Relativistic Velocity Composition Derived using 4-Vectors

4-Vector (generic)
4-Velocity
4-"Unit"Temporal

```
V}=\mp@subsup{V}{}{\mu}=(\mathrm{ temporal component,spatial component)
U = U U}=\gamma(\textrm{c},\mathbf{u})=\textrm{c}\mathbf{T}\quad[\textrm{m}/\textrm{s}]\quad\boldsymbol{\gamma}=1/\sqrt{}{[1-\boldsymbol{\beta}\cdot\boldsymbol{\beta}][1]:\boldsymbol{\beta}=\mathbf{u}/\textrm{c}
T= T
\(\gamma=1 / \sqrt{ }[1-\boldsymbol{\beta} \cdot \boldsymbol{\beta}] \quad[1]: \boldsymbol{\beta}=\mathbf{u} / \mathrm{c}\) [1]
The 4-"Unit"Temporal is dimensionless
with

Speed of Light
3-velocity
Relativistic beta
Relativistic gamma
c
\(\mathbf{u}=\left(u_{x}, u_{y}, u_{z}\right)\)
\(\boldsymbol{\beta}=\mathbf{u} / \mathbf{c}=\left(\beta_{\mathrm{x}}, \beta_{\mathrm{y}}, \beta_{\mathrm{z}}\right)\)
\(\boldsymbol{\gamma}=1 / \sqrt{ }[1-\boldsymbol{\beta} \cdot \boldsymbol{\beta}]=1 / \sqrt{ }\left[1-\mathbf{u} \cdot \mathbf{u} / \mathrm{c}^{2}\right]\)

Lorentz Scalar Products give invariant magnitudes
\(\mathbf{U} \cdot \mathbf{U}=\gamma(\mathrm{c}, \mathbf{u}) \cdot \gamma(\mathrm{c}, \mathbf{u})=\gamma^{2}\left(\mathrm{c}^{2}-\mathbf{u} \cdot \mathbf{u}\right)=\mathrm{c}^{2}\)
\(\mathbf{T} \cdot \mathbf{T}=\gamma(1, \boldsymbol{\beta}) \cdot \gamma(1, \boldsymbol{\beta})=\boldsymbol{\gamma}^{2}(1-\boldsymbol{\beta} \cdot \boldsymbol{\beta})=1\)

However, one can also take the Lorentz Scalar Products of the 4-Vectors of different particles.
\(\mathbf{U}_{1} \cdot \mathbf{U}_{2}=\gamma_{1}\left(\mathrm{c}, \mathbf{u}_{1}\right) \cdot \gamma_{2}\left(\mathrm{c}, \mathbf{u}_{2}\right)=\gamma_{1} \gamma_{2}\left(\mathrm{c}^{2}-\mathbf{u}_{1} \cdot \mathbf{u}_{2}\right)=\gamma_{2}\left(\mathrm{c}^{2}\right)\left\{\right.\) when \(\left.\mathbf{u}_{1}=\mathbf{0}\right\}=\gamma_{1}\left(\mathrm{c}^{2}\right)\left\{\right.\) when \(\left.\mathbf{u}_{2}=\mathbf{0}\right\}=\gamma_{12}\left(\mathrm{c}^{2}\right)=\gamma_{\mathrm{rel}}\left(\mathrm{c}^{2}\right)\)
\(\gamma_{1} \gamma_{2}\left(\mathrm{c}^{2}-\mathbf{u}_{1} \cdot \mathbf{u}_{2}\right)=\gamma_{\mathrm{rel}}\left(\mathrm{c}^{2}\right)\)
When measuring two different 4-Velocities, the Lorentz Scalar Product is proportional to their relative Lorentz gamma factor \(\gamma_{12}=\gamma_{\mathrm{rel}}\).

These are all Lorentz Scalar Invariants. All observers must agree on their values.
\begin{tabular}{|l|l|}
\hline \(\mathbf{U}_{1} \cdot \mathbf{U}_{2}=\gamma_{12}\left(\mathrm{c}^{2}\right)=\gamma_{\mathrm{rel}}\left(\mathrm{c}^{2}\right)\) & \(\mathbf{U} \cdot \mathbf{U}=\mathrm{c}^{2}\) \\
\hline \(\mathbf{T}_{1} \cdot \mathbf{T}_{2}=\gamma_{12}=\gamma_{\mathrm{rel}}\) & \(\mathbf{T} \cdot \mathbf{T}=1\) \\
\hline
\end{tabular}

One can obtain the relativistic "addition" of velocities using these relations:
\(\mathbf{U}_{1} \cdot \mathbf{U}_{2}=\gamma_{1} \gamma_{2}\left(\mathrm{c}^{2}-\mathbf{u}_{1} \cdot \mathbf{u}_{2}\right)=\gamma_{\mathrm{rel}} \mathrm{C}^{2}\)
\(\mathbf{T}_{1} \cdot \mathbf{T}_{2}=\gamma_{1} \boldsymbol{\gamma}_{2}\left(1-\boldsymbol{\beta}_{1} \cdot \boldsymbol{\beta}_{2}\right)=\boldsymbol{\gamma}_{\mathrm{rel}}\)
\(\gamma_{1} \gamma_{2}\left(\mathrm{c}^{2}-\mathbf{u}_{1} \cdot \mathbf{u}_{2}\right)=\gamma_{\mathrm{rel}} \mathrm{c}^{2}\)
\(\gamma_{1} \gamma_{2}\left(1-\boldsymbol{\beta}_{1} \cdot \boldsymbol{\beta}_{2}\right)=\gamma_{\text {rel }}\)
\(\boldsymbol{\gamma}_{1}{ }^{-2} \gamma_{2}{ }^{-2}\left(1-\boldsymbol{\beta}_{1} \cdot \boldsymbol{\beta}_{2}\right)^{-2}=\gamma_{\mathrm{rel}}{ }^{-2}\)
\(\left(1-\boldsymbol{\beta}_{1} \cdot \boldsymbol{\beta}_{1}\right)\left(1-\boldsymbol{\beta}_{2} \cdot \boldsymbol{\beta}_{2}\right)\left(1-\boldsymbol{\beta}_{1} \cdot \boldsymbol{\beta}_{2}\right)^{-2}=\left(1-\boldsymbol{\beta}_{\text {rel }} \cdot \boldsymbol{\beta}_{\text {rel }}\right)\)
\(\left(\boldsymbol{\beta}_{\mathrm{rel}} \cdot \boldsymbol{\beta}_{\mathrm{rel}}\right)=1-\left(1-\boldsymbol{\beta}_{1} \cdot \boldsymbol{\beta}_{1}\right)\left(1-\boldsymbol{\beta}_{2} \cdot \boldsymbol{\beta}_{2}\right)\left(1-\boldsymbol{\beta}_{1} \cdot \boldsymbol{\beta}_{2}\right)^{-2}\)
\(\left(\boldsymbol{\beta}_{\text {rel }}\right)^{2}=\left[\left(1-\boldsymbol{\beta}_{1} \cdot \boldsymbol{\beta}_{2}\right)^{2}-\left(1-\boldsymbol{\beta}_{1} \cdot \boldsymbol{\beta}_{1}\right)\left(1-\boldsymbol{\beta}_{2} \cdot \boldsymbol{\beta}_{2}\right)\right]\left(1-\boldsymbol{\beta}_{1} \cdot \boldsymbol{\beta}_{2}\right)^{-2}\)
\(\left(\boldsymbol{\beta}_{\text {rel }}\right)^{2}=\left[\left(\boldsymbol{\beta}_{1}\right)^{2}-2\left(\boldsymbol{\beta}_{1} \cdot \boldsymbol{\beta}_{2}\right)+\left(\boldsymbol{\beta}_{2}\right)^{2}\right]\left(1-\boldsymbol{\beta}_{1} \cdot \boldsymbol{\beta}_{2}\right)^{-2}\)
\(\left(\boldsymbol{\beta}_{\text {rel }}\right)^{2}=\left[\left(\boldsymbol{\beta}_{1}\right)-\left(\boldsymbol{\beta}_{2}\right)\right]^{2}\left(1-\boldsymbol{\beta}_{1} \cdot \boldsymbol{\beta}_{2}\right)^{-2}\)
\(\boldsymbol{\beta}_{\text {rel }}=\left[\boldsymbol{\beta}_{1}-\boldsymbol{\beta}_{2}\right] /\left(1-\boldsymbol{\beta}_{1} \cdot \boldsymbol{\beta}_{2}\right): \boldsymbol{\beta}_{\text {additive }}=\left[\boldsymbol{\beta}_{1}+\boldsymbol{\beta}_{2}\right] /\left(1+\boldsymbol{\beta}_{1} \cdot \boldsymbol{\beta}_{2}\right)\) by letting \(\boldsymbol{\beta}_{\mathbf{2}} \rightarrow-\boldsymbol{\beta}_{\mathbf{2}}\)
\(\mathbf{u}_{\text {rel }}=\left[\mathbf{u}_{1}-\mathbf{u}_{2}\right] /\left(1-\boldsymbol{\beta}_{1} \cdot \boldsymbol{\beta}_{2}\right): \mathbf{u}_{\text {additive }}=\left[\mathbf{u}_{1}+\mathbf{u}_{2}\right] /\left(1+\mathbf{u}_{1} \cdot \mathbf{u}_{2} / \mathrm{c}^{2}\right)\) by letting \(\mathbf{u}_{2} \rightarrow-\mathbf{u}_{2}\)
The relativistic composition of velocities law
\(\boldsymbol{\beta}_{\text {rel } 12}=\left[\boldsymbol{\beta}_{\mathbf{1 0}}-\boldsymbol{\beta}_{\mathbf{2 0}}\right] /\left(1-\boldsymbol{\beta}_{\mathbf{1 0}} \cdot \boldsymbol{\beta}_{\mathbf{2 0}}\right)\) with 0 considered the origin frame by letting \(\boldsymbol{\beta}_{\mathbf{2}} \rightarrow-\boldsymbol{\beta}_{\mathbf{2}}\)
\(\boldsymbol{\beta}_{\text {additive } 12}=\left[\boldsymbol{\beta}_{10}+\boldsymbol{\beta}_{\mathbf{0 2}}\right] /\left(1+\boldsymbol{\beta}_{\mathbf{1 0}} \cdot \boldsymbol{\beta}_{\mathbf{0 2}}\right)\) with 2 considered the origin frame

The definition of the Lorentz Gamma Factor is contained in this.
\(\mathbf{U} \cdot \mathbf{U}=\gamma(\mathrm{c}, \mathrm{u}) \cdot \gamma(\mathrm{c}, \mathbf{u})=\gamma^{2}\left(\mathrm{c}^{2}-\mathbf{u} \cdot \mathbf{u}\right)=\mathrm{c}^{2}\)
Solving for gamma factor:
\(\gamma^{2}\left(\mathrm{c}^{2}-\mathbf{u} \cdot \mathbf{u}\right)=\left(\mathrm{c}^{2}\right)\)
\(\gamma^{2}=\left(c^{2}\right) /\left(c^{2}-\mathbf{u} \cdot \mathbf{u}\right)\)
\(\gamma^{2}=1 /\left(1-\mathbf{u} \cdot \mathbf{u} / \mathbf{c}^{2}\right)=1 /(1-\boldsymbol{\beta} \cdot \boldsymbol{\beta})\)
\(\gamma=1 / \sqrt{ }\left[1-\mathbf{u} \cdot \mathbf{u} / \mathbf{c}^{2}\right]=1 / \sqrt{ }[1-\boldsymbol{\beta} \cdot \boldsymbol{\beta}]\)
```

$\mathbf{u}_{\text {additive }}=\left[\mathbf{u}_{1}+\mathbf{u}_{2}\right] /\left(1+\mathbf{u}_{1} \cdot \mathbf{u}_{2} / \mathrm{c}^{2}\right)$
Taking the classical limiting-case of $\left(\mathbf{u}_{1} \cdot \mathbf{u}_{2}\right) \ll\left(\mathrm{c}^{2}\right)$
$\mathbf{u}_{\text {additive }}=\left[\mathbf{u}_{1}+\mathbf{u}_{2}\right] /(1+\sim 0)$
$\mathbf{u}_{\text {additive }}=\left[\mathbf{u}_{1}+\mathbf{u}_{2}\right]_{\text {classical }}$

```

4-Vector (generic)
4-Momentum
4-Velocity
4-"Unit"Temporal
\(\mathbf{V}=\mathrm{V}^{\mu}=\) (temporal component,spatial component)
\(\mathbf{P}=\mathrm{P}^{\mu}=(\mathrm{E} / \mathrm{c}, \mathrm{p})=(\mathrm{mc}, \mathrm{p})=\mathrm{m}_{0} \mathbf{U} \quad[\mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}=\mathrm{N} \cdot \mathrm{s}]\)
\(\mathbf{U}=\mathrm{U}^{\mu}=\gamma(\mathrm{c}, \mathrm{u})=\mathrm{c} \mathbf{T} \quad[\mathrm{m} / \mathrm{s}]\)
\(\mathbf{T}=\mathrm{T}^{\mu}=\gamma(1, \boldsymbol{\beta})=\mathbf{U} / \mathrm{c}\)
4-Velocity
4-"Unit"Temporal
\(\mathbf{T}_{1} \cdot \mathbf{T}_{2}=\gamma_{12}=\gamma_{\mathrm{rel}}\)
:4-Vector form, Particle 1 and Particle 2 as seen from the frame of \(\mathbf{T}\)
\(\mathrm{T}_{1}{ }^{\mu} \cdot \mathrm{T}_{2}{ }^{v}=\gamma_{12}=\gamma_{\mathrm{rel}}\)
:Tensor form
\(\mathrm{T}_{1}{ }^{\mu} \eta_{\mu \nu} \mathrm{T}_{2}{ }^{\nu}=\gamma_{12}=\gamma_{\mathrm{rel}}\)
\(\left(\Lambda^{\mu}{ }_{\rho} \mathrm{T}^{\prime}{ }_{1}{ }^{\rho}\right) \eta_{\mu v}\left(\Lambda^{v}{ }_{\sigma} \mathrm{T}^{\prime}{ }_{2}{ }^{\sigma}\right)=\gamma_{12}=\gamma_{\mathrm{rel}}\)
:4-Vector Lorentz Scalar Product \(=\) Minkowski Metric
\(\left(\Lambda^{\mu} \Lambda^{v}{ }^{v}\right) \eta_{\mu v}\left(\mathrm{~T}^{\prime}{ }_{\rho}{ }^{\rho} \mathrm{T}^{\prime}{ }^{\prime}{ }^{\sigma}\right)=\gamma_{12}=\gamma\)
:Identical Lorentz Transform can be applied to both frames, \(\mathrm{T}^{\prime} \rightarrow \mathrm{T}\)
\(\left(\Lambda^{-1}{ }_{\rho}^{\mu} \Lambda^{v}{ }_{\sigma}\right) \eta_{\mu \nu}\left(\mathrm{T}^{\prime}{ }_{1}{ }^{\rho} \mathrm{T}^{\prime}{ }_{2}{ }^{\sigma}\right)=\gamma_{12}=\gamma_{\mathrm{rel}}\)
:These are all just commutative numbers in tensor format
:Swapping index positions of Lorentz \(\Lambda^{\mu}{ }_{\rho}\) gives the Inverse Lorentz Transform \(\Lambda_{\rho}^{-1}{ }_{\rho}{ }^{\mu}\)
\(\left(\Lambda^{-1}{ }_{\mathrm{pv}} \Lambda^{v}{ }_{\sigma}\right)\left(\mathrm{T}^{\prime}{ }_{1}{ }^{\rho} \mathrm{T}^{\prime}{ }_{2}{ }^{\sigma}\right)=\gamma_{12}=\gamma_{\mathrm{rel}}\)
:Minkowski can lower an index
\(\left(\eta_{\rho \alpha} \Lambda^{-1 \alpha}{ }_{v}\right)\left(\Lambda^{v}{ }_{\sigma}\right)\left(\mathrm{T}^{\prime}{ }_{1}{ }^{\rho} \mathrm{T}^{\prime}{ }_{2}{ }^{\sigma}\right)=\gamma_{12}=\gamma_{\mathrm{rel}}\)
:Minkowski can raise an index
\(\eta_{\text {pa }}\left(\Lambda^{-1 \alpha}{ }_{v} \Lambda^{v}{ }_{\sigma}\right)\left(\mathrm{T}^{\prime}{ }_{1}{ }^{\rho} \mathrm{T}^{\prime}{ }_{2}{ }^{\sigma}\right)=\gamma_{12}=\gamma_{\mathrm{rel}}\)
:Commutative
\(\eta_{\text {pa }}\left(\delta^{\alpha}{ }_{\sigma}\right)\left(\mathrm{T}^{\prime}{ }_{1}{ }^{\rho} \mathrm{T}^{\prime}{ }_{2}{ }^{\sigma}\right)=\gamma_{12}=\gamma_{\mathrm{rel}}\)
\(\eta_{\text {po }}\left(\mathrm{T}^{\prime}{ }_{1}{ }^{\rho} \mathrm{T}^{\prime}{ }_{2}{ }^{\sigma}\right)=\gamma_{12}=\gamma_{\mathrm{rel}}\)
\(:\left(\Lambda^{-1}\right)^{\beta}{ }_{\mu} \Lambda_{v}^{\mu}=\delta^{\beta}{ }_{v}\)
\(\left(\mathrm{T}^{\prime}{ }_{1}{ }^{\rho} \eta_{\rho \sigma} \mathrm{T}^{\prime}{ }_{2}{ }^{\sigma}\right)=\gamma_{12}=\gamma_{\mathrm{rel}}\)
:Kronecker Delta renames an index
\(\left(\mathrm{T}^{\prime}{ }_{1}{ }^{\rho} \cdot \mathrm{T}^{\prime}{ }_{2}{ }^{\sigma}\right)=\gamma_{12}=\gamma_{\mathrm{rel}}\)
:Commutative
:4-Vector Lorentz Scalar Product \(=\) Minkowski Metric
\(\mathrm{T}^{\prime}{ }_{1}{ }^{\rho} \cdot \mathrm{T}^{\prime}{ }_{2}{ }^{\sigma}=\gamma_{12}=\gamma_{\mathrm{rel}}\)
:Tensor form
\(\mathbf{T}_{1} \cdot \mathbf{T}_{\mathbf{2}}=\gamma_{12}=\gamma_{\mathrm{rel}} \quad: 4\)-Vector form, Particle 1 and Particle 2 as seen from frame \(\mathbf{T}\),
\(\left(\Lambda^{-1}\right)^{\beta}{ }_{\mu} \Lambda^{\mu}{ }_{v}=\delta^{\beta}{ }_{v}\)
\((\Lambda)^{\mu}{ }_{v}=\left(\Lambda^{-1}\right)_{v}{ }^{\mu}\)
The point of all this is that \(\gamma_{\mathrm{rel}}\) is a Lorentz Scalar Invariant, which is actually clear from the very first line, \(\mathbf{T}_{1} \cdot \mathbf{T}_{2}=\gamma_{12}=\gamma_{\mathrm{rel}}\) The Lorentz Scalar Product of any two SR 4-Vectors is a Lorentz Invariant Scalar.

The Relativistic Gamma \(\gamma_{\text {rel }}\) between any two particles/waves/events remains an invariant as seen from any frame.
To be clear, this means the difference between two specified frames remains invariant, as measured from any other frame.
\(\mathbf{P}_{1} \cdot \mathbf{U}_{2}=\mathrm{m}_{01} \mathbf{U}_{1} \cdot \mathbf{U}_{2}=\mathrm{m}_{01} \mathrm{c}^{2} \mathbf{T}_{1} \cdot \mathbf{T}_{2}=\gamma_{\mathrm{rel}} \mathrm{E}_{\mathrm{ol}}=\gamma_{12} \mathrm{E}_{\mathrm{ol}}=\mathrm{E}_{12}=\) Relativistic Energy of Particle 1 as measured by observer in frame 2. Note, this is not the Rest Energy \(\mathrm{E}_{0}\) of the particle, unless the frame 2 observer is at rest wrt. frame 1.
\(\mathrm{E}_{0}\) is an invariant, the Energy as measured in the RestFrame.
\(\mathrm{E}=\gamma \mathrm{E}_{\mathrm{o}}\) is not an invariant. The gamma is unspecified, and therefore the E is unspecified. Different in different frames.
\(\mathrm{E}_{\text {frame wrt. } \mathrm{o}}=\gamma_{\mathrm{rel}} \mathrm{E}_{\mathrm{o}}\) is an invariant. The gamma level is specified to a particular frame from the rest frame.
\(\gamma_{\mathrm{rel}}=\gamma_{1} \gamma_{2}\left(\mathrm{c}^{2}-\mathbf{u}_{1} \cdot \mathbf{u}_{2}\right)=\mathbf{U}_{1} \cdot \mathbf{U}_{2}\)
\(\gamma_{1}\) is not invariant, \(\gamma_{2}\) is not invariant, but the combo \(\gamma_{\mathrm{rel}}=\gamma_{1} \gamma_{2}\left(\mathrm{c}^{2}-\mathbf{u}_{1} \cdot \mathbf{u}_{2}\right)\) is invariant.
\(\mathbf{P}=\hbar \mathbf{K}=(\mathrm{E} / \mathrm{c}, \mathbf{p})=\hbar(\omega / \mathrm{c}, \mathbf{k})\)
Temporal part: \(\mathrm{E}=\hbar \omega\) : Einstein Photoelectric
Spatial part: \(\mathbf{p}=\hbar \mathbf{k}\) : de Broglie Wave-Particle
E is not invariant, \(\omega\) is not invariant, but the combo \(\mathrm{E} / \omega=\hbar\) is invariant.
\(\mathbf{p}\) is not invariant, \(\mathbf{k}\) is not invariant, but the combo \(|\mathbf{p}| /|\mathbf{k}|=\hbar\) is invariant.
\(\mathrm{E}_{\text {frame wrt. o }}=\gamma_{\text {rel }} \mathrm{E}_{\mathrm{o}}\) is an invariant.
Typically, we just use the frame that is the rest frame. Then \(\mathrm{E}_{\text {rest-frame }}=(1) \mathrm{E}_{\mathrm{o}}\) is an invariant.```

