RestMass \& Other Rest Quantities, based on 4-Vectors and Tensor Mathematics

Some important factors are used frequently in Special Relativity (SR):

Invariant LightSpeed	\mathbf{c}	: Speed of Light same in all inertial reference frames
Lorentz Beta Factor	$\boldsymbol{\beta}=\mathbf{u} / \mathbf{c}$: The dimensionless 3-velocity factor
Lorentz Gamma Factor	$\gamma=1 / \sqrt{ }\left[1-\mathbf{u} \cdot \mathbf{u} / \mathrm{c}^{2}\right]=1 / \sqrt{ }\left[1-\mathbf{u}^{2} / \mathrm{c}^{2}\right]=1 / \sqrt{ }\left[1-\beta^{2}\right]$: The "scaling factor" between inertial frames of SR
Lorentz Transformation	$\Lambda_{v}^{\mu}=\partial \mathrm{R}^{\mu} / \partial \mathrm{R}^{v}$	
Minkowski Metric	$\eta_{\mu v}=\operatorname{Diagonal}[+1,-1,-1,-1]=\operatorname{Diag}\left[+1,-\delta_{\mu v}\right]$: The "flat" 4D SpaceTime of SR

SR 4-Vectors $=4 \mathrm{D}(1,0)$-Tensors have some very simple, fundamental, and Invariant Lorentz Scalar relations between one another:

4-Position
$\mathbf{R}=\mathrm{R}^{\mu}=(\mathrm{ct}, \mathrm{r}) \in<$ Event $>\in<$ Time Space $>$
4-Velocity $\quad \mathbf{U}=\mathrm{U}^{\mu}=\gamma(\mathrm{c}, \mathrm{u})=(\mathbf{U} \cdot \boldsymbol{\partial}) \mathbf{R}=(\mathrm{d} / \mathrm{d} \tau) \mathbf{R}$
4-Momentum $\quad \mathbf{P}=\mathrm{P}^{\mu}=(\mathrm{E} / \mathrm{c}, \mathrm{p})=\left(\mathrm{E}_{\mathrm{o}} / \mathrm{c}^{2}\right) \mathbf{U}=\left(\mathrm{m}_{\mathrm{o}}\right) \mathbf{U}$
4-WaveVector $\quad \mathbf{K}=\mathrm{K}^{\mu}=(\omega / \mathrm{c}, \mathbf{k})=\left(\omega_{0} / \mathbf{c}^{2}\right) \mathbf{U}=(1 / \hbar) \mathbf{P}$
4-Gradient $\quad \partial=\partial^{\mu}=\left(\partial_{\mathrm{t}} / \mathrm{c},-\nabla\right)=(-\mathrm{i}) \mathbf{K}$
4-NumberFlux $\quad \mathbf{N}=\mathrm{N}^{\mu}=(\mathrm{nc}, \mathrm{n})=\left(\mathrm{n}_{\mathrm{o}}\right) \mathbf{U}$
4-CurrentDensity $\quad \mathbf{J}=\mathbf{J}^{\mu}=(\rho \mathrm{c}, \mathbf{j})=\left(\rho_{\mathrm{o}}\right) \mathbf{U}$
4-EM_VectorPotential $\quad \mathbf{A}=\mathrm{A}^{\mu}=(\varphi / \mathrm{c}, \mathrm{a})=\left(\varphi_{o} / \mathrm{c}^{2}\right) \mathbf{U}$
: Speed of Light same in all inertial reference frames
: The dimensionless 3-velocity factor
: The "scaling factor" between inertial frames of SR
: The "flat" 4D SpaceTime of SR

Start with a generic SR 4-Vector:
$\mathbf{A}=A^{\mu}=\left(a^{0}, a\right)=\left(a^{0}, a^{1}, a^{2}, a^{3}\right) \quad: \quad 4$-Vector $\mathbf{A}, 4 D(1,0)$-Tensor A^{μ}, temporal scalar a^{0}, spatial 3-vector $\mathbf{a}=\left(a^{1}, a^{2}, a^{3}\right)$

The internal components $\mathrm{a}^{0} \&$ a may vary in different inertial frames, but the 4 -Vector \mathbf{A} is an invariant geometric tensor object. The inertial frames are connected by Lorentz Transformations $\Lambda_{v}{ }_{v}$ which have the following "invariant magnitude" properties: $A^{\mu}=\Lambda^{\mu}{ }_{v} A^{v} \quad: \quad \mathbf{A}^{\prime} \cdot \mathbf{A}^{\prime}=A^{\mu} \eta_{\mu v} A^{v}=\left(\Lambda_{\alpha}^{\mu} A^{\alpha}\right) \eta_{\mu v}\left(\Lambda^{v}{ }_{\beta} A^{\beta}\right)=\left(\Lambda_{\alpha}^{\mu} \eta_{\mu v} \Lambda^{v}\right)\left(A^{\alpha} A^{\beta}\right)=\left(\Lambda_{\alpha}^{\mu} \Lambda_{\mu \beta}\right)\left(A^{\alpha} A^{\beta}\right)=\left(\eta_{\alpha \beta}\right)\left(A^{\alpha} A^{\beta}\right)=\mathbf{A} \cdot \mathbf{A}$

For example, a Lorentz Boost along the (t, x)-direction:
$\left(a^{0}, a^{1}, a^{2}, a^{3}\right)^{\prime}=[[\gamma,-\gamma \beta, 0,0],[-\gamma \beta, \gamma, 0,0],[0,0,1,0],[0,0,0,1]] *\left(a^{0}, a^{1}, a^{2}, a^{3}\right)$

The Lorentz Scalar Product is an Invariant quantity, with any and all inertial reference frames getting the same final result.
$\mathbf{A} \cdot \mathbf{A}=\mathrm{A}^{\mu} \eta_{\mu \nu} \mathrm{A}^{v}=\left(\mathrm{a}^{0}, a\right) \cdot\left(\mathrm{a}^{0}, a\right)=\left(\mathrm{a}^{0}\right)^{2}-\mathbf{a} \cdot \mathbf{a}=\left(\mathrm{a}^{0}{ }_{\mathrm{o}}\right)^{2}$
$\mathbf{A} \cdot \mathbf{B}=\mathrm{A}^{\mu} \eta_{\mu v} \mathrm{~B}^{v}=\left(\mathrm{a}^{0}, a\right) \cdot\left(\mathrm{b}^{0}, \mathbf{b}\right)=\left(\mathrm{a}^{0} \mathrm{~b}^{0}\right)-\mathbf{a} \cdot \mathbf{b}=\left(\mathrm{a}^{0}{ }_{\mathrm{o}} \mathrm{b}^{0}{ }_{\mathrm{o}}\right)$
The final scalar quantities $\left(\mathrm{a}^{0}{ }_{\mathrm{o}}\right)^{2}$ or $\left(\mathrm{a}^{0}{ }_{\mathrm{o}} \mathrm{b}^{0}{ }_{\mathrm{o}}\right)$ are also known as "at-rest" quantities, or Rest Quantities, and are denoted with a naught (${ }_{\mathrm{o}}$) This is because you can pick an "at-rest" frame to do the calculation, which quite often makes the math simpler.

Using the 4-Velocity as an example:
$\mathbf{U} \cdot \mathbf{U}=\mathrm{U}^{\mu} \eta_{\mu v} \mathrm{U}^{v}=\gamma(\mathrm{c}, \mathbf{u}) \cdot \gamma(\mathrm{c}, \mathbf{u})=\gamma^{2}\left[\mathrm{c}^{2}-\mathbf{u} \cdot \mathbf{u}\right]$
Pick the rest-frame in which the 3-velocity $\mathbf{u} \rightarrow \mathbf{0}$, which gives $\gamma=1 / \sqrt{ }\left[1-\mathbf{u}^{2} / \mathbf{c}^{2}\right] \rightarrow 1$.
$\mathbf{U} \cdot \mathbf{U}=\mathrm{U}^{\mu} \eta_{\mu \nu} \mathrm{U}^{v}=\gamma(\mathrm{c}, \mathrm{u}) \cdot \gamma(\mathrm{c}, \mathrm{u})=\gamma^{2}\left[\mathrm{c}^{2}-\mathbf{u} \cdot \mathbf{u}\right]=1^{2}\left[\mathrm{c}^{2}-\mathbf{0} \cdot \mathbf{0}\right]=\mathrm{c}^{2}$

Or, do it the long way, using the relativistic Lorentz Gamma Factor $\gamma=1 / \sqrt{ }\left[1-\mathbf{u} \cdot \mathbf{u} / \mathrm{c}^{2}\right]$:
$\mathbf{U} \cdot \mathbf{U}=\mathrm{U}^{\mu} \eta_{\mu \nu} \mathrm{U}^{\mathrm{v}}=\gamma(\mathrm{c}, \mathbf{u}) \cdot \gamma(\mathrm{c}, \mathbf{u})=\gamma^{2}\left[\mathrm{c}^{2}-\mathbf{u} \cdot \mathbf{u}\right]=\left(1 / \sqrt{ }\left[1-\mathbf{u} \cdot \mathbf{u} / \mathrm{c}^{2}\right]\right)^{2} *\left[\mathrm{c}^{2}-\mathbf{u} \cdot \mathbf{u}\right]=\left(\mathrm{c}^{2} /\left[\mathrm{c}^{2}-\mathbf{u} \cdot \mathbf{u}\right]\right) *\left[\mathrm{c}^{2}-\mathbf{u} \cdot \mathbf{u}\right]=\mathrm{c}^{2}$

Using the 4-Position and 4-Velocity:
$\mathbf{R} \cdot \mathbf{U}=\mathrm{R}^{\mu} \eta_{\mu \nu} \mathrm{U}^{v}=(\mathrm{ct}, \mathrm{r}) \cdot \gamma(\mathrm{c}, \mathrm{u})=\gamma\left[\mathrm{c}^{2} \mathrm{t}-\mathbf{r} \cdot \mathbf{u}\right]$

Pick the rest-frame in which the 3-velocity $\mathbf{u} \rightarrow \mathbf{0}$, which gives $\gamma \rightarrow 1$.
$\mathbf{R} \cdot \mathbf{U}=\mathrm{R}^{\mu} \eta_{\mu \nu} \mathrm{U}^{v}=(\mathrm{ct}, \mathbf{r}) \cdot \gamma(\mathrm{c}, \mathrm{u})=\gamma\left[\mathrm{c}^{2} \mathrm{t}-\mathbf{r} \cdot \mathbf{u}\right]=1\left[\mathrm{c}^{2} \mathrm{t}_{\mathrm{o}}-\mathbf{r} \cdot \mathbf{0}\right]=\mathrm{c}^{2} \mathrm{t}_{\mathrm{o}}=\mathrm{c}^{2} \tau$
The resulting $\mathrm{t}_{\mathrm{o}}=\tau$ is known as: the Rest Time, or the Proper Time, or the Invariant Time

Now, let's derive really nice mathematics, using the generic 4-Vector \mathbf{A} :
$\mathbf{A}=\mathrm{A}^{\mu}=\left(\mathrm{a}^{0}, \mathbf{a}\right)=\left(\mathrm{a}^{0}, \mathrm{a}^{1}, \mathrm{a}^{2}, \mathrm{a}^{3}\right)$

Take the Lorentz Scalar Product of this generic 4-Vector \mathbf{A} with the SR 4-Velocity \mathbf{U}
$\mathbf{A} \cdot \mathbf{U}=\mathrm{A}^{\mu} \eta_{\mu \nu} \mathrm{U}^{v}=\left(\mathrm{a}^{0}, \mathbf{a}\right) \cdot \gamma(\mathrm{c}, \mathbf{u})=\gamma\left(\mathrm{a}^{0} \mathbf{c}-\mathbf{a} \cdot \mathbf{u}\right)$

Pick the rest-frame in which the 3-velocity $\mathbf{u} \rightarrow \mathbf{0}$, which gives $\gamma \rightarrow 1$.
$\mathbf{A} \cdot \mathbf{U}=\mathrm{A}^{\mu} \eta_{\mu v} \mathrm{U}^{v}=\left(\mathrm{a}^{0}, \mathbf{a}\right) \cdot \gamma(\mathrm{c}, \mathrm{u})=\gamma\left(\mathrm{a}^{0} \mathrm{c}-\mathbf{a} \cdot \mathbf{u}\right)=1\left(\mathrm{a}^{0} \mathrm{c}-\mathbf{a} \cdot \mathbf{0}\right)=\mathrm{a}^{0}{ }_{\mathrm{o}} \mathrm{c}$
c is invariant, and $\mathrm{a}^{0}{ }_{\mathrm{o}}$ is an $\{$ invariant $=$ proper $=$ rest $\}$ quantity, the same for all inertial frames, denoted with the naught $\left({ }_{o}\right)$
Now, we can do something very clever:
$\mathbf{A} \cdot \mathbf{U}=\mathrm{a}^{0}{ }_{\mathrm{o}} \mathrm{c}=\mathrm{a}^{0}{ }_{\mathrm{o}} \mathrm{c} *(\mathrm{c} / \mathrm{c})=\left(\mathrm{a}^{0} / \mathrm{c}\right) *\left(\mathrm{c}^{2}\right)=\left(\mathrm{a}^{0}{ }_{\mathrm{o}} / \mathrm{c}\right) \mathbf{U} \cdot \mathbf{U} \quad$: because $\mathbf{U} \cdot \mathbf{U}=\left(\mathrm{c}^{2}\right)$ generally

If $\mathbf{A} \sim \mathbf{U}$, i.e. if \mathbf{A} is temporal like \mathbf{U}, then we can write a manifestly invariant tensor equation for 4-Vector \mathbf{A}
$\mathbf{A}=\left(\mathrm{a}^{0} / \mathrm{c}\right) \mathbf{U}$

Taking the Lorentz Scalar Self-Product
$\mathbf{A} \cdot \mathbf{A}=\left(\mathrm{a}^{0}, a\right) \cdot\left(\mathrm{a}^{0}, a\right)=\left(\mathrm{a}^{0}\right)^{2}-(\mathbf{a} \cdot \mathbf{a})=\left(\mathrm{a}^{0}{ }_{0} / \mathrm{c}\right)^{2} \mathbf{U} \cdot \mathbf{U}=\left(\mathrm{a}^{0}{ }_{\mathrm{o}} / \mathrm{c}\right)^{2}\left(\mathrm{c}^{2}\right)=\left(\mathrm{a}^{0}{ }_{\mathrm{o}}\right)^{2}$
This is often seen rewritten as:
$\left(a^{0}\right)^{2}=\left(a^{0}{ }^{0}\right)^{2}+(\mathbf{a} \cdot \mathbf{a})$

Now, separated into temporal scalar and spatial 3-vector components:
$\mathbf{A}=\left(\mathrm{a}^{0}, \mathrm{a}\right)=\left(\mathrm{a}^{0} / \mathrm{c}\right) \mathbf{U}=\left(\mathrm{a}^{0} / \mathrm{c}\right) \gamma(\mathrm{c}, \mathrm{u})$
Temporal: $\left(\mathrm{a}^{0}\right)=\left(\mathrm{a}^{0} / \mathrm{c}\right) \gamma(\mathrm{c})=\gamma \mathrm{a}^{0}{ }_{\mathrm{o}}$
Spatial: $(\mathrm{a})=\left(\mathrm{a}^{0} / \mathrm{c}\right) \gamma(\mathrm{u})=\gamma \mathrm{a}^{0}{ }_{\mathrm{o}} \mathrm{u} / \mathrm{c}=\mathrm{a}^{0} \mathrm{u} / \mathrm{c}$

Summarizing:

4-Vector $\mathbf{A}=\left(\mathrm{a}^{0}, \mathbf{a}\right)$
Temporal: $\left(\mathrm{a}^{0}\right)=\gamma \mathrm{a}^{0}{ }_{0}$
Spatial: (a) $=\mathrm{a}^{0} \mathbf{u} / \mathrm{c}=\gamma \mathrm{a}^{0} \mathbf{o} \mathbf{u} / \mathrm{c}$
Manifestly Invariant Form: $\mathbf{A}=\left(\mathrm{a}^{0} / \mathrm{c}\right) \mathbf{U}$
$\left(\mathrm{a}^{0}\right)^{2}=\left(\mathrm{a}^{0}{ }_{\mathrm{o}}\right)^{2}+(\mathbf{a} \cdot \mathbf{a})$

This is **general ${ }^{* *}$ for all SR 4-Vectors.
The $\left(\mathbf{A}=\mathrm{A}^{\mu}\right)$ is a 4 -Vector $=$ a $4 \mathrm{D}(1,0)$-Tensor, which is an invariant geometric physical object.
The (a^{0}) and (a) are relativistic tensor components, which may vary by Lorentz transforms based on differing inertial reference frames. The $\left(\mathrm{a}^{0}{ }_{\mathrm{o}}\right)$ is an invariant $4 \mathrm{D}(0,0)$-Tensor, an invariant scalar, the same across all inertial reference frames.

The naught $\left({ }_{o}\right)$ notation applies to all SR 4-Vectors. It is notationally simpler and easier to use $\left\{E\right.$ and $\left.E_{o}\right\}$ than $\left\{\mathrm{E}_{\text {relativistic }}\right.$ and $\left.\mathrm{E}_{\text {invariant }}\right\}$

Now, using this general concept on the physical SR 4-Vectors that we know about:
4-Vector $\mathbf{A}=\left(\mathrm{a}^{0}, \mathbf{a}\right)$
Temporal: $\left(\mathrm{a}^{0}\right)=\gamma \mathrm{a}^{0}{ }_{\mathrm{o}}$
Spatial: (a) $=a^{0} \mathbf{u} / \mathrm{c}=\gamma \mathrm{a}^{0} \mathbf{o} / \mathrm{c}$
Manifestly Invariant Form: $\mathbf{A}=\left(\mathrm{a}^{0}{ }_{\mathrm{o}} / \mathrm{c}\right) \mathbf{U}$
$\left(\mathrm{a}^{0}\right)^{2}=\left(\mathrm{a}^{0}{ }_{\mathrm{o}}\right)^{2}+(\mathbf{a} \cdot \mathbf{a})$

4-Position $\mathbf{R}=\mathrm{R}^{\mu}=$ (ct,r)
Temporal: $(\mathrm{t})=\gamma \mathrm{t}_{\mathrm{o}}=\gamma \tau \quad$: The SR Time Dilation Effect

4-Momentum $\mathbf{P}=\mathrm{P}^{\mu}=(\mathrm{E} / \mathrm{c}, \mathrm{p})=(\mathrm{mc}, \mathrm{p})$
Temporal: $(\mathrm{E})=\gamma \mathrm{E}_{0}$
Spatial: $(\mathrm{p})=\mathrm{E} \mathbf{u} / \mathrm{c}^{2}=\gamma \mathrm{E}_{0} \mathbf{u} / \mathrm{c}^{2}$
Manifestly Invariant Form: $\mathbf{P}=\left(\mathrm{E}_{0} / \mathrm{c}^{2}\right) \mathbf{U}$
$(\mathrm{E})^{2}=\left(\mathrm{E}_{\mathrm{o}}\right)^{2}+(\mathbf{p} \cdot \mathbf{p}) \mathrm{c}^{2}$
4-WaveVector $\mathbf{K}=K^{\mu}=(\omega / \mathrm{c}, \mathrm{k})$
Temporal: $(\omega)=\gamma \omega_{\text {o }}$
Spatial: $(\mathbb{k})=\omega \mathbf{u} / \mathrm{c}^{2}=\gamma \omega_{0} \mathbf{u} / \mathrm{c}^{2}$
Manifestly Invariant Form: $\mathbf{K}=\left(\omega_{0} / c^{2}\right) \mathbf{U}$
$(\omega)^{2}=\left(\omega_{\mathrm{o}}\right)^{2}+(\mathbf{k} \cdot \mathbf{k}) \mathrm{c}^{2}$

This matches the known quantum relations:
$\mathbf{P}=\hbar \mathbf{K}=(\mathrm{E} / \mathrm{c}, \mathrm{p})=\hbar(\omega / \mathrm{c}, \mathbf{k})=(\hbar \omega / \mathrm{c}, \hbar \mathbf{k})$
Temporal: $\{\mathrm{E}=\hbar \omega\} \&\left\{\mathrm{E}_{0}=\hbar \omega_{0}\right\}$ give Einstein's photoelectric relations Spatial: $\{\boldsymbol{p}=\hbar \mathbf{k}\}$ gives de Broglie's matter-wave relation
Manifestly Invariant Form: $\mathbf{P}=(\hbar) \mathbf{K}$
$\{\mathrm{E}, \omega, \mathrm{p}, \mathrm{k}\}$ are relativistic tensor components, which can vary among frames
$\left\{\mathrm{E}_{\mathrm{o}}, \omega_{\mathrm{o}}, \hbar\right\}$ are invariant $=$ proper $=$ rest quantities, which are the same
$\mathrm{E}=\hbar \omega=\hbar \gamma \omega_{o}=\gamma \mathrm{E}_{\mathrm{o}}$
$\mathbf{p}=\hbar \mathbf{k}=\hbar \omega \mathbf{u} / \mathrm{c}^{2}$

4-Momentum $\mathbf{P}=\mathrm{P}^{\mu}=(\mathrm{mc}, \mathrm{p})=(\mathrm{E} / \mathrm{c}, \mathrm{p})$
Temporal: (m) $=\gamma \mathrm{m}_{\mathrm{o}}$
Spatial: $(\mathrm{p})=\mathrm{mu}=\gamma \mathrm{m}_{\mathrm{o}} \mathbf{u}$
Manifestly Invariant Form: $\mathbf{P}=\left(\mathrm{m}_{\mathrm{o}}\right) \mathbf{U}$
$(\mathrm{E})^{2}=\left(\mathrm{m}_{0} \mathrm{c}^{2}\right)^{2}+(\mathbf{p} \cdot \mathbf{p}) \mathrm{c}^{2}$
4-Velocity $\mathbf{U}=\mathbf{U}^{\mu}=\gamma(\mathbf{c}, \mathbf{u})=(\gamma \mathbf{c}, \gamma \mathbf{u})$
Temporal: $(\gamma \mathrm{c})=\gamma \mathrm{c}$
Spatial: $(\gamma \mathbf{u})=\gamma \mathbf{c u} / \mathbf{c}=\gamma \mathbf{u}$
Manifestly Invariant Form: $\mathbf{U}=(\mathrm{c} / \mathrm{c}) \mathbf{U}=\mathbf{U}$
$(\gamma \mathrm{c})^{2}=(\mathrm{c})^{2}+\gamma^{2}(\mathbf{u} \cdot \mathbf{u}) \quad: \quad(\gamma)^{2}=1+(\gamma \beta)^{2}$

This matches the known relativistic relations:
$\mathbf{P}=\mathrm{m}_{\mathrm{o}} \mathbf{U}=(\mathrm{E} / \mathrm{c}, \mathrm{p})=\mathrm{m}_{0} \gamma(\mathrm{c}, \mathrm{u})=\gamma \mathrm{m}_{\mathrm{o}}(\mathrm{c}, \mathrm{u})=\mathrm{m}(\mathrm{c}, \mathrm{u})=(\mathrm{mc}, \mathrm{mu})=(\mathrm{mc}, \mathrm{p})$
Temporal: $\left\{E=m c^{2}\right\} \&\left\{E_{o}=m_{o} c^{2}\right\}$ give Einstein's Energy-mass relations
Spatial: $\left\{\mathbf{p}=m \mathbf{u}=\gamma \mathrm{m}_{0} \mathbf{u}\right\}$ gives Einstein's relativistic momentum
Manifestly Invariant Form: $\mathbf{P}=\left(\mathrm{m}_{\mathrm{o}}\right) \mathbf{U}$
$\{\mathrm{E}, \mathrm{m}, \mathrm{p}\}$ are relativistic tensor components, which can vary among frames $\left\{\mathrm{E}_{\mathrm{o}}, \mathrm{m}_{\mathrm{o}}, \mathrm{c}\right\}$ are invariant $=$ proper $=$ rest quantities, which are the same
$\mathrm{E}=\mathrm{mc}^{2}=\gamma \mathrm{m}_{0} \mathrm{c}^{2}=\gamma \mathrm{E}_{0}$
$\mathbf{p}=\mathbf{m u}=\gamma \mathrm{m}_{\mathrm{o}} \mathbf{u}$

4-NumberFlux $\mathbf{N}=\mathbf{N}^{\mu}=(n c, n)=(n c, n u)$
Temporal: $(\mathrm{n})=\gamma \mathrm{n}_{\mathrm{o}} \quad \boldsymbol{\partial} \cdot \mathbf{N}=\left(\partial_{\mathrm{t}} / \mathrm{c},-\nabla\right) \cdot(\mathrm{nc}, \mathrm{n})=\left(\partial_{\mathrm{t}} \mathrm{n}+\nabla \cdot \mathbf{n}\right)=0$
Spatial: $(\mathrm{n})=\mathrm{nu}=\gamma \mathrm{n}_{0} \mathbf{u}$
Conservation of Particle \#
Manifestly Invariant Form: $\mathbf{N}=\left(n_{0}\right) \mathbf{U}$
$(\mathrm{nc})^{2}=\left(\mathrm{n}_{\mathrm{o}} \mathrm{c}\right)^{2}+(\mathbf{n} \cdot \mathbf{n})$

4-CurrentDensity $\mathbf{J}=\mathbf{J}^{\mu}=(\rho c, \mathbf{j})$
Temporal: $(\rho)=\gamma \rho_{o}$

$$
\partial \cdot \mathbf{J}=\left(\partial_{\mathrm{t}} / \mathrm{c},-\nabla\right) \cdot(\rho \mathrm{c}, \mathbf{j})=\left(\partial_{\mathrm{t}} \rho+\nabla \cdot \mathbf{j}\right)=0
$$

Spatial: $(\mathrm{j})=\rho \mathbf{u}=\gamma \rho_{\mathrm{o}} \mathbf{u}$
Conservation of EM Charge
Manifestly Invariant Form: $\mathbf{J}=\left(\rho_{o}\right) \mathbf{U}$
$(\rho c)^{2}=\left(\rho_{\mathrm{o}} \mathrm{c}\right)^{2}+(\mathbf{j} \cdot \mathbf{j})$
4-EM_VectorPotential $\mathbf{A}=\mathrm{A}^{\mu}=(\varphi / \mathrm{c}, \mathrm{a})=\left(\varphi_{o} / \mathrm{c}^{2}\right) \mathbf{U}$

Temporal: $(\varphi)=\gamma \varphi_{o}$
Spatial: (a) $=\varphi \mathbf{u} / \mathrm{c}^{2}=\gamma \varphi_{o} \mathbf{u} / \mathrm{c}^{2}$
Manifestly Invariant Form: $\mathbf{A}=\left(\varphi_{0} / c^{2}\right) \mathbf{U}$
$(\varphi)^{2}=\left(\varphi_{o}\right)^{2}+(\mathbf{a} \cdot \mathbf{a}) \mathrm{c}^{2}$

$$
\partial \cdot \mathbf{A}=\left(\partial_{\mathrm{t}} / \mathrm{c},-\nabla\right) \cdot(\varphi / \mathrm{c}, \mathbf{a})=\left(\partial_{\mathrm{t}} \varphi / \mathrm{c}^{2}+\nabla \cdot \mathbf{a}\right)=0
$$

Lorenz Gauge Condition
Conservation of EM potential

The standard Schrödinger QM Relations derived from SR:

We can examine these SR 4-Vector relations above... and by simply combining them...
$\mathbf{P}=\hbar \mathbf{K}$ (a relation which is entirely empirical, based on just SR arguments, shown above)
$\mathbf{K}=\mathrm{i} \boldsymbol{\partial} \quad$ (which is a relation for complex plane-waves, used in classical EM and elsewhere)
$\mathbf{P}=\mathrm{i} \hbar \boldsymbol{\partial}=(\mathrm{E} / \mathrm{c}, \mathrm{p})=\mathrm{i} \hbar\left(\partial_{\mathrm{t}} / \mathrm{c},-\nabla\right)$
Temporal: $\left\{\mathrm{E}=\mathrm{i} \hbar \partial_{\mathrm{t}}=\mathrm{i} \hbar \partial / \partial \mathrm{t}\right\}$ gives unitary QM time evolution operator.
Spatial: $\{\mathrm{p}=-\mathrm{i} \hbar \nabla\}$ gives the QM momentum operator.

So, what does all this mean for RestMass $\left(\mathrm{m}_{\mathrm{o}}\right)$?

It is a logical, mathematically sound concept based on tensor math which applies to the actual physical world.

It is a fact that there are relativistic frame effects.
In the same way that we "see" Time-Dilated ($\mathrm{t}=\gamma \mathrm{t}_{\mathrm{o}}$) muons...
In the same way that atmospheric muons "see" a Length-Contracted ($\mathrm{L}=\mathrm{L}_{0} / \gamma$) atmosphere...
Muons also have an intrinsic, invariant RestMass (m_{o}).
The Lorentz Gamma Factor (γ) which causes this relativistic time dilation and length contraction is just a reference frame effect. There are also a Proper Time $\left(\mathrm{t}_{\mathrm{o}}\right)$ and a Proper Length $\left(\mathrm{L}_{\mathrm{o}}\right)$, which are frame invariants.

There is a $\{$ Rest $=$ Proper $=$ Invariant $\}$ quantity for all SR 4-Vector objects.
However, each of these 4-Vectors will have inner components which can "appear" different in differing inertial frames.

Each fundamental particle has a $\{$ Rest $=$ Proper $=\operatorname{Invariant}\}$ Mass $\left(\mathrm{m}_{\mathrm{o}}\right)$.
The Total Relativistic Energy E of a fundamental particle is given by $(E)^{2}=\left(m_{0} c^{2}\right)^{2}+(\mathbf{p} \cdot \mathbf{p}) c^{2}$
The Total Relativistic Energy E is thus a combination of the invariant RestMass energy $\left(\mathrm{m}_{0} \mathrm{c}^{2}\right)$ and the energy of motion $(|\mathbf{p}| \mathrm{c})$. In the frame where the 3-momentum \mathbf{p} goes to zero, this reduces to $\left(E_{o}\right)^{2}=\left(m_{o} c^{2}\right)^{2} \quad: \quad \mathbf{p} \rightarrow \mathbf{0}$ implies $E \rightarrow E_{o}$

The RestMass Energy of each fundamental particle never changes for that given particle.
It can only be split or added to by a change in the nature of the fundamental particle, ie. Feynman diagrams, in which particles transform into other particles.

The energy of motion is really just a by-product Lorentz Gamma Factor (γ) that relates the differing inertial frames.

The Total Energy of Incoming particles = the Total Energy of Outgoing particles in such reactions.

This also still allows a "relativistic mass" (m).
$(E)^{2}=\left(m_{0} c^{2}\right)^{2}+(\mathbf{p} \cdot \mathbf{p}) c^{2}$
$\left(\mathrm{mc}^{2}\right)^{2}=\left(\mathrm{m}_{\mathrm{o}} \mathrm{c}^{2}\right)^{2}+\left(\gamma \mathrm{m}_{\mathrm{o}}\right)^{2}(\mathbf{u} \cdot \mathbf{u}) \mathrm{c}^{2}$
$(\mathrm{m})^{2}=\left(\mathrm{m}_{0}\right)^{2}+\left(\gamma \mathrm{m}_{0}\right)^{2}(\mathbf{u} \cdot \mathbf{u}) / \mathrm{c}^{2}$
$(\mathrm{m})^{2}=\left(\mathrm{m}_{\mathrm{o}}\right)^{2}+\left(\gamma \mathrm{m}_{\mathrm{o}}\right)^{2}(\boldsymbol{\beta} \cdot \boldsymbol{\beta})$
$(\mathrm{m})^{2}=\left(\mathrm{m}_{\mathrm{o}}\right)^{2}\left[1+(\gamma)^{2}(\boldsymbol{\beta} \cdot \boldsymbol{\beta})\right]$
$(\mathrm{m})^{2}=\left(\mathrm{m}_{\mathrm{o}}\right)^{2}\left[1+(\gamma \beta)^{2}\right]$
$(\mathrm{m})^{2}=\left[1+(\gamma \beta)^{2}\right]\left(\mathrm{m}_{\mathrm{o}}\right)^{2}$
$(\mathrm{m})^{2}=\gamma^{2}\left(\mathrm{~m}_{0}\right)^{2} \quad$ because $(\gamma)^{2}=1+(\gamma \beta)^{2}:$ from $\gamma=1 / \sqrt{ }\left[1-\beta^{2}\right]$
$\mathrm{m}=\gamma \mathrm{m}_{\mathrm{o}}$

However, again, the Lorentz Gamma (γ) is just a frame effect. Particles still retain their invariant $=$ proper $=$ RestMass $\left(\mathrm{m}_{\mathrm{o}}\right)$. For instance, whizzing past a mass with huge $\mathrm{m}=\gamma \mathrm{m}_{\mathrm{o}}$ doesn't suddenly cause it to become a black hole.

```
(E) 2 = (moc}\mp@subsup{\mp@code{c}}{}{2}\mp@subsup{)}{}{2}+(\mathbf{p}\cdot\mathbf{p})\mp@subsup{c}{}{2
(E)}\mp@subsup{)}{}{2}=(\mp@subsup{m}{o}{}\mp@subsup{c}{}{2}\mp@subsup{)}{}{2}+(pc\mp@subsup{)}{}{2
E}=\sqrt{}{}[\mp@subsup{m}{0}{2}\mp@subsup{c}{}{4}+\mp@subsup{p}{}{2}\mp@subsup{c}{}{2}]=(\mp@subsup{m}{0}{2}\mp@subsup{c}{}{4}+\mp@subsup{p}{}{2}\mp@subsup{c}{}{2}\mp@subsup{)}{}{\wedge}(1/2
dE = (1/2)(2pcc})(\mp@subsup{m}{0}{2}\mp@subsup{c}{}{4}+\mp@subsup{p}{}{2}\mp@subsup{c}{}{2}\mp@subsup{)}{}{\wedge}(-1/2)d
dE = (pc}\mp@subsup{)}{}{2})(\mp@subsup{m}{0}{2}\mp@subsup{c}{}{4}+\mp@subsup{\textrm{p}}{}{2}\mp@subsup{\textrm{c}}{}{2}\mp@subsup{)}{}{\wedge}(-1/2)\textrm{dp
dE = (pc ')}/\sqrt{}{[mo}\mp@subsup{\textrm{m}}{0}{2}\mp@subsup{\textrm{c}}{}{4}+\mp@subsup{\textrm{p}}{}{2}\mp@subsup{\textrm{c}}{}{2}]\textrm{dp
dE = (p\mp@subsup{c}{}{2})/\sqrt{}{[m}\mp@subsup{m}{0}{2}\mp@subsup{\textrm{c}}{}{4}+\mp@subsup{\textrm{p}}{}{2}\mp@subsup{\textrm{c}}{}{2}]\textrm{dp}
dE = (pc 2)/c
dE = (pc)/V[mo }\mp@subsup{}{0}{2}\mp@subsup{\textrm{c}}{}{2}+\mp@subsup{\textrm{p}}{}{2}]\textrm{dp
dE/dp=(pc)/\sqrt{}{[mo}\mp@subsup{}{0}{2}\mp@subsup{\textrm{c}}{}{2}+\mp@subsup{\textrm{p}}{}{2}]
E}=\gamma\mp@subsup{\textrm{m}}{\textrm{o}}{}\mp@subsup{\textrm{c}}{}{2
p= }\mp@subsup{\textrm{m}}{\textrm{o}}{0}\textrm{u
E=pc}/\mp@code{u
Eu= pc
udE +E du= dp c
p= \gammamou
p=mou
p= mou(1-\mp@subsup{u}{}{2}/\mp@subsup{c}{}{2}\mp@subsup{)}{}{\wedge}(-1/2)
dp= mom
dp = mo [\gamma+\mp@subsup{\gamma}{}{3}\mp@subsup{u}{}{2}/\mp@subsup{c}{}{2})]du
dp = \gamma mon
dp = \gamma mo [ }\mp@subsup{\gamma}{}{2}]\textrm{du
dp = 语 modu
du/dp = 1/( }\mp@subsup{\gamma}{}{3}\mp@subsup{\textrm{m}}{\textrm{o}}{}
\gamma=(1-\mp@subsup{\beta}{}{2}\mp@subsup{)}{}{\wedge}(-1/2)
d}\gamma=(-1/2)(-2\beta)(1-\mp@subsup{\beta}{}{2}\mp@subsup{)}{}{\wedge}(-3/2)\textrm{d}
d}\gamma=\beta\mp@subsup{\gamma}{}{3}\textrm{d}
d}\boldsymbol{=}=\textrm{u}\mp@subsup{\gamma}{}{3}\textrm{du}/\mp@subsup{\textrm{c}}{}{2
d}\gamma/\textrm{du}=\textrm{u}\mp@subsup{\gamma}{}{3}/\mp@subsup{c}{}{2
dp = mo [u d }\gamma+\gamma\textrm{du}
dp/du = mo[u d\gamma/du + \gamma du/du]
dp/du}=\mp@subsup{m}{0}{}[\mp@subsup{u}{}{2}\mp@subsup{\gamma}{}{3}/\mp@subsup{c}{}{2}+\gamma
dp/du = \gamma mo [u [ ' }\mp@subsup{\gamma}{}{2}/\mp@subsup{c}{}{2}+1
dp/du = \gamma mo [ }\mp@subsup{\gamma}{}{2}\mp@subsup{\beta}{}{2}+1
dp/du= \gamma mo [ }\mp@subsup{\gamma}{}{2}
dp/du = 钫
E}=\gamma\mp@subsup{\textrm{m}}{0}{}\mp@subsup{\textrm{c}}{}{2
dE=d}\mp@subsup{\gamma}{\textrm{m}}{0}\mp@subsup{\textrm{c}}{}{2
dp/du = 婹的
```



```
d}\gamma/\textrm{du}=\textrm{u}\mp@subsup{\gamma}{}{3}/\mp@subsup{c}{}{2
d}\gamma=u\mp@subsup{\gamma}{}{3}/\mp@subsup{c}{}{2}d
dE = mou u % du
dE = u dp
u=dE/dp
```

4-WaveVector $\quad \mathbf{K}=K^{\mu}=\left(\omega / \mathbf{c}=1 / \mathrm{c} \mp, \mathbf{k}=\omega \hat{\mathbf{n}} / v_{\text {phase }}=\hat{\mathbf{n}} / \mathcal{A}=\omega \mathbf{u} / \mathrm{c}^{2}\right)=\left(\omega_{o} / \mathrm{c}^{2}\right) \mathbf{U}=(1 / \hbar) \mathbf{P} \quad \hat{\mathbf{n}}=$ unit-direction 3-vector $\{2 \mathrm{DoF}\}$

```
\(\mathbf{K}=\mathrm{K}^{\mu}=\left(\omega / \mathrm{c}, \mathbf{k}=\omega \hat{\mathbf{n}} / \mathrm{V}_{\text {phase }}\right)=\left(\omega_{0} / \mathrm{c}^{2}\right) \mathbf{U}=\left(\omega_{o} / \mathrm{c}^{2}\right) \gamma(\mathrm{c}, \mathbf{u})=\left(\gamma \omega_{o} / \mathrm{c}^{2}\right)(\mathrm{c}, \mathbf{u})=\left(\omega / \mathrm{c}^{2}\right)(\mathrm{c}, \mathbf{u})=\left(\omega / \mathrm{c}, \omega \mathbf{u} / \mathrm{c}^{2}\right)\)
\(\left(\omega / \mathrm{c}, \mathrm{k}=\omega \hat{\mathbf{n}} / \mathrm{v}_{\text {phase }}\right)=\left(\omega / \mathrm{c}, \omega \mathbf{u} / \mathrm{c}^{2}\right)\)
\(\omega \hat{n} / V_{\text {phase }}=\omega \mathbf{u} / \mathrm{c}^{2}\)
\(\mathbf{c}^{2} \hat{\mathbf{n}}=\mathbf{u}^{*} V_{\text {phase }}\)
```

Now, separated into temporal scalar and spatial 3-vector components:
$\mathbf{A}=\left(\mathrm{a}^{0}, \mathbf{a}\right)=\left(\mathrm{a}^{0} / \mathrm{c}\right) \mathbf{U}=\left(\mathrm{a}^{0} / \mathrm{c}\right) \gamma(\mathrm{c}, \mathbf{u})=\left(\mathrm{a}^{0}, \mathrm{a}^{0} \mathbf{u} / \mathrm{c}\right)=\mathrm{a}^{0}(1, \boldsymbol{\beta})=\gamma \mathrm{a}^{0}{ }_{\mathrm{o}}(1, \boldsymbol{\beta})=\mathrm{a}^{0}{ }_{\mathrm{o}} \gamma(1, \boldsymbol{\beta})=\mathrm{a}^{0} \overline{\mathbf{T}} \quad: \quad \overline{\mathbf{T}}=4$-Unit ${ }^{\mathbf{C}}$ Temporal" $=\gamma(1, \boldsymbol{\beta})$
Temporal: $\left(\mathrm{a}^{0}\right)=\left(\mathrm{a}^{0} / \mathrm{c}\right) \gamma(\mathrm{c})=\gamma \mathrm{a}^{0}{ }_{\mathrm{o}}$
Spatial: $(\mathrm{a})=\left(\mathrm{a}^{0}{ }_{\mathrm{o}} / \mathrm{c}\right) \gamma(\mathrm{u})=\gamma \mathrm{a}^{0}{ }_{\mathrm{o}} \mathbf{u} / \mathrm{c}=\mathrm{a}^{0} \mathbf{u} / \mathrm{c}=\mathrm{a}^{0} \boldsymbol{\beta}$

Taking the Lorentz Scalar Self-Product:
$\mathbf{A} \cdot \mathbf{A}=\left(a^{0}, a\right) \cdot\left(a^{0}, a\right)=\left(a^{0}\right)^{2}-(\mathbf{a} \cdot \mathbf{a})=\left(a^{0} / c\right)^{2} \mathbf{U} \cdot \mathbf{U}=\left(a^{0} /{ }_{o} / c\right)^{2}\left(c^{2}\right)=\left(a^{0}{ }_{o}\right)^{2}$
$\left(\mathrm{a}^{0}\right)^{2}=\left(\mathrm{a}^{0}{ }_{\mathrm{o}}\right)^{2}+(\mathbf{a} \cdot \mathbf{a})$
$\left(a^{0}\right)^{2}=\left(a^{0}{ }_{o}\right)^{2}+|\mathbf{a}|^{2}$
$\mathrm{d}\left[\left(\mathrm{a}^{0}\right)^{2}\right]=\mathrm{d}\left[\left(\mathrm{a}_{\mathrm{o}}^{0}\right)^{2}+|\mathbf{a}|^{2}\right]$
$\mathrm{d}\left[\left(\mathrm{a}^{0}\right)^{2}\right]=0+\mathrm{d}\left[\mid \mathbf{a}^{2}\right]$
$2 \mathrm{a}^{0} \mathrm{~d}\left[\left(\mathrm{a}^{0}\right)\right]=2|\mathbf{a}| \mathrm{d}[|\mathbf{a}|]$
$\mathrm{a}^{0} \mathrm{~d}\left[\mathrm{a}^{0}\right]=|\mathbf{a}| \mathrm{d}[|\mathbf{a}|]$
$\mathrm{d}\left[\mathrm{a}^{0}\right] / \mathrm{d}[|\mathbf{a}|]=|\mathbf{a}| \mathrm{a}^{0}=\mathbf{u} / \mathrm{c}=\mathrm{c} / \mathrm{v}_{\text {phase }} \quad: \quad \mathrm{u} * \mathrm{v}_{\text {phase }}=\mathrm{c}^{2}$
Define Phase ${ }_{\mathbf{A}}=\varphi_{\mathbf{A}}=\varphi=\mathbf{- A} \cdot \mathbf{X}=\left(\mathbf{a} \cdot \mathbf{x}-\mathrm{a}^{0} \mathbf{c t}\right)$
$\mathbf{a}=\partial \varphi / \partial \mathbf{x}$
$-\mathrm{a}^{0} \mathrm{c}=\partial \varphi / \partial \mathrm{t}$
$v_{\text {phase }}=|\partial \mathbf{x} / \partial \mathrm{t}|=|(\partial \mathbf{x} / \partial \mathrm{t})(\partial \varphi / \partial \varphi)|=|(\partial \mathbf{x} / \partial \varphi)(\partial \varphi / \partial \mathrm{t})|=\left|(1 / \mathbf{a})\left(-\mathrm{a}^{0} \mathrm{c}\right)\right|=\left|\left(-\mathrm{a}^{0} \mathrm{c} / \mathbf{a}\right)\right|=\left|\left(\mathrm{a}^{0} \mathrm{c} / \mathbf{a}\right)\right| \quad: \quad \mathbf{a}=\left(\mathrm{a}^{0} \mathrm{c} \hat{n} / \mathrm{v}_{\text {phase }}\right)$
4-Vector $\mathbf{A}=\left(\mathrm{a}^{0}, a\right)$
Temporal: $\left(\mathrm{a}^{0}\right)=\gamma \mathrm{a}^{0}{ }_{0}$
Spatial: (a) $=\mathrm{a}^{0} \mathbf{u} / \mathrm{c}=\gamma \mathrm{a}^{0} \mathbf{u} / \mathrm{c}$
Manifestly Invariant Form: $\mathbf{A}=\left(\mathrm{a}^{0} / \mathrm{c}\right) \mathbf{U}$
$\left(\mathrm{a}^{0}\right)^{2}=\left(\mathrm{a}^{0}{ }_{\mathrm{o}}\right)^{2}+(\mathbf{a} \cdot \mathbf{a})$

Recapping:
$a^{0} /|\mathbf{a}|=v_{\text {phase }} / \mathbf{c}$ From the formal definition of generic temporal 4-Vector $\mathbf{A}=\mathrm{A}^{\mu}=\left(\mathrm{a}^{0}, \mathbf{a}=\mathrm{a}^{0} \mathbf{u} / \mathrm{c}=\mathrm{a}^{0} \mathrm{c} \hat{\mathbf{n}} / \mathrm{v}_{\text {phase }}\right)$
$\mathrm{da}^{0} / \mathrm{da}=\mathbf{u} / \mathrm{c}=\mathrm{v}_{\text {group }} / \mathrm{c}=\mathrm{v}_{\text {particle }} / \mathrm{c}$ Derived from Lorentz Scalar Product $(\mathbf{A} \cdot \mathbf{A})=\left[\left(\mathrm{a}^{0}\right)^{2}-\mathbf{a} \cdot \mathbf{a}\right]=\left(\mathrm{a}^{0}{ }_{\mathrm{o}}\right)^{2}$
$\mathbf{u}=\mathrm{c}^{2} \hat{\mathbf{n}} / v_{\text {phase }}$ The relation between particle and wave velocities, from $\mathbf{A}=\left(\mathrm{a}^{0}{ }_{\mathrm{o}} / \mathrm{c}\right) \mathbf{U}$

```
\(\mathbf{A}=\mathrm{A}^{\mu}=\left(\mathrm{a}^{0}, \mathbf{a}\right)=\left(\mathrm{a}^{0} / \mathrm{c}\right) \mathbf{U}=\left(\mathrm{a}^{0}{ }_{\mathrm{o}} / \mathrm{c}\right) \gamma(\mathrm{c}, \mathbf{u})=\left(\mathrm{a}^{0}, \mathrm{a}^{0} \mathbf{u} / \mathrm{c}\right)=\left(\mathrm{a}^{0}, \mathrm{a}^{0} \mathrm{c} \hat{\mathbf{n}} / v_{\text {phase }}\right):\) then \(\mathbf{u} / \mathrm{c}=\mathrm{c} \hat{\mathbf{n}} / v_{\text {phase }} \quad: \quad \mathbf{u}^{*} v_{\text {phase }}=\mathrm{c}^{2} \hat{\mathbf{n}}\)
\(\left(a^{0}, a^{0} \mathbf{u} / \mathbf{c}\right)=\left(a^{0}, a^{0} \mathbf{c} \hat{\mathbf{n}} / v_{\text {phase }}\right)\)
\(\left(\mathrm{a}^{0}, \mathrm{a}^{0} \boldsymbol{\beta}\right)=\left(\mathrm{a}^{0}, \mathrm{a}^{0} \hat{\mathbf{n}} / \beta_{\text {phase }}\right)\)
\(\boldsymbol{\beta}=\hat{\mathbf{n}} / \beta_{\text {phase }}\)
\(\boldsymbol{\beta} * \beta_{\text {phase }}=\hat{\mathbf{n}}\)
\(\mathbf{u}^{*} \mathrm{~V}_{\text {phase }}=\mathrm{c}^{2} \hat{\mathbf{n}}\)
\(\mathrm{v}_{\text {phase }}=?=\mathrm{a}^{0} \mathrm{c} /|\mathbf{a}|=?=\mathrm{c} \partial|\mathbf{a}| / \partial \mathrm{a}^{0}\)
\(\mathrm{V}_{\text {group }}=|\mathbf{u}| \quad=?=\mathrm{c} \partial \mathrm{a}^{0} / \partial|\mathbf{a}|\)
\(\mathrm{v}_{\text {phase }} * \mathrm{v}_{\text {group }}=\left(\mathrm{c} \partial|\mathbf{a}| / \partial \mathrm{a}^{0}\right) *\left(\mathrm{c} \partial \mathrm{a}^{0} / \partial|\mathbf{a}|\right)=\left(\mathrm{c}^{2}\right) *\left(\partial|\mathbf{a}| \partial \mathrm{a}^{0}\right) *\left(\partial \mathrm{a}^{0} / \partial|\mathbf{a}|\right)=\left(\mathrm{c}^{2}\right) *\left(\partial \mathrm{a}^{0} / \partial \mathrm{a}^{0}\right) *(\partial|\mathbf{a}| \partial|\mathbf{a}|)=\left(\mathrm{c}^{2}\right)\)
```

```
\(\mathrm{d}[\gamma]=\mathrm{d}\left[\left(1-\beta^{2}\right)^{\wedge}(-1 / 2)\right]=(-1 / 2)\left(1-\beta^{2}\right)^{\wedge}(-3 / 2) \mathrm{d}\left[\left(1-\beta^{2}\right)\right]=(-1 / 2)\left(\gamma^{3}\right) \mathrm{d}\left[\left(1-\beta^{2}\right)\right]=(-1 / 2)\left(\gamma^{3}\right)(-2) \beta \mathrm{d} \beta=\beta \gamma^{3} \mathrm{~d} \beta\)
\(\mathrm{d}[\gamma \beta]=[\beta \mathrm{d} \gamma+\gamma \mathrm{d} \beta]=\left[\beta \beta \gamma^{3} \mathrm{~d} \beta+\gamma \mathrm{d} \beta\right]=\left[\beta^{2} \gamma^{3} \mathrm{~d} \beta+\gamma \mathrm{d} \beta\right]=\gamma\left[\beta^{2} \gamma^{2}+1\right] \mathrm{d} \beta=\gamma\left[\gamma^{2}\right] \mathrm{d} \beta=\gamma^{3} \mathrm{~d} \beta\)
\(\mathrm{d}[\gamma]=(\beta) \mathrm{d}[\gamma \beta]\)
\(\mathrm{d}[\gamma \beta]=(1 / \beta) \mathrm{d}[\gamma]\)
\(\mathrm{a}=\left(\mathrm{a}^{0}{ }_{\mathrm{o}}\right) \gamma \beta=\gamma \mathrm{a}^{0} \beta\)
\(\mathrm{da}=\mathrm{d}[\gamma \beta] \mathrm{a}^{0}{ }_{0}\)
\(\mathrm{da}=\gamma^{3} \mathrm{~d} \beta \mathrm{a}^{0}{ }_{0}\)
\(\mathrm{a}^{0}=\gamma \mathrm{a}^{0}{ }_{\mathrm{o}}\)
\(\mathrm{da}^{0}=\mathrm{d}[\gamma] \mathrm{a}^{0}{ }_{\mathrm{o}}\)
\(d a^{0}=\beta \gamma^{3} \mathrm{~d} \beta \mathrm{a}^{0}{ }_{\circ}\)
\(\mathrm{da}^{0}=\beta\) da
\(\mathrm{da}^{0} / \mathrm{da}=\beta\)
\(\mathrm{c} \mathrm{da}^{0} / \mathrm{da}=\beta \mathrm{c}=\mathrm{u}=\mathrm{v}_{\text {group }}\)
```

$\mathbf{R} \cdot \mathbf{R}=\mathrm{R}^{\mu} \eta_{\mu v} \mathrm{R}^{v}=(\mathrm{ct}, \mathrm{r}) \cdot(\mathrm{c}, \mathrm{r})=\left[\mathrm{c}^{2} \mathrm{t}^{2}-\mathbf{r} \cdot \mathbf{r}\right]=\mathrm{c}^{2} \mathrm{t}_{0}{ }^{2}$
$\Delta \mathbf{R} \cdot \Delta \mathbf{R}=\Delta R^{\mu} \eta_{\mu \nu} \Delta R^{v}=(c \Delta t, \Delta r) \cdot(c \Delta t, \Delta r)=\left[c^{2} \Delta t^{2}-\Delta \mathbf{r} \cdot \Delta \mathbf{r}\right]=c^{2} \Delta t_{0}{ }^{2}$
$c^{2} \Delta t^{2}=c^{2} \Delta t_{0}{ }^{2}+\Delta \mathbf{r} \cdot \Delta \mathbf{r}$

