
We can also multiply this by a Lorentz Invariant Scalar Constant s $s(f) \cdot \partial[g]-\partial \cdot \partial[f]$ g) $s \partial \cdot(f \partial[g]-\partial[f] g)=\partial \cdot s(f \partial[g]-\partial[f] g)$

Ok, so we have the math that we need...

```
Now, on to the physics... Start with the Klein-Gordon Eqn.
\partial\cdot\partial=(-imoc/\hbar)}\mp@subsup{)}{}{2}=-(\mp@subsup{m}{0}{}c/\hbar\mp@subsup{)}{}{2
\partial.\partial+((moc/\hbar)}\mp@subsup{)}{}{2}=
```

Let it act on SR Lorentz Invariant function g
$\partial \cdot \partial[g]+\left(m_{0} c / \hbar\right)^{2}[g]=0[g]$
Then pre-multiply by f
$[f] \partial \cdot \partial[g]+[f]\left(m_{0} c / \hbar\right)^{2}[g]=[f] 0[g]$
$[f] \partial \cdot \partial[g]+\left(m_{0} c / \hbar\right)^{2}[f][g]=0$

Do similarly with SR Lorentz Invariant function $f$ $\partial \cdot \partial[f]+\left(m_{0} c / \hbar\right)^{2}[f]=0[f]$
Then post-multiply by g
$\partial \cdot \partial[f][g]+\left(m_{0} / / \hbar\right)^{2}[f][g]=0[f][g]$
$\partial \cdot \partial[f][g]+\left(m_{0} c / \hbar\right)^{2}[f][g]=0$

Now, subtract the two equations
$\left\{[f] \partial \cdot \partial[g]+\left(m_{0} c / h\right)^{2}[f][g]=0\right\}-\left\{\partial \cdot \partial[f][g]+\left(m_{0} c / h\right)^{2}[f][g]=0\right\}$
[f] $\partial \cdot \partial[g]+\left(m_{0} c / \hbar\right)^{2}[f][g]-\partial \cdot \partial[f][g]-\left(m_{0} c / \hbar\right)^{2}[f][g]=0$
[f] $\partial \cdot \partial[g]-\partial \cdot \partial[f][g]=0$
And as we noted from the mathematical Green's Vector identity at the start... [f] $\partial \cdot \partial[g]-\partial \cdot \partial[f][g]=\partial \cdot(f \partial[g]-\partial[f] g)=0$

Therefore,
$s \partial \cdot(f \partial[g]-\partial[f] g)=0$
$\partial \cdot s(f \partial[g]-\partial[f] g)=0$
Thus, there is a conserved current 4 -Vector, $J_{\text {prob }}=s(f \partial[g]-\partial[f] g)$, for which $\partial \cdot J_{\text {prob }}=0$, and which also solves the Klein-Gordon equation.

Let's choose as before $(\partial=-\mathrm{i} \mathrm{K})$ with a plane wave function $\mathrm{f}=\mathrm{ae}^{\wedge}-\mathrm{i}(\mathbf{K} \cdot \mathbf{X})=\psi$, and choose $g=f^{*}=a e^{\wedge}(\mathrm{K} \cdot \mathrm{X})=\psi^{*}$ as its complex conjugate.

At this point, I am going to choose s = (iЋ/2mo), which is Lorentz Scalar Invariant, in order to make the probability have dimensionless units and be normalized to unity in the rest case.

## 4-ProbabilityCurrentDensity, a.k.a. 4-ProbabilityFlux

$J_{\text {prob }}=\left(\mathrm{c} \rho_{\text {prob }}, \mathrm{j}_{\text {prob }}\right)=\left(\mathrm{i} \mathrm{\hbar} / 2 \mathrm{~m}_{\circ}\right)\left(\Psi^{*} \partial[\psi]-\partial\left[\Psi^{*}\right] \psi\right)=\left(\rho_{\text {proboo }}\right) \mathbf{U}=\left(\rho_{\text {proboo }}\right) \gamma(\mathrm{c}, \mathrm{u})=\left(\gamma \rho_{\text {probo }}\right)(\mathrm{c}, \mathrm{u})=\left(\rho_{\text {prob }}\right)(\mathrm{c}, \mathrm{u})$ with 4-Divergence of Probability $\left\{\partial \cdot J_{\text {prob }}=0\right\}$ by construction via Green's Vector Identity and the Klein-Gordon RQM Eqn. The reason for $s=\left(i \hbar / 2 m_{0}\right)=\left(i c^{2} / 2 \omega_{0}\right)$ becomes more clear by examining our diagram: Start at the 4-Gradient and follow the arrows toward the 4-ProbabilityFlux You immediately see where the ( $\mathrm{i} \hbar / \mathrm{m}_{0}$ ) factor comes from. The $\rho_{\text {prob } \_o}$ is then a function of the $\psi$ 's divided by 2 .
$\partial \cdot(\mathrm{f} \partial[\mathrm{g}]-\partial[f] \mathrm{g})=\mathrm{f} \partial \cdot \partial[\mathrm{g}]-\partial \cdot \partial[f] \mathrm{g}:$ Green's Vector Identity

$\partial \cdot \partial=\left(\partial_{1} / c\right)^{2}-\nabla \cdot \nabla$
d'Alembertian
$\partial \cdot \partial=-\left(m_{0} c / \hbar\right)^{2}$
Klein-Gordon
4-Gradient
$\partial=(\partial / \mathrm{t},-\nabla)$

Examine the temporal component, the Probability Density
$\rho_{\text {prob }}=\left(i \hbar / 2 m_{0} c^{2}\right)\left(\psi^{*} \partial_{[ }[\psi]-\partial_{[ }\left[\psi^{*}\right] \psi\right)$
Assume wave solution in following general form:
$\left\{\Psi=A f[k] e^{(\text {(-iwt) }}\right\}$
$\left\{\psi^{*}=A^{*} f[k]^{*} e^{(t+i \omega t)}\right\}$
then
$\left\{\partial_{[ }[\psi]=(-i \omega) A f[k] e^{(-i \omega t)}=(-i \omega) \psi\right\} \quad \partial=\left(\partial_{1} / c,-\nabla\right)$
$\left\{\partial_{i}\left[\Psi^{*}\right]=(+i \omega) A^{*} f[k]^{*} e^{(+i \omega t)}=(+i \omega) \psi^{*}\right\} \quad-i K=-i(\omega / c, k)$
then
$\rho_{\text {prob }}=\left(i \hbar / 2 m_{0} c^{2}\right)\left(\psi^{*} \partial_{t}[\psi]-\partial_{t}\left[\psi^{*}\right] \psi\right)=\left(i / 2 \omega_{o}\right)\left(\psi^{*} \partial_{[ }[\psi]-\partial_{t}\left[\psi^{*}\right] \psi\right)$
$\rho_{\text {prob }}=\left(i \hbar / 2 m_{0} c^{2}\right)\left((-i \omega) \Psi^{*} \Psi-(+i \omega) \psi^{*} \Psi\right)$
$\rho_{\text {prob }}=\left(i \hbar / 2 m_{0} c^{2}\right)\left((-2 i \omega) \psi^{*} \Psi\right)=\left(i / 2 \omega_{0}\right)\left((-2 i \omega) \psi^{*} \Psi\right)$
$\rho_{\text {prob }}=\left(\hbar \omega / m_{0} c^{2}\right)\left(\Psi^{*} \Psi\right) \quad=\left(\omega / \omega_{0}\right)\left(\Psi^{*} \psi\right)$
$\rho_{\text {prob }}=\left(\hbar \gamma \omega_{0} / m_{0} c^{2}\right)\left(\psi^{*} \Psi\right) \quad=\left(\gamma \omega_{0} / \omega_{0}\right)\left(\Psi^{*} \Psi\right)$
$\rho_{\text {prob }}=(\gamma)\left(\psi^{*} \Psi\right)=(\gamma)\left(\rho_{\text {probo }}\right)$
Finally, multiply by charge (q) to get standard SR EM
4-CurrentDensity $=4$-ChargeFlux
$=\mathbf{J}=(\mathrm{c} \rho, \mathrm{j})=\mathrm{q} \mathrm{J}_{\text {prob }}=\mathrm{q}\left(\mathrm{c} \rho_{\text {prob }}, \mathrm{j}_{\text {prob }}\right)$

SR 4-Tensor
(2,0)-Tensor T ${ }^{\text {uv }}$ 1,1 )-Tensor $T^{\mu}{ }_{v}$ or $T_{\mu}{ }^{v}$
(0,2)-Tensor $T^{~}$

## 4-ProbabilityCurrentDensity, a.k.a. 4-ProbabilityFlux

$J_{\text {prob }}=\left(c \rho_{\text {prob }}, j\right.$ prob $)=\left(i \hbar / 2 m_{0}\right)\left(\psi^{*} \partial[\psi]-\partial\left[\psi^{*}\right] \psi\right)=\left(\rho_{\text {probo }}\right) \mathbf{U}=\left(\rho_{\text {probo }}\right) \gamma(\mathrm{c}, \mathrm{u})=\left(\gamma \rho_{\text {probo }}\right)(\mathrm{c}, \mathrm{u})=\left(\rho_{\text {prob }}\right)(\mathrm{c}, \mathrm{u})$ with 4-Divergence of Probability $\left\{\partial \cdot J_{\text {prob }}=0\right\}$ by construction via Green's Vector Identity and the Klein-Gordon RQM Eqn. If we include minimal coupling:
$\mathrm{J}_{\text {prob }}=\left(\mathrm{c} \rho_{\text {prob }}, \mathrm{j}_{\text {prob }}\right)=\left(\mathrm{i} \hbar / 2 \mathrm{~m}_{0}\right)\left(\psi^{*} \partial[\psi]-\partial\left[\psi^{*}\right] \psi\right)+\left(\mathrm{q} / \mathrm{m}_{0}\right)\left(\psi^{*} \psi\right) \mathrm{A}$ Start at A on the chart
Follow past (q) factor to get to $\mathbf{Q}=\mathrm{qA}$
Minimal Coupling allows passage back to $\mathbf{P}$ with no factors Follow back past $\left(1 / m_{0}\right)$ to get to $\mathbf{U}$ Follow past Born Rule ( $\Psi^{*} \Psi$ ) Now have the additional factor:



# 4-Vector Quantum Probability Newtonian Limit 

4-ProbabilityCurrentDensity $\mathrm{J}_{\text {prob }}=\left(\mathrm{c} \rho_{\text {prob, }}, \mathrm{j}_{\mathrm{prob}}\right)=\left(\mathrm{i} \hbar / 2 \mathrm{~m}_{0}\right)\left(\psi^{*} \partial[\psi]-\partial\left[\psi^{*}\right] \psi\right)+\left(\mathrm{q} / \mathrm{m}_{0}\right)\left(\psi^{*} \psi\right) \mathbf{A}$
Examine the temporal component:
$\rho_{\text {prob }}=\left(i \hbar / 2 m_{0} c^{2}\right)\left(\psi^{*} \partial_{[ }[\psi]-\partial_{[ }\left[\psi^{*}\right] \psi\right)+\left(q / m_{0}\right)\left(\psi^{*} \psi\right)\left(\varphi / c^{2}\right)$
$\rho_{\text {prob }} \rightarrow(\gamma)\left(\Psi^{*} \Psi\right)+(\gamma)\left(q \varphi_{o} / m_{0} c^{2}\right)\left(\Psi^{*} \Psi\right)=(\gamma)\left[1+q \varphi_{o} / E_{0}\right]\left(\Psi^{*} \Psi\right)$
Typically, the particle EM potential energy ( $q \varphi_{0}$ ) is much less than the particle rest energy ( $\mathrm{E}_{0}$ ), else it could generate new particles.
So, take $\left(q \varphi_{o} \ll \mathrm{E}_{\mathrm{o}}\right)$, which gives the EM factor $\left(\mathrm{q} \varphi_{o} / \mathrm{E}_{\mathrm{o}}\right) \sim 0$
Now, taking the low-velocity limit $(\gamma \rightarrow 1)$, $\rho_{\text {prob }}=\gamma[1+\sim 0]\left(\Psi^{*} \Psi\right)$, $\rho_{\text {prob }} \rightarrow\left(\psi^{*} \Psi\right)=\left(\rho_{\text {probo }}\right)$ for $|\mathbf{v}| \ll c$
The Standard Born Probability Interpretation, $\left(\Psi^{*} \Psi\right)=\left(\rho_{\text {prob }}\right)$, only applies in the low-potential-energy \& low-velocity limit
This is why the \{non-positive-definite\} probabilities and \{|probabilities|>1\} in the RQM Klein-Gordon equation gave physicists fits, and is the reason why one must regard the probabilities as charge conservation instead.

The original definition from SR is Continuity of Worldlines, $\partial \cdot J_{\text {prob }}=0$, for which all is good and well in the RQM version.
The definition says there are no external sources or sinks of probability = conservation of probability.
The Born idea that $\left(\rho_{\text {prob }}\right) \rightarrow \operatorname{Sum}\left[\left(\Psi^{*} \Psi\right)\right]=1$ is just the Low-Velocity QM limit.
Only the non-EM rest version $\left(\rho_{\text {probo }}\right)=\operatorname{Sum}\left[\left(\Psi^{*} \Psi\right)\right]=1$ is true.
It is not a fundamental axiom, it is an emergent property which is valid only in the NRQM limit
We now multiply by charge (q) to instead get a
4-"Charge"CurrentDensity $\mathbf{J}=(\mathrm{c}, \mathrm{j})=\mathrm{qJ}$ prob $=q\left(\mathrm{c} \rho_{\text {prob }}\right.$, $\left.\mathrm{j}_{\text {prob }}\right)$, which is the standard SR EM 4-CurrentDensity
(0,2)-Tensor T

SR 4-Scalar
(0,0)-Tensor S or S
Lorentz Scalar

SRQM: A treatise of SR $\rightarrow$ QM by John B. Wilson (SciRealm@aol.com)
$(+,-,-) S, R \rightarrow Q M$

## SRQM 4-Vector Study: The QM Compton Effect Compton Scattering

Electron $e^{-}$initial	Photon Y initial
4-Momentum of e $P_{\mathrm{ei}}=\left(\mathrm{m}_{\mathrm{ei}} \mathrm{C}, \mathrm{p}_{\mathrm{ei}}\right)=\left(\mathrm{E}_{\mathrm{e} i} / \mathrm{c}, \mathrm{p}_{\mathrm{ei}}\right)$	4-WaveVector of $Y$ $\mathbf{K}_{\mathrm{pi}}=\left(\omega_{\mathrm{p} i} / \mathrm{c}, \mathrm{K}_{\mathrm{pi}}\right)$
$\begin{gathered} \text { 4-Momentum of } Y \\ \mid P_{p i}=\left(m_{p i}, p_{p i}\right)=\left(E_{p i} / \mathrm{c}, \mathrm{p}_{\mathrm{pi}}\right)=(\hbar) \mathrm{K}_{\mathrm{pi}} \end{gathered}$	
4-TotalMomentum of $\begin{gathered} P_{t i}=\left(E_{T} / c, p_{T}\right)=(H / c, p \\ =P_{e i}+P_{p i} \end{gathered}$	
Electron:Photon Interaction	
4-TotalMomentum of $e^{-}+\gamma$ $\begin{gathered} P_{t f}=\left(E_{T} / c, p_{T}\right)=\left(H / c, p_{T}\right) \\ =P_{e f}+P_{p f} \end{gathered}$   Final	
$\begin{gathered} \text { 4-Momentum of } \mathrm{Y} \\ \mathbf{P}_{\mathrm{pf}}=\left(\mathrm{m}_{\mathrm{pf}} \mathrm{C}, \mathrm{p}_{\mathrm{pf}}\right)=\left(\mathrm{E}_{\mathrm{pf}} / \mathrm{c}, \mathrm{p}_{\mathrm{pf}}\right)=(\hbar) \mathrm{K}_{\mathrm{pf}} \end{gathered}$	

Compton Scattering Derivation : Compton Effect
$\mathbf{P} \cdot \mathbf{P}=\left(m_{0} c\right)^{2}$ generally $\rightarrow 0$ for photons ( $m_{0}=0$ )
$P_{\text {phot1 }} \cdot P_{\text {phot2 }}=\hbar^{2} K_{1} \cdot K_{2}=\left(\hbar^{2} \omega_{1} \omega_{2} / c^{2}\right)\left(1-\hat{n}_{1} \cdot \hat{n}_{2}\right)=\left(\hbar^{2} \omega_{1} \omega_{2} / c^{2}\right)(1-\cos [\varnothing])$
$P_{\text {phot }} \cdot P_{\text {mass }}=\hbar K \cdot P=(\hbar \omega / c)(1, \hat{n}) \cdot(E / c, p)=(\hbar \omega / c)(E / c-\hat{n} \cdot p)=\left(\hbar \omega E_{o} / c^{2}\right)=\left(\hbar \omega m_{0}\right)$
$\mathrm{P}_{\text {phot }}+\mathrm{P}_{\text {mass }}=\mathrm{P}_{\text {phot }}^{\prime}+\mathrm{P}_{\text {mass: }}^{\prime}$ 4-MomentumConservation in Photon $\cdot$ Mass Interaction ===
$P_{\text {phot }}+P_{\text {mass }}-P_{\text {phot }}^{\prime}=P_{\text {mass: }}^{\prime}$ rearrange
$\left(P_{\text {phot }}+P_{\text {mass }}-P_{\text {phot }}^{\prime}\right)^{2}=\left(P_{\text {mass }}^{\prime}\right)^{2}$ :square to get scalars
$\left(P_{\text {phot }} \cdot P_{\text {phot }}+2 P_{\text {phot }} \cdot P_{\text {mass }}-2 P_{\text {phot }} \cdot P_{\text {phot }}^{\prime}+P_{\text {mass }} \cdot P_{\text {mass }}-2 P_{\text {mass }} \cdot P_{\text {phot }}^{\prime}+P_{\text {phot }}^{\prime} \cdot P_{\text {phot }}^{\prime}\right)=\left(P_{\text {mass }}^{\prime}\right)^{2}$ $\left(0+2 \mathbf{P}_{\text {phot }} \cdot \mathbf{P}_{\text {mass }}-2 \mathbf{P}_{\text {phot }} \cdot P_{\text {phot }}+\left(m_{0} c\right)^{2}-2 P_{\text {mass }} \cdot P_{\text {phot }}+0\right)=\left(m_{0} c\right)^{2}$ $\mathbf{P}_{\text {phot }} \cdot \mathbf{P}_{\text {mass }}-\mathbf{P}_{\text {mass }} \cdot \mathbf{P}_{\text {phot }}=\mathbf{P}_{\text {phot }} \cdot \mathbf{P}_{\text {phot }}^{\prime}$
$\left(\hbar \omega m_{0}\right)-\left(\hbar \omega^{\prime} m_{0}\right)=\left(\hbar^{2} \omega \omega^{\prime} / c^{2}\right)(1-\cos [\varnothing])$
$\left(\omega-\omega^{\prime}\right) /\left(\omega \omega^{\prime}\right)=\left(\hbar / m_{0} c^{2}\right)(1-\cos [\varnothing])$
$\left(1 / \omega^{\prime}-1 / \omega\right)=\left(\hbar / m_{0} c^{2}\right)(1-\cos [\varnothing])$
$\Delta A=\left(A^{\prime}-A\right)=\left(\hbar / m_{0} c\right)(1-\cos [\varnothing])=A c(1-\cos [\varnothing])$
The Compton Effect:Compton Scattering

## with

$A_{c}=\lambda_{c} / 2 \pi=\left(\hbar / m_{0} c\right)=$ Reduced Compton Wavelength $\lambda_{c}=\left(h / m_{0} c\right)=$ Compton Wavelength (not a rest-wavelength, but the wavelength of a photon with the energy equivalent to a massive particle of rest-mass $\mathrm{m}_{0}$ )

Calculates the wavelength shift of a photon scattering from an electron (ignoring spin) Proves that light does not have a "wave-only" description, photon 4-Momentum required $\mathrm{E} / \omega=\gamma \mathrm{E}_{\mathrm{d}} / \gamma \omega_{0}=\mathrm{E}_{\mathrm{d}} / \omega_{0}=\hbar \quad \mathrm{K}_{\text {photon }}=(\omega / \mathrm{c})(1, \mathbf{n})=$ null $\quad\{\omega A=v \lambda=\mathrm{c}\}$ for photons


4-Momentum of e $P_{\text {ef }}=\left(m_{\text {ef }} C, p_{\text {ef }}\right)=\left(E_{\text {ef }} / c, p_{\text {ef }}\right)$

4-WaveVector of $Y$
$\mathbf{K}_{\mathrm{pf}}=\left(\omega_{\mathrm{p}} / \mathrm{c}, \mathbf{k}_{\mathrm{pf}}\right)$ $\mathbf{K}_{\mathrm{pf}}=\left(\omega_{\mathrm{pf}} / \mathrm{c}, \mathrm{K}_{\mathrm{pf}}\right)$

Trace $\left[T^{\mu \nu}\right]=\eta_{\mu v} T^{\mu v}=T_{\mu}^{\mu}=T$
$\mathbf{V} \cdot \mathbf{V}=\mathrm{V}^{\mu} \eta_{\mu \mathrm{v}} \mathrm{V}^{\mathrm{V}}=\left[\left(\mathrm{v}^{0}\right)^{2}-\mathbf{v} \cdot \mathbf{v}\right]=\left(\mathrm{v}^{0}{ }_{\mathrm{o}}\right)^{2}$
= Lorentz Scalar Invariant

## Aharonov-Bohm Effect

The EM 4-VectorPotential gives the Aharonov-Bohm Effect.

$$
\Phi_{\mathrm{pot}}=-(\mathrm{q} / \hbar) \mathbf{A} \cdot \mathbf{X}=-\mathrm{K}_{\mathrm{pot}} \cdot \mathbf{X}
$$

or taking the differential...
$d \Phi_{\text {pot }}=-(q / \hbar) A \cdot d X$
over a path...
$\Delta \Phi_{\text {pot }}=\int_{\text {path }} \mathrm{d} \Phi_{\text {pot }}$
$\Delta \Phi_{\text {pot }}=-(\mathrm{q} / \hbar) \int_{\text {path }} \mathbf{A} \cdot \mathrm{dX}$
$\Delta \Phi_{\text {pot }}=-(\mathrm{q} / \hbar) \int_{\text {path }}[(\varphi / \mathrm{c})(\mathrm{cdt})-\mathbf{a} \cdot \mathbf{d x}]$
$\Delta \Phi_{\text {pot }}=-(\mathrm{q} / \hbar) \int_{\text {path }}(\varphi \mathrm{dt}-\mathbf{a} \cdot \mathbf{d} \mathbf{x})$


Note that both the Electric and Magnetic effects come out by using the 4-Vector notation.

Electric AB effect: $\Delta \Phi_{\text {pot_Elec }}=-(q / \hbar) \int_{\text {path }}(\varphi d t)$
Magnetic $A B$ effect: $\Delta \Phi_{\text {pot_Mag }}=+(\mathrm{q} / \hbar) \int_{\text {path }}(\mathbf{a} \cdot \mathbf{d x})$
Proves that the 4-VectorPotential $\mathbf{A}$ is more fundamental than e and b fields, which are just components of the Faraday EM Tensor $(0,1)$-Tensor $V_{\mu}=\left(v_{0},-v\right)$
Trace $\left[T^{\mathrm{NV}}\right]=\eta_{\mathrm{Lv}} \mathrm{T}^{\mathrm{NV}}=\mathrm{T}^{\mu_{\mu}}=\mathrm{T}$
$\mathbf{V} \cdot \mathbf{V}=\mathrm{V}^{\mathrm{V}} \eta_{\mathrm{pv}} \mathrm{V}^{\mathrm{V}}=\left[\left(\mathrm{v}^{0}\right)^{2}-\mathbf{v} \cdot \mathbf{v}\right]=\left(\mathrm{v}_{0}^{0}\right)^{2}$
$=$ Lorentz Scalar Invariant

## Josephson Effect

The EM 4-VectorPotential gives the Aharonov-Bohm Effect.
Phase $\Phi_{\text {pot }}=-(q / \hbar) \mathbf{A} \cdot \mathbf{X}=-\mathbf{K}_{\text {pot }} \cdot \mathbf{X}$
Rearrange the equation a bit:
$-(\hbar / \mathrm{q}) \Delta \Phi_{\text {pot }}=\mathbf{A} \cdot \Delta \mathbf{X}$
$\mathbf{A} \cdot \Delta \mathbf{X}=-(\hbar / \mathrm{q}) \Delta \Phi_{\text {pot }}$
$\mathrm{d} / \mathrm{d} \tau[\mathbf{A} \cdot \Delta \mathbf{X}]=\mathrm{d} / \mathrm{d} \tau\left[-(\mathrm{\hbar} / \mathrm{q}) \Delta \boldsymbol{\Phi}_{\text {pot }}\right]=\mathrm{d} / \mathrm{d} \tau[\mathbf{A}] \cdot \Delta \mathbf{X}+\mathbf{A} \cdot \mathrm{d} / \mathrm{d} \tau[\Delta \mathbf{X}]=\mathrm{d} / \mathrm{d} \tau[\mathbf{A}] \cdot \Delta \mathbf{X}+\mathbf{A} \cdot \mathbf{U}$
Assume that ( $\mathrm{d} / \mathrm{d} \tau[\mathbf{A}] \cdot \Delta \mathrm{X} \sim 0$ )
$[\mathbf{A} \cdot \mathrm{U}]=\mathrm{d} / \mathrm{d} \tau\left[-(\hbar / \mathrm{q}) \Delta \Phi_{\mathrm{pot}}\right]$
$[\mathrm{U} \cdot \mathrm{A}]=(\mathrm{U} \cdot \partial)\left[-(\hbar / \mathrm{q}) \Delta \Phi_{\mathrm{pot}}\right]$
$[A]=-(\hbar / \mathrm{q})(\partial)\left[\Delta \Phi_{\text {poo }}\right]$
$\mathbf{A}=-(\hbar / \mathrm{q}) \partial\left[\Delta \Phi_{\text {pot }}\right]$
$(\varphi / \mathrm{c}, \mathrm{a})=-(\hbar / \mathrm{q})\left(\partial_{\mathrm{t}} / \mathrm{c},-\nabla\right)\left[\Delta \Phi_{\text {pot }}\right]$
Which explains Josephson Effect criteria $\Delta X \sim 0$ : small gap
$\mathrm{d} / \mathrm{d} \tau[\mathbf{A}] \sim 0$ : "critical current" \& no voltage $\mathrm{d} / \mathrm{d} \tau[\mathbf{A}] \cdot \Delta \mathbf{X} \sim$ orthogonal: ??

$$
\mathbf{A}=(\hbar / q) \mathbf{K} ; \mathbf{K}=(\omega / \mathrm{c}, \mathrm{k})=(\mathrm{q} / \hbar) \mathbf{A}=(\mathrm{q} / \hbar)(\varphi / \mathrm{c}, \mathrm{a})
$$

Take the temporal part:
EM ScalarPotential $\varphi=-(\hbar / \mathrm{q})\left(\partial_{\mathrm{t}}\right)\left[\Delta \Phi_{\text {pot }}\right] ; \omega=(\mathrm{q} / \hbar) \varphi$
If the charge $(q)$ is a Cooper-electron-pair: $\{q=-2 e\}$
Voltage $\mathrm{V}(\mathrm{t})=\varphi(\mathrm{t})=(\hbar / 2 \mathrm{e})(\partial / \partial \mathrm{t})\left[\Delta \Phi_{\text {pol }}\right] ; \quad$ AngFreq $\omega=-2 \mathrm{e} \mathrm{V} / \hbar$
This is the superconducting phase evolution equation of the Josephson Effect
$(\hbar / 2 e)$ is defined to be the Magnetic Flux Quantum $\Phi_{。}$


SR 4-Tensor
(2,0)-Tensor T ${ }^{\text {wv }}$ (1,1)-Tensor $\mathrm{T}^{\mu}{ }_{v}$ or $\mathrm{T}_{\nu}$
$(0,2)$-Tensor $T_{\mu v}$ SR 4-CoVector:OneForm $(0,1)$-Tensor $\mathrm{V}_{\mu}=\left(\mathrm{v}_{0},-\mathrm{v}\right)$

## Differential (4-Vector) vs Integral (4-Scalar)

Notice the Symmetry:
Integral Formats : 4-Scalars : Action
SR Hamilton-Jacobi Equation
$\mathbf{P}_{\mathrm{T}}=\mathbf{P}+\mathbf{q} \mathbf{A}=\mathbf{P}+\mathbf{Q}=-\partial\left[\Delta \mathrm{S}_{\text {action }}\right]=-\partial\left[\hbar \Delta \Phi_{\text {phase }}\right]$ $=-\partial\left[\hbar\left(\Delta \Phi_{\text {phase,dyn }}+\Delta \Phi_{\text {phase, potential }}\right)\right]$

SR Action Equation
$\Delta S_{\text {action }}=-\int_{\text {path }} \mathbf{P}_{\top} \cdot d \mathbf{X}=-\int_{\text {path }}(\mathbf{P}+q \mathbf{A}) \cdot \mathbf{d X}=-\int_{\text {path }}(\mathbf{P}+\mathbf{Q}) \cdot \mathbf{d X}$ $=\hbar \Delta \Phi_{\text {phase }}=\hbar\left(\Delta \Phi_{\text {phase,dyn }}+\Delta \Phi_{\text {phase.potential }}\right)$


4-TotMomentum Conservation $\mathbf{P}_{\mathrm{T}}=(\mathrm{P}+\mathbf{Q})=(\mathbf{P}+\mathrm{qA})$ Minimal Coupling $P=\left(P_{T}-q A\right)=\left(P_{T}-Q\right)$

Potential Part

4-PotentialMomentum $\mathbf{Q}=\mathrm{q} \mathbf{A}=-\partial\left[\Delta \mathrm{S}_{\text {act,potential }}\right]$ $-\partial\left[\hbar \Delta \Phi_{\text {phase,potential }}\right]$


Josephson Junction Relation $A=-(\hbar / q) \partial\left[\Delta \Phi_{\text {potential }}\right]$
$=-(1 / q) \partial\left[\Delta S_{\text {act,pot }}\right]$ =Q/q

Existing SR Rules Quantum Principles

## SRQM Symmetries:

 Schrödinger Relations
## 


Wick Rotation: $\mathbf{R}=-\mathbf{i} \mathbf{R}_{\text {im }} \rightarrow\{\mathrm{t}=-\mathrm{it}: \mathbf{r}=-\mathrm{i}(\mathrm{ir})\}$ CyclicTemp: $\mathbf{R}_{\mathrm{im}}=\hbar 0 \rightarrow\left\{\mathrm{~T}=\hbar / \mathrm{k}_{\mathrm{B}} \mathrm{T}:\right.$ : ir $\left.=\hbar \mathrm{h} / \mathrm{k}_{\mathrm{B}} \mathrm{T}\right\}$
 TimeTemp: $\mathbf{R}=-i \hbar 0 \rightarrow\left\{\mathrm{t}=-\mathrm{i} \hbar / \mathrm{k}_{\mathrm{B}} \mathrm{T}: \mathrm{r}=-\mathrm{i} \hbar \mathrm{h} / \mathrm{k}_{\mathrm{B}} \mathrm{T}\right\}$

## 4-Position

$\mathbf{R}=\mathrm{R}^{\mu}=(\mathrm{ct}, \mathrm{r}) \in<$ Event $>$
$\rightarrow(c t, x, y, z)$ alt. notation $\mathbf{X}=X^{\mu}$

Covariant Wick Rotation $R=-i R_{\text {im }}$

> 4-ImaginaryPosition
$\mathbf{R}_{\text {im }}=R_{\text {im }}{ }^{\mu}=i(c t, r)$ $=($ ict, ir) $=(\mathrm{ct}, \mathrm{ir})$

Covariant Euclidean Time
$\sim \operatorname{Inv}$ Temp
$\mathrm{R}_{\mathrm{im}}=\hbar \bigcirc$

4-ThermalVector
4-InverseTemperatureMomentum $\boldsymbol{\Theta}=\Theta^{\mu}=\left(\theta^{0}, \theta\right)=\left(c / k_{B} T, u / k_{B} T\right)=\left(\theta_{0} / c\right) \mathbf{U}$ $=\left(1 / k_{B} T\right)(c, u)=\left(1 / k_{B} \gamma T\right) U=\left(1 / k_{B} T_{o}\right) U$

## Boltzmann Distribution <br> $\mathbf{P} \cdot \boldsymbol{\Theta}=(\mathrm{E} / \mathrm{c}, \mathrm{p}) \cdot\left(\mathrm{c} / \mathrm{k}_{\mathrm{B}} \mathrm{T}, \theta\right)$ <br> $=\left(E / k_{B} T-p \cdot \theta\right)=\left(E_{0} / k_{B} T_{0}\right)$

 $(0,1)$-Tensor $\mathrm{V}_{\mu}=\left(\mathrm{V}_{0},-\mathrm{v}\right)$Note that the temperature here is relativistically direction-specific, unlike in the classical use of temperature.


SR 4-Tensor
(2,0)-Tensor T ${ }^{\mu \nu}$ (1,1)-Tensor $\mathrm{T}^{\mu}{ }_{v}$ or $\mathrm{T}^{\prime}$
(0,2)-Tensor T

## SRQM Symmetries:

## The Easy Derivation $(\mathrm{U}=(\mathrm{d} / \mathrm{d} \tau) \mathrm{R}) \rightarrow\left(\partial_{\mathrm{R}}=(\mathrm{d} / \mathrm{d} \tau) \partial_{\mathrm{u}}\right)$

## Note Similarity:

4-Velocity is ProperTime Derivative of 4-Position $\mathrm{U}=(\mathrm{d} / \mathrm{d} \tau) \mathrm{R} \quad[\mathrm{m} / \mathrm{s}]=[1 / \mathrm{s}]^{*}[\mathrm{~m}]$

Relativistic Euler-Lagrange Eqn $\partial_{R}=(\mathrm{d} / \mathrm{d} \tau) \partial_{u} \quad[1 / \mathrm{m}]=[1 / \mathrm{s}]^{*}[\mathrm{~s} / \mathrm{m}]$

The differential form just inverses the dimensional units, so the placement of the $\mathbf{R}$ and $\mathbf{U}$ switch.

That is it: so simple! Much, much easier than how I was taught in Grad School.

To complete the process ano create the Equations of Motion, one just applies the base form to a Lagrangian.

This can be: a classical Lagrangian a relativistic Lagrangian a Lorentz scalar Lagrangian a quantum Lagrangian


SR 4-Tensor
(2,0)-Tensor $T^{\mu \nu}$ (1,1)-Tensor $T^{\mu}{ }_{v}$ or $T_{\nu}$
$(0,2)$-Tensor $T$

SR 4-Vector
(1,0)-Tensor $\mathrm{V}^{\mu}=\mathbf{V}=\left(\mathrm{v}^{0}, \mathbf{v}\right)$ SR 4-CoVector:OneForm $(0,1)$-Tensor $\mathrm{V}_{\mu}=\left(\mathrm{v}_{0},-\mathrm{v}\right)$

## Lorentz Transform Connection Map - Trace Identification CPT, Big-Bang, (Matter $\rightarrow$ AntiMatter), Arrow(s)-of-Time

All Lorentz Transforms have Tensor Invariants: Determinant $= \pm 1$ and InnerProduct $=4$. However, one can use the Tensor Invariant Trace to Identify CPT Symmetry \& AntiMatter

```
Tr[NM-Rotate] ={0\ldots+4} Tr[NM-Identity] = +4 Tr[NM-Boost] ={+4\ldots+\infty}
Tr[AM-Rotate] ={0...-4} Tr[AM-Identity] = -4 位[AM-Boost] ={-4....-\infty}
```

Line up by Trace Invariant values

Discrete NormalMatter (NM) Lorentz Transform Type
Minkowski-Identity : AM-Flip-txyz=AM-ComboPT
Flip-t=TimeReversal, Flip-x, Flip-y, Flip-z
AM-Flip-xyz=AM-Paritylnverse
Flip-xy=Rotate-xy(T), Flip-xz=Rotate-xz(T), Flip-yz=Rotate-yz( $\pi$ )

AM-Flip-xy=AM-Rotate-xy( $\pi$ ), AM-Flip-xz=AM-Rotate-xz( $\pi$ ), AM-Flip-yz=AM-Rotate-yz( $\pi$ )
Flip-xyz=ParityInverse
AM-Flip-t=AM-TimeReversal, AM-Flip-x, AM-Flip-y, AM-Flip-z
AM-Minkowski-Identity : Flip-txyz=ComboPT
Discrete AntiMatter (AM) Lorentz TransformType


Two interesting properties of (1,1)-Tensors, of which the Lorentz Transform is an example: Trace $=\operatorname{Sum}(\Sigma)$ of EigenValues : Determinant $=$ Product $(\Pi)$ of EigenValues As 4D Tensors, each Lorentz Transform has 4 EigenValues (EV's).
Create an Anti-Transform which has all EigenValue Tensor Invariants negated. As 4D Tensors, each Lorentz Transform has 4 EigenValues (EV's).
Create an Anti-Transform which has all EigenValue Tensor Invariants negated. $\Sigma[-(E V ' s)]=-\Sigma[E V ' s]$ : The Anti-Transform has negative Trace of the Transform $\Pi[-(E V ' s)]=(-1)^{4} \Pi[E V ' s]=\Pi[E V ' s]$ : The Anti-Transform has equal Determinant

NormalMatter Boosts Det $=+1$ Proper $\operatorname{Tr}=\{+4 . .+\infty\}$


## SR:Lorentz Transform

 $\partial_{v}\left[R^{\mu}\right]=\partial R^{\mu^{\prime}} / \partial R^{v}=\Lambda^{\mu^{\prime}}{ }_{v}$ $\Lambda^{\mu}{ }_{v}=\left(\Lambda^{-1}\right)_{v}{ }^{\mu}: \Lambda^{\mu}{ }_{a} \Lambda^{\alpha}{ }_{v}=\eta^{\mu}{ }_{v}=\delta^{\mu}{ }_{v}$ $\eta_{\mu v} \wedge^{\mu}{ }_{\alpha} \wedge^{v}{ }_{\beta}=\eta_{\alpha \beta}$ Det $\left[\Lambda^{u}\right]= \pm \pm \backslash \Lambda_{w} \Lambda^{w}=4=\Lambda^{\mu} \Lambda_{v}^{u}$ $\operatorname{Tr}\left[\Lambda^{\mu}\right]=\{-\infty \quad+\infty\}=$ Lorentz Transform TypeSRQM 4-Vector Study: Einstein-de Broglie

## The $\uparrow$ Connection

$\mathbf{P}=\hbar \mathbf{K}$ : Basic Einstein-de Broglie
$\mathbf{P}+\mathbf{Q}=\mathbf{P}+\mathbf{Q}$
$\mathbf{P}+\mathbf{Q}=\hbar \mathbf{K}_{\mathrm{dyn}}+\hbar \mathbf{K}_{\mathrm{pot}}$
$\mathbf{P}+\mathbf{Q}=\hbar\left(\mathbf{K}_{\mathrm{dyn}}+\mathrm{K}_{\mathrm{pot}}\right)$
Sum over $n$ particles: $\mathbf{P}_{\mathrm{T}}=\Sigma_{\mathrm{n}}(\mathbf{P}+\mathbf{Q}), \mathbf{K}_{\mathrm{T}}=\boldsymbol{\Sigma}_{\mathrm{n}}\left(\mathbf{K}_{\mathrm{dyn}}+\mathrm{K}_{\mathrm{pot}}\right)$
$\mathrm{P}_{\mathrm{T}}=\hbar \mathrm{K}_{\mathrm{T}}$
$\mathbf{P}_{\mathbf{T}} \cdot \mathbf{X}=\hbar K_{T} \cdot \mathbf{X}$
$\left(\mathrm{P}_{\mathrm{T}} \cdot \mathbf{X}\right)=\hbar\left(\mathbf{K}_{\mathrm{T}} \cdot \mathbf{X}\right)$
$-S_{\text {action }}=-\hbar \Phi_{\text {phase }}$
$\mathrm{S}_{\text {action }}=\hbar \Phi_{\text {phase }}$
$-\partial\left[S_{\text {acion }}\right]=-\hbar \partial\left[\Phi_{\text {phase }}\right]$
$\mathrm{P}_{\mathrm{T}}=\hbar K_{\mathrm{T}}$
\{SR Hamilton-Jacobi\} $=\hbar\{\mathrm{QM}$ Complex Plane-Waves\}

The SR Hamilton-Jacobi Equation, and the QM idea of Complex Plane-Waves, are related by a simple constant ( $\hbar$ ) relation.
 SR 4-CoVector:OneForm $(0,1)$-Tensor $\mathrm{V}_{\mu}=\left(\mathrm{v}_{0},-\mathrm{v}\right)$

## SRQM 4-Vector Study:

 Dimensionless Physical ObjectsA Tensor Study of Physical 4-Vectors

## Dimensionless Physical Objects

There are a number of unit-dimensionless physical objects in SR that can be constructed from Physical 4-Vectors. There are examples with 4-Scalars, 4-Vectors, and 4-Tensors.
$\partial \cdot X=4$ : SpaceTime Dimension
$\partial^{\mu}\left[X^{\wedge}\right]=\eta^{\mu \mathrm{VV}}$ : The SR Minkowski Metric $\partial^{\mu}\left[X_{\mathrm{v}}\right]=\wedge^{\prime} \mathrm{v}$ : Lorentz Transformation Tensors dX - $\partial$ : Calculus Total Derivative Chain Rule $\left[\partial^{\mu}, X^{\vee}\right]=\partial^{\mu} X^{v}-X^{\vee} \partial^{\mu}=\eta^{\mu v}$ : SRQM Non-Zero Commutation

$\bar{T} \cdot \bar{T}=+1$ : Lorentz Scalar Magnitude ${ }^{2}$ of the 4-UnitTemporal $\mathrm{T} \cdot \mathrm{S}=0$ : Lorentz Scalar of 4-UnitTemporal with 4-UnitSpatial $\mathbf{S} \cdot \mathbf{S}=-1$ : Lorentz Scalar Magnitude ${ }^{2}$ of the 4-UnitSpatial
$\mathbf{K} \cdot \mathbf{X}=(\omega t-\mathbf{k} \cdot \mathbf{x})=-\Phi_{\text {phase_dy: }}$ : Phase of an SR Wave, technically in rads or cycles used in SRQM wave functions $\psi=a^{*} e^{\wedge}-(\mathbf{K} \cdot \mathbf{X})$
 used in statistical mechanics particle distributions $F($ state $) \sim e^{\wedge}-(P \cdot O)=e^{\wedge}-\left(E_{0} / k_{B} T_{0}\right)$
$\alpha=\left(1 / 4 \pi \varepsilon_{0}\right)\left(\mathrm{e}^{2} / \hbar \mathrm{c}\right)=\left(\mu_{0} / 4 \pi\right)\left(\mathrm{ce}^{2} / \hbar\right)$ : Fine Structure Constant constructed from Lorentz 4-Scalars, which are themselves constructed from 4-Vectors via the Lorentz Scalar Product. $\mathrm{ex} . \hbar=(\mathbf{P} \cdot \mathbf{X}) /(\mathbf{K} \cdot \mathbf{X}) ; \mathbf{q}=(\mathbf{Q} \cdot \mathbf{X}) /(\mathbf{A} \cdot \mathbf{X}) \rightarrow \mathrm{e}$ for electron; $\mathrm{c}=(\mathbf{T} \cdot \mathbf{U})$ $\mu_{0}=\{(\partial \cdot \partial)[\mathbf{A}] \cdot \mathbf{X}\} /(\mathbf{J} \cdot \mathbf{X})$ when $(\partial \cdot \mathbf{A})=0$
$\left\{\gamma^{\mu}\right\}$ : Dirac Gamma Matrix ("4-Vector") \{4 component $\}$ $\left\{\sigma^{ウ}\right\}$ : Pauli Spin Matrix ("4-Vector") \{2 component\} Components are matrices of numbers, not just numbers
$(0,2)$-Tensor $T_{u v}$

[^4]
# SRQM: QM Axioms Unnecessary QM Principles emerge from SR 

QM is derivable from SR plus a few empirical facts - the "QM Axioms" aren't necessary These properties are either empirically measured or are emergent from SR properties...

3 "QM Axioms" are really just empirical constant relations between purely SR 4-Vectors:
Particle-Wave Duality [(P) = $\dagger(\mathrm{K})]$
Unitary Evolution [ $\partial=(-i) \mathrm{K}]$
Operator Formalism [( $\partial$ ) = -iK]
2 "QM Axioms" are just the result of the Klein-Gordon Equation being a linear wave PDE:
Hilbert Space Representation (<bra|,|ket>, wavefunctions, etc.) \& The Principle of Superposition
3 "QM Axioms" are a property of the Minkowski Metric and the empirical fact of Operator Formalism
The Canonical Commutation Relation
The Heisenberg Uncertainty Principle (time-like-separated measurement exchange)
The Pauli Exclusion Principle (space-like-separated particle exchange)
1 "QM Axiom" only holds in the NRQM case
The Born QM Probability Interpretation - Not applicable to RQM, use Conservation of Worldlines instead
1 "QM Axiom" is really just another level of limiting cases, just like $\mathrm{SR} \rightarrow \mathrm{CM}$ in limit of low velocity The QM Correspondence Principle ( QM $\rightarrow$ CM in limit of $\left\{\nabla^{2}[\phi] \ll(\nabla[\phi])^{2}\right\}$ )

# SRQM Interpretation: Relational QM \& EPR 

The SRQM interpretation fits fairly well with Carlo Rovelli's Relational QM interpretation:
Relational QM treats the state of a quantum system as being observer-dependent, that is, the QM State is the relation between the observer and the system. This is inspired by the key idea behind Special Relativity, that the details of an observation depend on the reference frame of the observer.

All systems are quantum systems: no artificial Copenhagen dichotomy between classical/macroscopic/conscious objects and quantum objects.

The QM States reflect the observers' information about a quantum system.
Wave function "collapse" is informational - not physical. A particle always "knows" its complete properties - it "is" its properties. An observer has at best only partial information about the particle's properties.

No Spooky Action at a Distance. When a measurement is done locally on an entangled system, it is only the partial information about the distant entangled state that "changes/becomes-available-instantaneously". There is no superluminal signal. Measuring/physically-changing the local particle does not physically change the distant particle.
ex. Place two identical-except-for-color marbles into a box, close lid, and shake. Without looking, pick one marble at random and place it into another box. Send that box very far away. After receiving signal of the far box arrival at a distant point, open the near box and look at the marble. You now instantaneously know the far marble's color as well. The information did not come by signal. You already had the possibilities (partial knowledge). Looking at the near marble color simply reduced the partial knowledge of both marble's color to complete knowledge of both marbles' color. No signal was required, superluminal or otherwise.

[^5]Einstein and Bohr can both be "right" about EPR:
Per Einstein: The QM State measured is not a "complete" description, just one observer's point-of-view. Per Bohr: The QM State measured is a "complete" description, it's all that a single observer can get.

The point is that many observers can all see the "same" system, but see different facets of it. But a single measurement is the maximal information that a single observer can get without re-interacting with the system, which of course changes the system in general. Remember, the Heisenberg Uncertainty comes from non-zero commutation properties which *require separate measurement arrangements*. The properties of a particle are always there. Properties define particles. We as observers simply have only partial information about them.

Relativistic QM, being derived from SR, should be local - The low-velocity limit to QM may give unexpected anomalous results if taken out of context, or out of the applicable validity range, such as with velocity addition $\mathrm{v}_{3}=\mathrm{v}_{1}+\mathrm{v}_{2}$, where the correct formula should be the relativistic velocity composition $\mathrm{v}_{3}=\left(\mathrm{v}_{1}+\mathrm{v}_{2}\right) /\left[1+\mathrm{v}_{1} \mathrm{v}_{2} / \mathrm{c}^{2}\right]$

These ideas lead to the conclusion that the wavefunction is just one observer's state of information about a physical system, not the state of the physical system itself. The "collapse" of the wavefunction is simply the change in an observer's information about a system brought about by a measurement or, in the case of EPR, an inference about the physical state.

EPR doesn't break Heisenberg because measurements are made on different particles. The happy fact is that those particles interacted and became correlated in the causal past. The EPR-Bell experiments prove that it is possible to maintain those correlations over long distances. It does *not* prove superluminal (FTL) signaling

We should not be surprised by the "quantum" probabilities being correct instead of "classical" in the EPR and Bell Inequalities experiments. Classical thinking (in both CM and QM) has a number of fallacies when it is mistakenly applied outside of its range-of-validity.

## Examples

*Classical Physics as the limit of $\hbar \rightarrow 0$ \{Fallacy\}:
$\hbar$ is a Lorentz Scalar Invariant and Fundamental Physical Constant. It never becomes 0. \{Fact\}
${ }^{*}$ The classical commutator being zero $\left[p^{k}, x^{\mathrm{d}}\right]=0$ \{Fallacy\}:
$\left[P^{\mu}, X^{V}\right]=i \hbar \eta^{\mu v} ;\left[p^{k}, \mathrm{X}\right]=-i \hbar \delta^{k j} ;\left[p^{0}, x^{0}\right]=[\mathrm{E} / \mathrm{c}, \mathrm{ct}]=[\mathrm{E}, \mathrm{t}]=\mathrm{i} \hbar(1)$; Again, it never becomes 0 , it's just really small. $\{F a c t\}$
*Using Maxwell-Boltzmann (distinguishable) statistics for counting probabilities of (indistinguishable) quantum states \{Fallacy\}: One must use Fermi-Dirac (FD) statistics for Fermions:Spin=(n+1/2); Bose-Einstein (BE) statistics for Bosons:Spin=(n) \{Fact\}
*Using sums of classical probabilities on quantum states \{Fallacy\}:
Must use sums of quantum probability-amplitudes \{Fact\}
*Ignoring phase cross-terms and interference effects in calculations \{Fallacy\}: Quantum systems and entanglement require phase cross-terms \{Fact\}
*Assuming that one can simultaneously "measure" non-commuting properties at a single spacetime event \{Fallacy\}:
Particle properties always exist. However, non-commuting ones require separate measurement arrangements to get information about the properties.
The required measurement arrangements on a single particle/worldline are at best sequential events, where the temporal order plays a role; \{Fact\}
However, EPR allows one to "infer (not measure)" the other property of a particle by the separate measurement of an entangled partner. \{Fact\}
This does not break Heisenberg Uncertainty, which is about the order of operations (measurement events) on a single worldline. \{Fact\}
In the entangled case, both/all of the entangled partners share common past-causal entanglement events, typically due to a conservation law. \{Fact\} Information is not transmitted at FTL. The particles simply carried their normal respective "correlated" properties (no hidden variables) with them. \{Fact\}
*Assuming that QM is a generalization of CM, or that classical probabilities apply to QM \{Fallacy\}:
CM is a limiting-case of QM for when changes in a system by a few quanta have a negligible effect on the whole/overall system. \{Fact\}

We should not be surprised by the "quantum" probabilities being correct instead of "classical" in the EPR and Bell Inequalities experiments. Classical thinking (in both CM and QM) has a number of fallacies when it is mistakenly applied outside of its range-of-validity.
\{from Wikipedia\}
No-Communication Theorem/No-Signaling:
A no-go theorem from quantum information theory which states that, during measurement of an entangled quantum state, it is not possible for one observer, by making a measurement of a subsystem of the total state, to communicate information to another observer. The theorem shows that quantum correlations do not lead to what could be referred to as "spooky communication at a distance". SRQM: There is no FTL signaling/communication.

## No-Teleportation Theorem:

The no-teleportation theorem stems from the Heisenberg uncertainty principle and the EPR paradox: although a qubit $\mid \psi>$ can be imagined to be a specific direction on the Bloch sphere, that direction cannot be measured precisely, for the general case $|\psi\rangle$. The no-teleportation theorem is implied by the no-cloning theorem. SRQM: Ket states are informational, not physical.

## No-Cloning Theorem:

In physics, the no-cloning theorem states that it is impossible to create an identical copy of an arbitrary unknown quantum state. This no-go theorem of quantum mechanics proves the impossibility of a simple perfect non-disturbing measurement scheme. The no-cloning theorem is normally stated and proven for pure states; the no-broadcast theorem generalizes this result to mixed states. SRQM: Measurements are arrangements of particles that interact with a subject particle.

## No-Broadcast Theorem:

Since quantum states cannot be copied in general, they cannot be broadcast. Here, the word "broadcast" is used in the sense of conveying the state to two or more recipients. For multiple recipients to each receive the state, there must be, in some sense, a way of duplicating the state. The no-broadcast theorem generalizes the no-cloning theorem for mixed states. The no-cloning theorem says that it is impossible to create two copies of an unknown state given a single copy of the state. SRQM: Conservation of worldlines.

## No-Deleting Theorem:

In physics, the no-deleting theorem of quantum information theory is a no-go theorem which states that, in general, given two copies of some arbitrary quantum state, it is impossible to delete one of the copies. It is a time-reversed dual to the no-cloning theorem, which states that arbitrary states cannot be copied.
SRQM: Conservation of worldllines.

## No-Hiding Theorem:

the no-hiding theorem is the ultimate proof of the conservation of quantum information. The importance of the no-hiding theorem is that it proves the conservation of wave function in quantum theory.
SRQM: Conservation of worldlines. RQM wavefunctions are Lorentz 4-Scalars (spin=0), 4-Spinors (spin=1/2), 4-Vectors (spin=1), all of which are Lorentz Invariant.

# We should not be surprised by the "quantum" probabilities being correct instead of "classical" probabilities in the EPR/Bell-Inequalities experiments. <br> Classical thinking (in both CM and QM) has a number of fallacies when it is mistakenly applied outside of its range-of-validity. <br> \{from Wikipedia\} <br> Quantum information (qubits) differs strongly from classical information, epitomized by the bit, in many striking and unfamiliar ways. Among these are the following: <br> A unit of quantum information is the qubit. Unlike classical digital states (which are discrete), a qubit is continuous-valued, describable by a direction on the Bloch sphere. Despite being continuously valued in this way, a qubit is the smallest possible unit of quantum information, as despite the qubit state being continuouslyvalued, it is impossible to measure the value precisely. 

A qubit cannot be (wholly) converted into classical bits; that is, it cannot be "read". This is the no-teleportation theorem.
Despite the awkwardly-named no-teleportation theorem, qubits can be moved from one physical particle to another, by means of quantum teleportation. That is, qubits can be transported, independently of the underlying physical particle. SRQM: Ket states are informational, not physical.

An arbitrary qubit can neither be copied, nor destroyed. This is the content of the no-cloning theorem and the no-deleting theorem. SRQM: Conservation of worldines.
Although a single qubit can be transported from place to place (e.g. via quantum teleportation), it cannot be delivered to multiple recipients; this is the no-broadcast theorem, and is essentially implied by the no-cloning theorem. SRQM: Conservation of worldlines.

Qubits can be changed, by applying linear transformations or quantum gates to them, to alter their state. While classical gates correspond to the familiar operations of Boolean logic, quantum gates are physical unitary operators that in the case of qubits correspond to rotations of the Bloch sphere.

Due to the volatility of quantum systems and the impossibility of copying states, the storing of quantum information is much more difficult than storing classical information. Nevertheless, with the use of quantum error correction quantum information can still be reliably stored in principle. The existence of quantum error correcting codes has also led to the possibility of fault tolerant quantum computation.

Classical bits can be encoded into and subsequently retrieved from configurations of qubits, through the use of quantum gates. By itself, a single qubit can convey no more than one bit of accessible classical information about its preparation. This is Holevo's theorem. However, in superdense coding a sender, by acting on one of two entangled qubits, can convey two bits of accessible information about their joint state to a receiver.

Quantum information can be moved about, in a quantum channel, analogous to the concept of a classical communications channel. Quantum messages have a finite size, measured in qubits; quantum channels have a finite channel capacity, measured in qubits per second.

# Minkowski still applies in local GR QM is a local phenomenon 

The QM Schrodinger Equation is not fundamental. It is just the low-energy limiting-case of the RQM Klein-Gordon Equation. All of the standard QM Axioms are shown to be empirically measured constants or emergent properties of SR. It is a bad approach to start with NRQM as an axiomatic starting point and try to generalize it to RQM, in the same way that one cannot start with CM and derive SR. Since QM *can* be derived from SR, this partially explains the difficulty of uniting QM with GR:
QM is not a "separate formalism" outside of SR that can be used to "quantize" just anything...
Strictly speaking, the use of the Minkowski space to describe physical systems over finite distances applies only in the SR limit of systems without significant gravitation. In the case of significant gravitation, SpaceTime becomes curved and one must abandon SR in favor of the full theory of GR.

Nevertheless, even in such cases, based on the GR Equivalence Principle, Minkowski space is still a good description in a local region surrounding any point (barring gravitational singularities). More abstractly, we say that in the presence of gravity, SpaceTime is described by a curved 4-dimensional manifold for which the tangent space to any point is a 4-dimensional Minkowski Space. Thus, the structure of Minkowski Space is still essential in the description of GR.

So, even in GR, at the local level things are considered to be Minkowskian:
i.e. SR $\rightarrow$ QM "lives inside the surface" of this local SpaceTime, GR curves the surface.

- Hopefully, this interpretation will shed light on why Quantum Gravity has been so elusive. Basically, QM rules of "quantization" don't apply to GR. They are a manifestation-of/derivation-from SR. Relativity *is* the "Theory of Measurement" that QM has been looking for.

This would explain why no one has been able to produce a successful theory of "Quantum Gravity", and why there have been no violations of Lorentz Invariance, CPT, or the Equivalence Principle.

If quantum effects "live" in Minkowski SpaceTime with SR,
then GR curvature effects are at a level above the RQM description, and two levels above standard QM. SR+QM are "in" SpaceTime, GR is the "shape" of SpaceTime...

Thus, this SRQM Treatise explains the following:

- Why GR works so well in it's realm of applicability \{large scale systems\}.
- Why QM works so well in it's realm of applicability \{micro scale systems and certain macroscopic systems\}.
i.e. The tangent space to any point in GR curvature is locally Minkowskian, and thus QM is typically found in small local volumes...
- Why RQM explains more stuff than QM without SR \{because QM is just an approximation: the low-velocity limiting-case of RQM .
- Why all attempts to "quantize gravity" have failed \{essentially, everyone has been trying to put the cart (QM) before the horse (GR)\}.
- Why all attempts to modify GR keep conflicting with experimental data \{because GR is apparently fundamental - passed all tests to-date\}.
- Why QM works perfectly well with SR as RQM but not with GR \{because QM is derivable from SR, hence a manifestation of SR rules\}.
- How Minkowski Space, 4-Vectors, and Lorentz Invariants play vital roles in RQM , and give the SRQM Interpretation of Quantum Mechanics.

SRQM: Special Relativistic Quantum Measurement, Special Relativistic Quantum Mechanics

SR 4-Tensor
(2,0)-Tensor T ${ }^{\mu v}$ (1,1)-Tensor $\mathrm{T}^{\mu}{ }_{v}$ or $\mathrm{T}_{\nu}$
(0,2)-Tensor T

SR 4-Scalar
(0,0)-Tensor S or So
Lorentz Scala

SRQM: A treatise of SR $\rightarrow$ QM by John B. Wilson (SciRealm@aol.com)

## SRQM Diagram:

## Special Relativity $\rightarrow$ Quantum Mechanics

## 4-Gradient=Alteration of SR <Events>

 SR SpaceTime "Flat" Minkowski 4D Metric SR SpaceTime Dimension=4 SR Lorentz Transforms SR Action $\rightarrow$ 4-Momentum SR Phase $\rightarrow 4$-WaveVector SR ProperTime Derivative SR \& QM Invariant Waves $\partial \cdot \partial=(\partial / c)^{2}-\nabla \cdot \nabla$$=-\left(m_{0} c / \hbar\right)^{2}=-\left(\omega_{0} / c\right)^{2}$


SR d'Alembertian \& Klein-Gordon Relativistic Quantum Wave Relation Schrödinger QWE is $\{|\mathbf{v}| \ll \mathrm{c}\}$ limit of KG QWE **[ SR $\rightarrow$ QM ]**

4-WaveVector=Substantiation of SR Wave <Events> oscillations proportional to mass:energy \& 3-momentum

4-WaveVector $\mathrm{K}^{\mu}$ $\mathbf{K}=(\omega / c, k)=\left(\omega / c, \omega \hat{n} / v_{\text {phase }}\right)$ $=(1 / c \mp, \hat{n} / A)=\left(\omega_{0} / c^{2}\right) \mathbf{U}=P / h$


START HERE*
follow the arrows
4-Position=Location of SR <Events> in SpaceTime


Complex Plane-Waves $(-i){ }^{K_{T}}=-\partial[\Phi]$ $K=i \partial$


4-Velocity=Motion
$\gamma \mathrm{d} / \mathrm{dt}[.$.
ProperTime of SR <Events>

both particles \& waves

$\mathbf{K} \cdot \mathbf{K}=(\omega / c)^{2}-\mathbf{k} \cdot \mathbf{k}$

Einstein, de Broglie Relation Dirac:Planck Constant $\mathrm{h}=\mathrm{h} / 2 \pi$


Matter Wave
$V_{\text {group }}{ }^{*} V_{\text {phase }}=c^{2}$

$V_{\text {group }} V^{*} V_{\text {phase }}=c^{2}$
Rest Angular

$$
=\left(m_{0} c / \hbar\right)^{2}=\left(\omega_{0} / c\right)^{2}=\left(1 / c \mp_{0}\right)^{2}
$$

SR 4-Scalar (1,0)-Tensor $\mathrm{V}^{\mu}=\mathbf{V}=\left(\mathrm{v}^{0}, \mathbf{v}\right)$ SR 4-CoVector:OneForm $(0,1)$-Tensor $\mathrm{V}_{\mu}=\left(\mathrm{v}_{0},-\mathrm{v}\right)$

Existing SR Rules
QM Principles

## SRQM Chart:

## Special Relativity $\rightarrow$ Quantum Mechanics

## SRQM: The [ SR $\rightarrow$ QM ] Interpretation of Quantum Mechanics

Special Relativity (SR) Axioms: Invariant Interval + LightSpeed (c) as Universal Physical Constant lead to SR, although technically SR is itself the Minkowski-SpaceTime low-curvature:"flat" limiting-case of GR.
$\left\{\mathrm{c}, \tau, \mathrm{m}_{\mathrm{o}}, \hbar, \mathrm{i}\right\}=\left\{\mathrm{c}:\right.$ SpeedOfLight, $\tau$ : ProperTime, $\mathrm{m}_{0}$ : RestMass, $\hbar:$ Dirac/PlanckReducedConstant( $\overline{\mathrm{h}=\mathrm{h} / 2 \pi), \text { i: ImaginaryNumber\}: }}$ are all Empirically-Measured SR Lorentz-Invariant Physical and/or Mathematical Constants $\quad \mathrm{i}=+\sqrt{[-1]}=(0,1)_{\text {complext }}$

Standard SR 4-Vectors:
Related by these SR Lorentz Invariants:

4-Position	$\mathbf{R}=$ (ct, r)	$\epsilon<$ Event> $\in$ <Time Space>	$(\mathbf{R} \cdot \mathbf{R})=(\mathrm{c} \tau)^{2}=\left(\mathrm{i} \mid \mathrm{r}_{\mathrm{o}}\right)^{2}$
4-Velocity	$\mathbf{U}=\gamma(\mathrm{c}, \mathrm{u})$	$=(\mathrm{U} \cdot \partial) \mathbf{R}=(\mathrm{d} / \mathrm{dr}) \mathrm{R}=\mathrm{dR} / \mathrm{d} \tau$	$(\mathbf{U} \cdot \mathbf{U})=(\mathrm{c})^{2}$
4-Momentum	$\mathbf{P}=(\mathrm{E} / \mathrm{c}, \mathrm{p})$	$=\mathrm{m}_{0} \mathbf{U}$	$(P \cdot P)=\left(m_{0} c\right)^{2}$
4-WaveVector	$\mathbf{K}=(\omega / \mathrm{c}, \mathrm{k})$	$=P / \hbar$	$(\mathrm{K} \cdot \mathrm{K})=\left(\mathrm{m}_{0} \mathrm{C} /\right)^{2} \quad$ KG Equation:
4-Gradient	$\partial=\left(\partial_{\mathrm{t}} / \mathrm{c},-\nabla\right)$	$=-\mathrm{i} \mathrm{K}$	$(\partial \cdot \partial)=\left(-\mathrm{im} \mathrm{o}_{0} / \hbar\right)^{2}=-\left(\mathrm{m}_{0} \mathrm{c} / \hbar\right)^{2}=\mathrm{QM}$ Relation $\rightarrow \mathrm{RQM} \rightarrow \mathrm{QM}$

SR + Empirically Measured Physical Constants lead to RQM via the (KG) Klein-Gordon Quantum Eqn, and thence to QM via the low-velocity limit $\{|\mathbf{v}| \ll \mathrm{c}\}$, giving the Schrödinger Eqn. This fundamental KG Relation also leads to the other

## Quantum Wave Equations:

spin=0 boson field $=4$-Scalar: spin=1/2 fermion field $=4$-Spinor: spin=1 boson field $=4$-Vector:

> RQM (massless, no rest-frame, Lorentzian)
> $\left\{|\mathbf{v}|=\mathrm{c}: \mathrm{m}_{0}=0\right\}$

Free Scalar Wave (Higgs) Weyl
Maxwell (EM photonic)

RQM (with non-zero mass, Lorentzizn)
$\left\{0<=|\mathbf{v}|<c: m_{0}>0\right\}$
Klein-Gordon (KG)
Dirac (RQM w/ EM charge)
Proca

QM (ilimitcase from ROM, Gallean)
$\left\{0<=|\mathrm{v}| \ll \mathrm{c}: \mathrm{m}_{0}>0\right\}$
Schrödinger (regular QM)
Pauli (QM w/ EM charge)

# SRQM Diagram: SRQM 4-Vectors and Lorentz Scalars / Physical Constants 

4-NumberFlux $\mathbf{N}=(\mathrm{nc}, \mathrm{n})=\mathrm{n}(\mathrm{c}, \mathrm{u})$ 4-ProbCurrDensity 4-ProbabilityFlux $\mathrm{J}_{\text {prob }}=$ (


SR 4-Tensor
(2,0)-Tensor T ${ }^{\text {uv }}$ (1,1)-Tensor $T^{\mu}{ }_{v}$ or $T_{\nu}$
$(0,2)$-Tensor $T_{\mu v}$

SR 4-Vector

# Special Relativity $\rightarrow$ Quantum Mechanics 

See also:
http://scirealm.org/SRQM.html (alt disususion)
http://scirealm.org/SRQM-RoadMap.html (main sRom wessite) http://scirealm.org/4Vectors.html (4-Vector study) http://scirealm.org/SRQM-Tensors.html (Tensoor 4 . vecocior Calculielor) http://scirealm.org/SciCalculator.html (Complex-capable RPN Calauliator)

## or Google "SRQM"

http://scirealm.org/SRQM.pdf (this document: most current ver. at SciRealm.org)
(1,0)-Tensor $\mathrm{V}^{\mu}=\mathbf{V}=\left(\mathrm{v}^{0}, \mathbf{v}\right)$ SR 4-CoVector:OneForm $(0,1)$-Tensor $V_{\mu}=\left(\mathrm{V}_{0},-\mathrm{v}\right)$

SRQM: A treatise of SR $\rightarrow$ QM by John B. Wilson (SciRealm@aol.com)

The SRQM or [SR $\rightarrow$ QM] Interpretation of Quantum Mechanics A Tensor Study of Physical 4-Vectors

## quantum relativity





[^0]:    Lorentz Scalars $=4 \mathrm{D}(0,0)$-Tensors can be constructed from the Lorentz Scalar Products (LSP) of 4-Vectors: ex. "multiplication" (A•B) \& "division" $(\mathbf{A} \cdot \mathbf{V}) /(\mathbf{B} \cdot \mathbf{V})$. Both of these give invariant scalar products. A "mediating"
    4 -Vector $\mathbf{V}$ is required for division, since vectors by themselves don't divide, they must be made into scalars $1^{\text {st }}$.

[^1]:    Stress-Energy Tensors are technically EnergyDensities, not Energies: EnergyDensity (temporal) \& Pressure:Stress (spatial) have the same dimensional measurement units. $\left[\mathrm{Pa}=\mathrm{J} / \mathrm{m}^{3}=\mathrm{N} / \mathrm{m}^{2}=\mathrm{kg} / \mathrm{m} \cdot \mathrm{s}^{2}\right]$

[^2]:    ${ }^{* *}$ Relativity is the System-of-Measurement that QM has been looking for: ( $\Psi$ ) Psi-Epistemic**

[^3]:    These few things are enough to derive the RQM Klein-Gordon equation, the most basic of the relativistic wave equations. Taking the low-velocity limit $\{|v| \ll c$ \} (a standard SR technique) leads to the Schrödinger Equation, the basic QM equation.

[^4]:    Trace $\left[T^{\mathrm{NV}}\right]=\eta_{\mathrm{Iv}} \mathrm{T}^{\mathrm{NV}}=\mathrm{T}^{\mu_{\mu}}=\mathrm{T}$ $\mathbf{V} \cdot \mathbf{V}=\mathrm{V}^{\mathrm{V}} \eta_{\mathrm{pv}} \mathrm{V}^{\mathrm{V}}=\left[\left(\mathrm{v}^{0}\right)^{2}-\mathbf{v} \cdot \mathbf{v}\right]=\left(\mathrm{v}_{0}^{0}\right)^{2}$ = Lorentz Scalar Invariant

[^5]:    ex. The quantum version of the same experiment uses the spin of entangled particles. When measured on the same axis, one will always be spin-up, the other will be spin-down. It is conceptually analogous. Entanglement is only about correlations of system that interacted in the past and are determined by conservation laws.

