The Dirac Equation Derived using 4-Vectors

It can be shown that spin comes from the Poincaré Symmetry of SR, not from a QM axiom.
Writing a 4-SpinMomentum then leads naturally to the Dirac Equation.

First, we will do a little pure mathematics:
Let $\left\{\left(\mathrm{a}^{2}-\mathrm{b}^{2}\right)=(\mathrm{a}+\mathrm{b})(\mathrm{a}-\mathrm{b})=\mathrm{c}^{2}\right\}$

We can multiply by an arbitrary factor (xy):
$\left(a^{2}-b^{2}\right)(x y)=(a+b)(a-b)(x y)=c^{2}(x y)$

If we impose the following extra constraint:
$(a+b) x=(c y)$
$(a-b) y=(c x)$

Then the separated equations are still true when multiplied together:
$(a+b) x *(a-b) y=(c y) *(c x) \rightarrow(a+b)(a-b)(x y)=c^{2}(x y)$

Now add and subtract the separated equations:
$(a+b) x+(a-b) y=(c y)+(c x)$
$(a+b) x-(a-b) y=(c y)-(c x)$

Gather terms in $\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$:
$a(x+y)+b(x-y)=c(x+y)$
$a(x-y)+b(x+y)=-c(x-y)$

Let $\mathrm{X}=(\mathrm{x}+\mathrm{y})$ and $\mathrm{Y}=(\mathrm{y}-\mathrm{x})=-(\mathrm{x}-\mathrm{y})$, just a change in variable names
$a X-b Y=c X$
$-a Y+b X=c Y$

Rearrange:
$a X-b Y=c X$
$b X-a Y=c Y$

Putting into matrix form:
$[\mathrm{a}-\mathrm{b}] \quad[\mathrm{X}]=[\mathrm{c} 0] \quad[\mathrm{X}]$
$[\mathrm{b}-\mathrm{a}][\mathrm{Y}]=[0 \mathrm{c}][\mathrm{Y}]$
or
Putting into suggestive matrix form...
$\left.\begin{array}{l}\left(\begin{array}{ll}1 & 0\end{array}\right] \\ \left(\left[\begin{array}{ll}0 & -1\end{array}\right]\right.\end{array} \mathrm{a}+\begin{array}{c}{\left[\begin{array}{ll}0 & -1\end{array}\right]} \\ {\left[\begin{array}{ll}1 & 0\end{array}\right]}\end{array}\right)\left[\begin{array}{l})[\mathrm{X}]\end{array}\right)[\mathrm{Y}] \quad \mathrm{c} \begin{aligned} & {\left[\begin{array}{ll}1 & 0\end{array}\right][\mathrm{X}]} \\ & {\left[\begin{array}{ll}0 & 1\end{array}\right][\mathrm{Y}]}\end{aligned}$
And again, to confirm that this matches the original equation:
$a X-b Y=c X$
$b X-a Y=c Y$
or
$(\mathrm{a}-\mathrm{c}) \mathrm{X}=(\mathrm{b}) \mathrm{Y}$
(b) $\mathrm{X}=(\mathrm{a}+\mathrm{c}) \mathrm{Y}$

Multiply the terms:
$(a-c) X(a+c) Y=(b) X(b) Y$
$(a-c)(a+c) X Y=(b)(b) X Y$
$\left(a^{2}-c^{2}\right) X Y=\left(b^{2}\right) X Y$
$\left(a^{2}-c^{2}\right)=b^{2}$
$\left(a^{2}-b^{2}\right)=c^{2}$

So, mathematically:
$\left(a^{2}-b^{2}\right)=c^{2}$ is the defining equation, which holds equivalently for:
$\left\{\left(a^{2}-b^{2}\right)(x y)=\left(c^{2}\right)(x y)\right\}$
or
$\left.\begin{array}{l}\left(\left[\begin{array}{ll}1 & 0\end{array}\right]\right. \\ \left(\left[\begin{array}{ll}0 & -1\end{array}\right]\right.\end{array} \mathrm{a}+\begin{array}{cc}{\left[\begin{array}{ll}0 & -1\end{array}\right]} \\ {\left[\begin{array}{ll}1 & 0\end{array}\right]} & \mathrm{b}\end{array}\right)[\mathrm{X}][\mathrm{Y}] \quad \mathrm{t}\left[\begin{array}{ll}{[1} & 0\end{array}\right] \quad[\mathrm{X}]$

It is only the nature of $\{\mathrm{x}, \mathrm{y}\}$ and $\{\mathrm{X}, \mathrm{Y}\}$ that are different.

Pauli Matrices are a set of dimensionless 2×2 matrices that may be used in totally classical contexts.
In this regard, they are not a quantum postulate, but one of Poincaré Invariance.

$$
\left.\sigma^{t}=\sigma^{0}=\mathbf{I}_{\mathbf{2}}=\begin{array}{l}
{\left[\begin{array}{ll}
1 & 0
\end{array}\right]} \\
{\left[\begin{array}{ll}
0 & 1
\end{array}\right]}
\end{array} \quad \sigma^{\mathrm{x}}=\sigma^{1}=\begin{array}{ll}
{\left[\begin{array}{ll}
0 & 1
\end{array}\right]} \\
{\left[\begin{array}{ll}
1 & 0
\end{array}\right]}
\end{array} \quad \sigma^{\mathrm{y}}=\sigma^{2}=\begin{array}{cc}
{\left[\begin{array}{ll}
0 & -\mathrm{i}
\end{array}\right]} \\
{\left[\begin{array}{cc}
\mathrm{i} & 0
\end{array}\right]}
\end{array} \quad \sigma^{\mathrm{z}}=\sigma^{3}=\begin{array}{ll}
1 & 0
\end{array}\right]
$$

The Pauli Spin Matrices can be written in Tensor notation, with each component itself a dimensionless 2×2 matrix
$\boldsymbol{\Sigma}=\Sigma^{\mu}{ }_{v}=\operatorname{Diag}\left[\sigma^{0}, \sigma^{1}, \sigma^{2}, \sigma^{3}\right]=\operatorname{Diag}\left[\sigma^{0}, \sigma\right] \rightarrow \operatorname{Diag}\left[\sigma^{t}, \sigma^{x}, \sigma^{y}, \sigma^{z}\right]$

In classical mechanics, Pauli matrices are useful in the context of the Cayley-Klein parameters.
The 3D matrix \boldsymbol{P} corresponding to the 3-position \mathbf{x} of a point in space is defined in terms of the above Pauli vector matrix,

$$
\boldsymbol{P}=\mathbf{x} \cdot \boldsymbol{\sigma}=\quad \mathrm{x} \sigma^{\mathrm{x}}+\mathrm{y} \sigma^{\mathrm{y}}+\mathrm{z} \sigma^{\mathrm{z}}
$$

The 4D matrix \boldsymbol{P} corresponding to the 4-Position \mathbf{X} of a point in spacetime is defined in terms of the above Pauli vector matrix,

$$
\boldsymbol{P}=\mathbf{X} \cdot \boldsymbol{\Sigma}=\mathrm{ct} \sigma^{\mathrm{t}}+\mathrm{x} \sigma^{\mathrm{x}}+\mathrm{y} \sigma^{\mathrm{y}}+\mathrm{z} \sigma^{\mathrm{z}}
$$

Suppose now that the vector $\mathbf{x}=\left(x_{1}, x_{2}, x_{3}\right)$ is rotated around an axis with unit vector $\mathbf{n}=\left(n_{1}, n_{2}, n_{3}\right)$ through an angle θ.

The transformation matrix $\mathbf{R}(\theta)$ for rotations about an axis through an angle θ may be written in terms of Pauli matrices and the unit matrix. These can be gathered together in tensor notation with the 2 D unit matrix $=\mathbf{I}_{2}=\sigma^{0}$.
$\left.\boldsymbol{R}_{x}(\theta)=\mathrm{e}^{-\mathrm{i} \theta \mathrm{x} / 2}=\sigma^{0} \cos (\theta / 2)-\mathrm{i} \sigma^{\mathrm{x}} \sin (\theta / 2)=\underset{[-\mathrm{i} \sin (\theta / 2)}{ } \begin{array}{rr}\cos (\theta / 2) & -\mathrm{i} \sin (\theta / 2) \\ \cos (\theta / 2)\end{array}\right]$
$\boldsymbol{R}_{y}(\theta)=\mathrm{e}^{-i \theta y / 2}=\sigma^{0} \cos (\theta / 2)-\mathrm{i} \sigma^{y} \sin (\theta / 2)=[\cos (\theta / 2)-\sin (\theta / 2)]$
$\left[\begin{array}{ll}\sin (\theta / 2) & \cos (\theta / 2)\end{array}\right]$
$\boldsymbol{R}_{z}(\theta)=\mathrm{e}^{-\mathrm{i} \theta z / 2}=\sigma^{0} \cos (\theta / 2)-\mathrm{i} \sigma^{z} \sin (\theta / 2)=\begin{array}{llll}{[\cos (\theta / 2)-\mathrm{i} \sin (\theta / 2)} & 0 &]= & \mathrm{e}^{\wedge}-\mathrm{i}(\theta / 2)\end{array} \quad 0$

For an angle θ about an arbitrary axis \mathbf{n}
$\left.\begin{array}{rl}\boldsymbol{R}_{n}(\theta)=\mathrm{e}^{-\mathrm{i} \theta / 2}=\sigma^{0} \cos (\theta / 2)-\mathrm{i}(\mathbf{n} \cdot \boldsymbol{\sigma}) \sin (\theta / 2)= & {\left[\cos (\theta / 2)-\mathrm{i} \sin (\theta / 2) \mathrm{n}_{3}\right.} \\ {\left[\sin (\theta / 2)\left(\mathrm{n}_{2}-\mathrm{in}\right.\right.} & -\sin (\theta / 2)\left(\mathrm{n}_{2}+\mathrm{in}_{1}\right)\end{array}\right]$

All of the relativistic wave equations can be derived from a common source:
The relativistic mass-energy relation, including spin, in an Electromagnetic (EM) field.
Note that this formalism fits well with the Stern-Gerlach experiment.
4-Momentum $\mathrm{P}=(\mathrm{E} / \mathrm{c}, \mathrm{p})$
4-Momentum including Spin $\mathbf{P}_{\mathbf{s}}=\Sigma \cdot \mathbf{P}=\Sigma^{\mu}{ }_{v} \mathrm{P}^{\nu}=\eta_{\alpha \beta} \Sigma^{\mu \alpha} \mathrm{P}^{\beta}=\mathrm{Ps}^{\mu}$
$\Sigma^{\mu}{ }_{v}$ is the $4 \mathrm{D}(1,1)$-Pauli Spin-Matrix Tensor $=\operatorname{Diag}\left[\sigma^{0}, \sigma\right]$
$\Sigma^{\mu \nu}$ is the 4D (2,0)-Pauli Spin-Matrix Tensor $=\operatorname{Diag}\left[\sigma^{0},-\sigma\right]$
$\mathbf{P}_{\mathbf{s}}=\operatorname{Diag}\left[\sigma^{0},-\sigma\right] \cdot \mathbf{P}=\operatorname{Diag}\left[\sigma^{0},-\sigma\right] \cdot(\mathrm{E} / \mathrm{c}, \mathbf{p})=\left(\sigma^{0} \mathrm{E} / \mathrm{c}, \boldsymbol{\sigma} \cdot \mathbf{p}\right)$
$\mathbf{P}_{\mathbf{s}}=\left(\mathrm{p}_{\mathrm{s}}{ }^{0}, \mathbf{p}_{\mathrm{s}}\right)=\left(\sigma^{0} \mathrm{E} / \mathrm{c}, \boldsymbol{\sigma} \cdot \mathbf{p}\right)$
with σ^{0} as an identity matrix \mathbf{I} of appropriate spin dimension and σ is the Pauli Spin Matrix Vector
4-Momentum inc. Spin in External Field $\mathbf{P}_{\mathbf{T}}=\left(\mathrm{H} / \mathrm{c}, \mathbf{p}_{\mathrm{T}}\right)=\left(\mathrm{E}_{\mathrm{T}} / \mathrm{c}, \mathbf{p}_{\mathrm{T}}\right)$
with:
$\mathrm{H}=\mathrm{E}_{\mathrm{T}}=$ Hamiltonian = Total Energy Of System
$\mathbf{p}_{\mathrm{T}}=$ Total 3-momentum Of System
4-TotalMomentum $\mathbf{P}_{\mathbf{T}}=\mathbf{P}+\mathrm{qA}$
4-Momentum $\mathbf{P}=\mathbf{P}_{\mathbf{T}}-\mathrm{qA}$
4-MomentumIncSpin $\mathbf{P}_{\mathbf{s}}=\left(\mathrm{p}_{\mathrm{s}}{ }^{0}{ }^{\prime} \mathbf{p}_{\mathrm{s}}\right)=\left(\sigma^{0} \mathrm{E} / \mathrm{c}, \sigma \cdot \mathrm{p}\right)=\left(\sigma^{0}\left(\mathrm{E}_{\mathrm{T}} / \mathrm{c}-\mathrm{q} \varphi / \mathrm{c}\right), \sigma \cdot\left(\mathbf{p}_{\mathrm{T}}-\mathrm{qa}\right)\right)$: Note each component is a 2×2 matrix
$\mathbf{P}_{\mathbf{s}} \cdot \mathbf{P}_{\mathbf{s}}=\left(\mathrm{p}_{\mathrm{s}}{ }^{0}\right)^{2}-\left(\mathbf{p}_{\mathrm{s}}\right)^{2}=\left[\sigma^{0}(\mathrm{E} / \mathrm{c})\right]^{2}-[\boldsymbol{\sigma} \cdot(\mathbf{p})]^{2}=\left[\sigma^{0}\left(\mathrm{E}_{\mathrm{T}} / \mathrm{c}-\mathrm{q} \varphi / \mathrm{c}\right)\right]^{2}-\left[\boldsymbol{\sigma} \cdot\left(\mathbf{p}_{\mathrm{T}}-\mathrm{q} \mathbf{a}\right)\right]^{2}=\left(\mathrm{m}_{\mathrm{o}} \mathrm{c}\right)^{2}=\left(\mathrm{E}_{\mathrm{o}} / \mathrm{c}\right)^{2}$
The 4-TotalMomentum (inc. External Field Minimal-Coupling and Spin)
$\mathbf{P}_{\mathbf{s}}=\boldsymbol{\Sigma} \cdot \mathbf{P}=\boldsymbol{\Sigma} \cdot\left(\mathbf{P}_{\mathbf{T}}-\mathrm{q} \mathbf{A}\right)=\left[\sigma^{0}\left(\mathrm{E}_{\mathrm{T}} / \mathrm{c}-\mathrm{q} \varphi / \mathrm{c}\right), \boldsymbol{\sigma} \cdot\left(\mathbf{p}_{\mathrm{T}}-\mathrm{q} \mathbf{a}\right)\right]$
with $\boldsymbol{\Sigma}=\Sigma^{\mu \nu}$ as the Pauli Spin Matrices, and taking the Einstein summation gives the σ^{0} and $\boldsymbol{\sigma}$

$$
\begin{aligned}
& \mathbf{P}_{\mathbf{s}} \cdot \mathbf{P}_{\mathbf{s}}=(\Sigma \cdot \mathbf{P})^{2}=\left[\boldsymbol{\Sigma} \cdot\left(\mathbf{P}_{\mathbf{T}}-\mathrm{q} \mathbf{A}\right)\right]^{2}=\left[\sigma^{0}\left(\mathrm{E}_{\mathrm{T}} / \mathrm{c}-\mathrm{q} \varphi / \mathrm{c}\right)\right]^{2}-\left[\boldsymbol{\sigma} \cdot\left(\mathbf{p}_{\mathrm{T}}-\mathrm{q} \mathbf{a}\right)\right]^{2}=\left(\mathrm{m}_{0} \mathrm{c}\right)^{2} \\
& (\Sigma \cdot \mathbf{P})^{2}=\left(\mathrm{m}_{\mathrm{o}} \mathrm{c}\right)^{2} \\
& (\Sigma \cdot \boldsymbol{\partial})^{2}=-\left(\mathrm{m}_{0} / \hbar\right)^{2} \\
& (\boldsymbol{\Sigma} \cdot \partial)^{2}+\left(\mathrm{m}_{0} \mathrm{c} / \mathrm{h}\right)^{2}=0 \\
& (\boldsymbol{\Sigma} \cdot(\mathrm{D}-(\mathrm{i} / \mathrm{h}) \mathrm{q} \mathbf{A}))^{2}+\left(\mathrm{m}_{\mathrm{o}} \mathrm{c} / \mathrm{h}\right)^{2}=0
\end{aligned}
$$

Now, to prove that this "Relativistic Pauli" Energy-Momentum equation can give the Dirac equation

$$
\begin{aligned}
& \mathbf{P s} \cdot \mathbf{P s}=\left[\sigma^{0}\left(\mathrm{E}_{\mathrm{T}} / \mathrm{c}-\mathrm{q} \varphi / \mathrm{c}\right)\right]^{2}-\left[\boldsymbol{\sigma} \cdot\left(\mathbf{p}_{\mathbf{T}}-\mathrm{q} \mathbf{a}\right)\right]^{2}=\left(\mathrm{p}_{\mathrm{s}}^{0}\right)^{2}-\left(\mathbf{p}_{\mathrm{s}}\right)^{2}=\left(\mathrm{m}_{\mathrm{o}} \mathrm{c}\right)^{2}=\left(\mathrm{E}_{\mathrm{o}} / \mathrm{c}\right)^{2} \\
& \left.\mathbf{P s} \cdot \mathbf{P s}=\mathrm{I}\left(\mathrm{E}_{\mathrm{T}} / \mathrm{c}-\mathrm{q} \varphi / \mathrm{c}\right)\right]^{2}-\left[\boldsymbol{\sigma} \cdot\left(\mathbf{p}_{\mathbf{T}}-\mathrm{qa}\right)\right]^{2}=\left(\mathrm{p}_{\mathrm{s}}^{0}\right)^{2}-\left(\mathbf{p}_{\mathrm{s}}\right)^{2}=\left(\mathrm{m}_{0} \mathrm{c}\right)^{2}=\left(\mathrm{E}_{\mathrm{o}} / \mathrm{c}\right)^{2} \\
& \mathbf{P s} \cdot \mathbf{P s}=\left(\mathrm{p}_{\mathrm{s}}^{0}\right)^{2}-\left(\mathbf{p}_{\mathrm{s}}\right)^{2}=\left(\mathrm{p}_{\mathrm{s}}^{0}+\mathbf{p}_{\mathrm{s}}\right)\left(\mathrm{p}_{\mathrm{s}}^{0}-\mathbf{p}_{\mathrm{s}}\right)=\left(\mathrm{m}_{\mathrm{c}} \mathrm{c}\right)^{2} \\
& \left\{\left(\mathrm{p}_{\mathrm{s}}^{0}\right)^{2}-\left(\mathbf{p}_{\mathrm{s}}\right)^{2}\right\}(\mathrm{xy})=\left(\mathrm{m}_{\mathrm{o}} \mathrm{c}\right)^{2}(\mathrm{xy})
\end{aligned}
$$

From our math proof above, this is equivalent to:

$$
\begin{aligned}
& \left(\left[\begin{array}{ll}
1 & 0
\end{array}\right]\right. \\
& \left(\left[\begin{array}{lll}
0 & -1
\end{array}\right]\right.
\end{aligned} \mathrm{p}_{\mathrm{s}}^{0}+\begin{array}{cc}
{\left[\begin{array}{ll}
0 & -1
\end{array}\right]} \\
{\left[\begin{array}{ll}
1 & 0
\end{array}\right]}
\end{array} \mathbf{p}_{\mathrm{s}} \begin{aligned}
&)[\mathrm{X}] \\
&)[\mathrm{Y}]
\end{aligned}=\left(\mathrm{m}_{\mathrm{o}} \mathrm{c}\right) \mathrm{I}_{2} \begin{aligned}
& {[\mathrm{X}]} \\
& {[\mathrm{Y}]}
\end{aligned}
$$

or

Putting into highly suggestive matrix form...

let Spinor $\Psi=\begin{aligned} & {[\mathrm{X}]} \\ & {[\mathrm{Y}]}\end{aligned}$ and note that $\sigma^{0}=\mathrm{I}_{2}$
this is equivalent to Dirac Gamma Matrices (in Dirac Basis)...
$\left.\left.\begin{array}{l}\left(\left[\begin{array}{ll}\mathrm{I}_{2} & 0\end{array}\right]\right. \\ \left(\left[\begin{array}{ll}0 & -\mathrm{I}_{2}\end{array}\right]\right.\end{array} \mathrm{p}^{0}+\begin{array}{ll}{\left[\begin{array}{ll}0 & -\boldsymbol{\sigma}\end{array}\right]} \\ {[\boldsymbol{\sigma}} & 0\end{array}\right] \quad \cdot \mathbf{p}\right), ~ \Psi=\left(\mathrm{m}_{0} \mathrm{c}\right) \mathrm{I}_{2} \Psi$
$\left(\gamma^{0} \mathrm{p}^{0}-\boldsymbol{\gamma} \cdot \mathbf{p}\right) \Psi=\left(\mathrm{m}_{0} \mathrm{c}\right) \Gamma \Psi$
$(\boldsymbol{\Gamma} \cdot \mathbf{P}) \Psi=\left(\mathrm{m}_{0} \mathrm{c}\right) I \Psi$
$(\boldsymbol{\Gamma} \cdot \mathbf{P})=\left(\mathrm{m}_{\mathrm{o}} \mathrm{c}\right)$
$\left(\Gamma^{\mu} P_{\mu}\right) \Psi=\left(m_{0} c\right) \Psi$
$i \hbar\left(\Gamma^{\mu} \partial_{\mu}\right) \Psi=\left(m_{o} c\right) \Psi$
The Dirac Relativistic Quantum Equation for spin $1 / 2$ particles

To recap, the SR 4-Vectors have some very simple, fundamental, and Invariant Lorentz Scalar relations between one another:

4-Position	$\mathbf{R}=\mathrm{R}^{\mu}=(\mathrm{ct}, \mathrm{r}) \in<$ Event $>\in<$ Time	Space $>$	$\rightarrow\left(\mathrm{E}_{0} / \mathrm{c}^{2}\right) \leftrightarrow \mathbf{P}=(\mathrm{E} / \mathrm{c}, \mathrm{p})$
4-Velocity	$\mathbf{U}=\mathrm{U}^{\mu}=\gamma(\mathrm{c}, \mathrm{u})=(\mathbf{U} \cdot \boldsymbol{\partial}) \mathbf{R}=(\mathrm{d} / \mathrm{d} \tau) \mathbf{R}$	$/$	
4-Momentum	$\mathbf{P}=\mathrm{P}^{\mu}=(\mathrm{E} / \mathrm{c}, \mathrm{p})=\left(\mathrm{m}_{0}\right) \mathbf{U}$	$\mathbf{U}=\gamma(\mathrm{c}, \mathrm{u})$	$(\hbar) \uparrow \downarrow(1 / \hbar)$
4-WaveVector	$\mathbf{K}=\mathrm{K}^{\mu}=(\omega / \mathrm{c}, \mathrm{k})=(1 / \hbar) \mathbf{P}$		
4-Gradient	$\boldsymbol{\partial}=\partial^{\mu}=\left(\partial_{\mathrm{t}} / \mathrm{c},-\nabla\right)=(-\mathrm{i}) \mathbf{K}$	$\rightarrow\left(\omega_{o} / \mathrm{c}^{2}\right) \mathrm{mms} \mathbf{K}=(\omega / \mathrm{c}, \mathrm{k})$	

Analysis of Dirac's Constant $(\hbar=h / 2 \pi)$: Planck's Constant $(h=2 \pi \hbar)$, and $\left(\mathrm{E}_{o} / \omega_{o}\right)$ in the context of SRQM:
It is an empirical (observational) fact that the Lorentz Scalar Invariant $\left(\mathrm{E}_{0} / \omega_{\mathrm{o}}\right)=\left(\gamma \mathrm{E}_{0} / \gamma \omega_{0}\right)=(\mathrm{E} / \omega)==>(\hbar) \quad[\mathrm{J} \cdot \mathrm{s}] /\{\mathrm{rad}\}$ for all known experimental measurements. The SR 4D-Tensor rules show that one doesn't need a quantum axiom for this. (\hbar) is actually an empirically-measurable quantity, just like (c), (e), (G), $\left(\mathrm{k}_{\mathrm{B}}\right),\left(\mu_{0}\right),\left(\varepsilon_{0}\right)$ or the other fundamental constants, which are also 4D Lorentz Scalar Invariants. (\hbar) can be measured classically \{without need of quantum axioms\} from the photoelectric effect, from the inverse photoelectric effect, from LED's (injection electroluminescence), from Atomic Line Spectra (Bohr Atom), from the Duane-Hunt Law in Bremsstrahlung, from Electron Diffraction in crystals, from the Watt/Kibble-Balance, from the Sagnac Effect, from Incandescent Blackbody Intensity-Temperature Relations, from Compton Scattering, from the Stern-Gerlach experiment, etc.

For physics simulations of measurements of Dirac's : Planck's Constant ($\hbar: h$), see:
http://scirealm.org/Physics-PlanckConstantViaAtomicLineSpectra.html
http://scirealm.org/Physics-PlanckConstantViaComptonScattering.html
http://scirealm.org/Physics-PlanckConstantViaElectronDiffraction.html
http://scirealm.org/Physics-PlanckConstantViaGravityInducedInterferometry.html
http://scirealm.org/Physics-PlanckConstantViaIncandescence.html
http://scirealm.org/Physics-PlanckConstantViaLEDs.html
http://scirealm.org/Physics-PlanckConstantViaSagnacEffect.html
http://scirealm.org/Physics-PlanckConstantViaSternGerlach.html
(transitions of electron energy-levels) (photon:electron collisions)
(electron:atomic crystal scattering) (gravity interaction)
(temperature interaction)
(electron:photon interaction)
(rotation interaction)
(magnetic-field interaction)
$\left\{\mathrm{E}_{0} / \omega_{0}=\mathrm{E} / \omega=\hbar\right\}$ implies the following SR (wave:particle-like $\square \cdot$) relation: $\mathbf{P}=\hbar \mathbf{K}=(\mathrm{E} / \mathrm{c}, \mathrm{p})=\hbar(\omega / \mathrm{c}, \mathbf{k})=(\hbar \omega / \mathrm{c}, \hbar \mathbf{k})$
The temporal part $\{E=\hbar \omega\}$ gives Einstein's photoelectric quantum "postulate". Again, emphasis: derived from SR. The spatial part $\{p=\hbar k\}$ gives de Broglie's matter-wave quantum "postulate". Again, emphasis: derived from SR.
$\partial=-\mathrm{i} \mathbf{K}=\left(\partial_{\mathrm{t}} / \mathrm{c},-\nabla\right)=-\mathrm{i}(\omega / \mathrm{c}, \mathbf{k})$
The temporal part $\left\{\partial_{\mathrm{t}}=-\mathrm{i} \omega\right\}$ or $\left\{\omega=\mathrm{i} \partial_{\mathrm{t}}\right\}$ gives temporal:frequency complex planewave change:operator
The spatial part $\{\nabla=i \mathbf{k}\}$ or $\{\mathbf{k}=-\mathrm{i} \nabla\}$ gives spatial:wavenumber complex planewave change:operator
The standard Schrödinger QM Relations derived from SR:
Again, we examine these SR 4-Vector relations derived above... and by simply combining them...
$\mathbf{P}=\hbar \mathbf{K}$ (a relation which is entirely empirical, based on just SR arguments, shown above)
$\mathbf{K}=\mathrm{i} \boldsymbol{\partial} \quad$ (which is a relation for complex plane-waves, used in classical EM and elsewhere)
$\mathbf{P}=i \hbar \partial=(\mathrm{E} / \mathrm{c}, \mathrm{p})=\mathrm{i} \hbar\left(\partial_{\mathrm{t}} / \mathrm{c},-\nabla\right)$
The temporal part $\left\{\mathrm{E}=i \hbar \partial_{\mathrm{t}}=i \hbar \partial / \partial \mathrm{t}\right\}$ gives unitary QM time evolution operator. Again, emphasis: derived from SR.
The spatial part $\{\mathrm{p}=-\mathrm{i} \hbar \nabla\}$ gives the QM momentum operator. Again, emphasis: derived from SR.

Relativistic version (Relativistic Pauli Equation)

```
\(\mathbf{P s} \cdot \mathbf{P s}=\left[\underline{\sigma}^{0}\left(\mathrm{E}_{\mathrm{T}} / \mathrm{c}-\mathrm{q} \varphi / \mathrm{c}\right)\right]^{2}-\left[\underline{\boldsymbol{\sigma}} \cdot\left(\mathbf{p}_{\mathrm{T}}-\mathrm{q} \mathbf{a}\right)\right]^{2}=\left(\mathrm{m}_{0} \mathrm{c}\right)^{2}=\left(\mathrm{E}_{\mathrm{o}} / \mathrm{c}\right)^{2}\)
\(\left[\underline{\sigma^{0}}\left(\mathrm{E}_{\mathrm{T}} / \mathrm{c}-\mathrm{q} \varphi / \mathrm{c}\right)\right]^{2}-\left[\underline{\boldsymbol{\sigma}} \cdot\left(\mathbf{p}_{\mathrm{T}}-\mathrm{q} \mathbf{a}\right)\right]^{2}=\left(\mathrm{m}_{\mathrm{c}} \mathrm{c}\right)^{2}\)
\(\left[\underline{\underline{I}}\left(\mathrm{E}_{\mathrm{T}} / \mathrm{c}-\mathrm{q} \varphi / \mathrm{c}\right)\right]^{2}-\left[\underline{\boldsymbol{\sigma}} \cdot\left(\mathbf{p}_{\mathrm{T}}-\mathrm{q} \mathbf{a}\right)\right]^{2}=\left(\mathrm{m}_{\mathrm{o}} \mathrm{c}\right)^{2}\)
\(\left[\underline{\mathbf{I}}\left(\mathrm{E}_{\mathrm{T}} / \mathrm{c}-\mathrm{q} \varphi / \mathrm{c}\right)\right]^{2}-\left[\underline{\mathbf{I}} \cdot\left(\mathbf{p}_{\mathrm{T}}-\mathrm{q} \mathbf{a}\right)\right]^{2}-\mathrm{i}\left[\underline{\boldsymbol{\sigma}} \cdot\left(\left(\mathbf{p}_{\mathrm{T}} \mathrm{x}-\mathrm{q} \mathbf{a}\right)+\left(-\mathrm{q} \mathbf{a} \times \mathbf{p}_{\mathrm{T}}\right)\right)\right]=\left(\mathrm{m}_{0} \mathrm{c}\right)^{2}\)
\(\left[\underline{\mathbf{I}}\left(\mathrm{E}_{\mathrm{T}} / \mathrm{c}-\mathrm{q} \varphi / \mathrm{c}\right)\right]^{2}-\left[\underline{\mathbf{I}} \cdot\left(\mathbf{p}_{\mathrm{T}}-\mathrm{q} \mathbf{a}\right)\right]^{2}-\mathrm{i}\left[\underline{\boldsymbol{\sigma}} \cdot \mathrm{i} \mathrm{iq}\left(\left(-\nabla_{\mathrm{T}} \mathrm{X} \mathbf{- a}\right)+\left(-\mathbf{a} \mathrm{x}-\nabla_{\mathrm{T}}\right)\right)\right]=\left(\mathrm{m}_{\mathrm{o}} \mathrm{c}\right)^{2}\)
\(\left[\underline{\mathbf{I}}\left(\mathrm{E}_{\mathrm{T}} / \mathrm{c}-\mathrm{q} \varphi / \mathrm{c}\right)\right]^{2}-\left[\underline{\mathbf{I}} \cdot\left(\mathbf{p}_{\mathrm{T}}-\mathrm{q} \mathbf{a}\right)\right]^{2}-\mathrm{i}[\underline{\boldsymbol{\sigma}} \cdot \mathrm{i} \AA \mathrm{q}(\mathbf{B})]=\left(\mathrm{m}_{\mathrm{o}} \mathrm{c}\right)^{2}\)
\(\left[\underline{\mathbf{I}}\left(\mathrm{E}_{\mathrm{T}} / \mathrm{c}-\mathrm{q} \varphi / \mathrm{c}\right)\right]^{2}-\left[\underline{\mathbf{I}} \cdot\left(\mathbf{p}_{\mathrm{T}}-\mathrm{q} \mathbf{a}\right)\right]^{2}+\hbar q[\underline{\boldsymbol{\sigma}} \cdot \mathbf{B}]=\left(\mathrm{m}_{0} \mathrm{c}\right)^{2}\)
\(\left[\underline{\mathbf{I}}\left(\mathrm{E}_{\mathrm{T}} / \mathrm{c}-\mathrm{q} \varphi / \mathrm{c}\right)\right]^{2}=\left[\underline{\mathbf{I}} \cdot\left(\mathbf{p}_{\mathrm{T}}-\mathrm{q} \mathbf{a}\right)\right]^{2}-\hbar \mathrm{q}[\underline{\boldsymbol{\sigma}} \cdot \mathbf{B}]+\left(\mathrm{m}_{\mathrm{o}} \mathrm{c}\right)^{2}\)
```

Non-relativistic version (Standard Pauli Equation)
$\left[\underline{\mathbf{I}}\left(\mathrm{E}_{\mathrm{T}} / \mathrm{c}-\mathrm{q} \varphi / \mathrm{c}\right)\right]^{2}-\left[\underline{\boldsymbol{\sigma}} \cdot\left(\mathbf{p}_{\mathrm{T}}-\mathrm{q} \mathbf{a}\right)\right]^{2}=\left(\mathrm{m}_{\mathrm{o}} \mathrm{c}\right)^{2}$
$\left[\underline{\mathbf{I}}\left(\mathrm{E}_{\mathrm{T}} / \mathrm{c}-\mathrm{q} \varphi / \mathrm{c}\right)\right]^{2}=\left[\underline{\boldsymbol{\sigma}} \cdot\left(\mathbf{p}_{\mathrm{T}}-\mathrm{q} \mathbf{a}\right)\right]^{2}+\left(\mathrm{m}_{0} \mathbf{c}\right)^{2}$
$\left[\underline{\mathbf{I}}\left(\mathrm{E}_{\mathrm{T}} / \mathrm{c}-\mathrm{q} \varphi / \mathrm{c}\right)\right]=(\pm) \operatorname{Sqrt}\left[\left[\underline{\boldsymbol{o}} \cdot\left(\mathbf{p}_{\mathrm{T}}-\mathrm{q} \mathbf{a}\right)\right]^{2}+\left(\mathrm{m}_{\mathrm{o}} \mathrm{c}\right)^{2}\right]$
$\left[\underline{\mathbf{I}}\left(\mathrm{E}_{\mathrm{T}} / \mathrm{c}-\mathrm{q} \varphi / \mathrm{c}\right)\right]=(\pm) \operatorname{Sqrt}\left[\left[\underline{\boldsymbol{o}} \cdot\left(\mathbf{p}_{\mathrm{T}}-\mathrm{q} \mathbf{a}\right)\right]^{2}+\left(\mathrm{m}_{0} \mathrm{c}\right)^{2}\right]$
$\left[\mathbf{I}\left(\mathrm{E}_{\mathrm{T}} / \mathrm{c}-\mathrm{q} \varphi / \mathrm{c}\right)\right] \sim(\pm)\left[\left[\underline{\boldsymbol{\sigma}} \cdot\left(\mathbf{p}_{\mathrm{T}}-\mathrm{q} \mathbf{a}\right)\right]^{2} /\left(2 \mathrm{~m}_{0} \mathrm{c}\right)+\left(\mathrm{m}_{0} \mathrm{c}\right)\right]$
$\left[\underline{\mathbf{I}}\left(\mathrm{E}_{\mathrm{T}} / \mathrm{c}-\mathrm{q} \varphi / \mathrm{c}\right)\right] \sim(\pm)\left[\left(\left[\left(\mathbf{p}_{\mathrm{T}}-\mathrm{q} \mathbf{a}\right)\right]^{2}-\hbar \mathrm{q}[\underline{\mathbf{\sigma}} \cdot \mathbf{B}]\right) /\left(2 \mathrm{~m}_{\mathrm{o}} \mathrm{c}\right)+\left(\mathrm{m}_{\mathrm{o}} \mathrm{c}\right)\right]$
$\left[\underline{\mathbf{I}}\left(\mathrm{E}_{\mathrm{T}}-\mathrm{q} \varphi\right)\right] \sim(\pm)\left[\left(\left[\left(\mathbf{p}_{\mathrm{T}}-\mathrm{q} \mathbf{a}\right)\right]^{2}-\hbar \mathrm{q}[\underline{\boldsymbol{\sigma}} \cdot \mathbf{B}]\right) /\left(2 \mathrm{~m}_{\mathrm{o}}\right)+\left(\mathrm{m}_{\mathrm{o}} \mathrm{c}^{2}\right)\right]$
$\mathrm{E}_{\mathrm{T}} \sim \mathrm{q} \varphi(\pm)\left[\left(\left[\left(\mathbf{p}_{\mathrm{T}}-\mathrm{q} \mathbf{a}\right)\right]^{2}-\hbar q[\underline{\boldsymbol{\sigma}} \cdot \mathbf{B}]\right) /\left(2 \mathrm{~m}_{\mathrm{o}}\right)+\left(\mathrm{m}_{\mathrm{o}} \mathrm{c}^{2}\right)\right]$
where the $-(\hbar q[\underline{\boldsymbol{\sigma}} \cdot \mathbf{B}]) /\left(2 \mathrm{~m}_{0}\right)$ is the Stern-Gerlach term

