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Abstract
Using the 4-vectors of Einstein-Minkowski spacetime as fundamental, these 4D (1,0)-tensors and their interrelations show 
that foundational features of spacetime common to both special relativity and quantum mechanics exist. The 4D spacetime 
splitting into 1D temporal + 3D spatial components plays an integral role in understanding these relations.
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1. Introduction

Special relativity (SR) was derived by Einstein in 1905 to give Maxwell’s electromagnetics (EM) a mathematically 
rigorous kinematic grounding. In 1907 Hermann Minkowski 1 initially developed his spacetime for Maxwell’s EM.2, 3 It is of
some interest that in this formulation time is the imaginary coordinate, ict, of a complex manifold and the components of the
4-dimensional differential ∂/∂h is an operator. The interval s was initially defined by ds2 = (ic)2 dt2 + dx2 + dy2 + dz2. In 1909 
Minkowski introduced Einstein’s SR on a real pseudo-Riemannian 1+3-dimensional spacetime manifold.4 Minkowski 
spacetime is equipped with a Lorentz scalar product, a type of inner product, defining the spacetime interval s by ds2 = c2 dt2

- dx2 - dy2 - dz2 which is invariant under Lorentz-Poincaré group transformations. Notice that in Minkowski’s 1908 paper 
taking i2 = -1 gives a real manifold with a space-positive metric signature (-,+,+,+) while in his 1909 paper the time-positive 
metric signature (+,-,-,-) is used. Both mathematical structures of 4-spacetime derive from the two Einstein postulates of SR
5 although it can also be developed from independent axioms.6 4-vectors, denoted generically as A = Aμ = (aμ) = (a0, ai) = 
(a0, a), provide a convenient representation of the standard Lorentz group Λμ

ν in Minkowski spacetime, with tensor 
transformation rule A’μ = Λμ

ν Aν.
Here the time-positive metric signature (+,-,-,-) is used. Standard notation is used: γ = 1/√(1 – u∙u/c2), u = relative 3-

velocity, τ = proper time, t = coordinate time. Invariant quantities are often appended with subscript ‘o’ to indicate they are 
invariant quantities. The Minkowski metric tensor is denoted by ημν = ημν = Diagonal[+1, -1, -1, -1](Cartesian). The Lorentz 
scalar product of two arbitrary 4-vectors, A = Aμ = (a0, a) and B = Bμ = (b0, b) is provided by (A∙B) = AμημνBν = AνBν = AμBμ 
= (a0b0 – a∙b) = (a0

ob0
o), which is a Lorentz scalar invariant 4D (0, 0)-tensor. 3-vectors are denoted by lower case bold text. 

Index raising and lowering is accomplished using the Minkowski Metric, e.g., Rμ = ημνRν.
SR is deterministic in the sense that given initial conditions it provides a definite and unique prediction for a 

measurement. In contrast QM is deterministic for time-evolution, but is non-deterministic for measurements. It does not 
provide a unique definite prediction, but instead merely probabilities for a spectrum of eigenvalues for a possible 
measurement result. One calculates these probabilities from the wavefunction using Born’s rule 7, 8 which in many respects 
appears to be an add-on postulate to Schrödinger’s formulation. In orthodox SR the temporal order of measurements is 
irrelevant and all observables commute; not so in QM. The literature contains a large number of proposals for formulating 
QM from classical foundations. The Koopman–von Neumann (KvN) mechanics 9, 10 of the 1930s provides a prototypical 
approach. Quantum Reconstruction attempts to reformulate QM from more intuitive principles or postulates than those 
proposed by Dirac and von Neumann.11 These include reformulation of QM in terms of classical concepts such expressing 
wave functions in terms of appropriate Wigner distributions functions in phase space 12 and replacing quantum commutators
with appropriate deformed Poisson brackets like Moyal brackets. More recently Gozzi, Reuter and Thacker 13, 14 propose a 
path integral formulation of KvN. Other proposals for QM to SR connections include Lam’s 15 geometrical quantum 
formulation of special relativity for 1D trajectory of a free relativistic particle and Bohmian deterministic trajectory.16

In addition to the mathematical convenience, 4-vector calculus provides formal foundational connections to quantum 
mechanics (QM). In this introductory paper it is shown that essential foundational relations of QM exist in SR. 

            This is an open access article distributed under the terms and conditions of the Creative Commons Attribution CC BY-NC-ND 4.0.
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2. Classical Relativistic 4-Vectors

For convenience the well known basic 4-vectors of SR and EM, with SI units are shown in Table 1. 

Table 1. Basic SR 4-vectors.
4-Vector

Name
4-Vector Definition 4-Vector Dimensionality,

SI Units
Equation
Number

4-position R = Rμ = (ct, r) m (2.1)

4-velocity U = Uμ = γ(c, u) = (U∙∂)R = (d/dτ)R 
            = dR/dτ

m/s (2.2)

4-momentum P = Pμ = (E/c, p) = (Eo/c2)U
            = (mc, p) = moU

kg·m/s = N·s (2.3)

4-wave vector K = Kμ = (ω/c, k) = (ωo/c2)U radian/m (2.4)

4-gradient ∂ = ∂μ = (∂t /c, -∇) = ∂/∂Rμ 1/m (2.5)

4-(dust) number flux N = Nμ = (nc, n) = noU number/(m2·s) = (number/m3)·(m/s) (2.6)

4-current density, 4-charge flux J = Jμ = (ρc, j) = ρoU C/(m2·s) = (C/m3)·(m/s) = A/m2 (2.7)

4-(EM) vector potential A = Aμ = (φ/c, a) = (φ/c2)U kg·m/(C·s) = T·m (2.8)

Useful invariant 4-scalars derived from the Lorentz scalar product rule are listed in Table 2. 

Table 2. Basic invariant SR 4-scalars. 
Lorentz scalar product

of 4-Vectors
4-Scalar

Name
4-Scalar 
Symbol

4-Scalar
Dimensionality, 

SI Units

Equation
Number

R∙R = (ct)2 – r∙r = (cto)2 = (cτ)2 
        = (i|ro|)2

Proper time,
Proper length

to = τ,
|ro|

s,
m

(2.9)

U∙U = γ2[c2 – u∙u] = c2 Invariant Light speed c m/s (2.10)

P∙P = (E/c)2 – p∙p = (Eo/c)2 = (moc)2 Invariant energy Eo = moc2 kg·m2/s2 = J (2.11)

K∙K = (ω/c)2 – k∙k = (ωo/c)2 Invariant angular frequency ωo radian/s (2.12)

∂∙∂ = (∂t /c)2 – ∙∇ ∇ = (∂τ /c)2 Invariant d’Alembertian 4-wave equation ∂∙∂ 1/m2 (2.13)

N∙N = (nc)2 – n∙n = (noc)2 Invariant number density no number/m3 (2.14)

J∙J = (ρc)2 – j∙j = (ρoc)2 Invariant charge density ρo C/m3 (2.15)

A∙A = (φ/c)2 – a∙a = (φo/c)2 Invariant electric potential φo V = J/C (2.16)

3. An Invariant Called ћ

Applying the general method of dividing the magnitudes of two arbitrary 4-vectors A = Aμ = (a0, a) and B = Bμ = (b0, b) by 
using a third arbitrary 4-vector V = Vμ = (v0, v) such that |A|/|B| = (A∙V)/(B∙V) = (a0

ov0
o)/(b0

ov0
o) = (a0

o/b0
o), which is a Lorentz

scalar invariant, to the 4-momentum P and 4-wave vector K gives:

|P|/|K| = (P∙U)/(K∙U) = γ(E - p∙u)/[γ(ω – k∙u)] = Eo/ωo , (3.1)

|P|/|K| = (P∙K)/(K∙K) = (Eω/c2- p∙k)/[(ω/c)2 – k∙k] = moωo/(ωo/c)2 = Eo/ωo , (3.2)

|P|/|K| = (P∙P)/(K∙P) = (E2/c2- p∙p)/(Eω/c2- p∙k) = (moc)2/(moωo) = Eo/ωo , (3.3)

|P|/|K| = (P∙R)/(K∙R) = (Et – p∙r)/(ωt – k∙r) = (-Saction,free particle)/(-Φphase,planewave) = Eo/ωo . (3.4)

It is an empirical fact that the Lorentz invariant Eo/ωo = γEo/(γωo) = E/ω = ћ is a theory-independent measurable quantity 
just like the values of electric charge q and free space light speed c and the other fundamental constants. ћ can be measured 
classically from the photoelectric effect, from the inverse photoelectric effect, from atomic line spectra (Rydberg spectra), 
from the Duane-Hunt Law in bremsstrahlung, from electron diffraction in crystals, from the Kibble balance, from 
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incandescent blackbody intensity-temperature relations, from Compton scattering, from the Stern-Gerlach experiment and 
others independent of their theoretical explanations. Computer simulations of many experiments, suitable for pedagogical and
other purposes, are available.17

This implies the following relation, derived from standard 4-tensor arguments of SR,

P = ћK = (E/c, p) = ћ(ω/c, k) . (3.5)

The temporal part E = ћω is Einstein’s photoelectric quantum postulate and the spatial part p = ћk is de Broglie’s matter-
wave postulate. The simplicity of this relation is very similar to Einstein’s well known SR relations,

P = moU = (E/c, p) = moγ(c, u) = m(c, u) = (mc, mu) = E/c2 (c, u) = γEo/c2 (c, u) = Eo/c2 U . (3.6)

The temporal part E = γmoc2 = mc2 = γEo is the SR energy-mass relation and the spatial part p = γmou = mu = Eu/c2 is 
relativistic momentum. Just as a note, the 4-momentum P is used in purely relativistic particle collision calculations and the 
4-wave vector K is used in purely relativistic Doppler effect calculations. Both are used in the relativistic Compton effect 
photon-electron scattering calculations.

4. Existence of a Complex Function ψ

It is an empirical and mathematical fact that all waves (classical, relativistic and quantum) can be modeled using complex 
plane-waves. In SR 4-vector terms this gives the 4-vector relation, 

∂ = -iK , (4.1)

with a wavefunction ψ of the form 

ψ = ae±i(K∙X) = ae±iφ = ae±iS/ћ , (4.2)

where S = ћ φ = action. The amplitude a is an arbitrary constant. It can be a quantum scalar 4D (0,0)-tensor A, an 
EM/photonic 4D (1,0)-tensor Aμ or a gravitational wave 4D (2,0)-tensor Aμν. Then

∂[ψ] = ∂[ae±i(K∙X)] = ±iK[ae±i(K∙X)] = ±iK[ψ] . (4.3)

The selection of the minus sign in Eq (4.1) is a historical convention, and leads to standard convention of later equations 
derived from this relation.

Using Eqs. (3.5) and (4.1), the Lorentz scalar product relations from Table 2. can be re-visited to give the chain of relations 
R∙R = (cτ)2, U∙U = c2, P∙P = (moc)2, K∙K = (moc/ћ)2 and ∂∙∂ = (imoc/ћ)2 = -(moc/ћ)2. The latter is the fundamental Klein-
Gordon wave relation of relativistic quantum mechanics (RQM). 

∂∙∂ = (imoc/ћ)2 = -(moc/ћ)2 (4.4)

The Klein-Gordon (K-G) relation 18 implies there can exist a “wavefunction” Ψ which solves it, in the same way that the 
relativistic 4D Euler-Lagrange relation, (U∙∂R) ∂U = (d/dτ)∂U = ∂R, implies there can exist a Lagrangian function (L) that solves
it. One does not need a presupposed quantum axiom.

The Klein-Gordon (K-G) relation gives a 2nd order, linear PDE. The fact that it is a linear PDE leads to principles of 
quantum superposition. As a note, the standard Schrödinger quantum wave equation is the non-relativistic (|v|<<c) limit-case 
of the K-G relativistic quantum wave equation, which continues to show superposition.

5. Existence of a Non-Zero Commutator 

A non-zero commutation relation between 4-position X and 4-momentum P exists in SR. To prove this let f be an arbitrary 
function in SR. Using 4-position X = (ct, r), Eq (2.1), and 4-gradient ∂ = (∂t /c, -∇), Eq (2.5), gives the following two 
primitive relations:

X[f] = Xf , (5.1)

∂[f] = ∂[f] . (5.2)
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X, whether an operator or not, has no effect on f, but ∂ absolutely has an effect on f. Continuing the analysis, using only the 
standard rules of calculus gives:

X[∂[f]] = X∂[f] , (5.3)

∂[X[f]] = ∂[Xf] = ∂[X]f + X∂[f] , (5.4)

∂[Xf] - X∂[f] = ∂[X]f , (5.5)

∂[X[f]] - X[∂[f]] = ∂[X]f . (5.6)

Recognizing this last as a commutation relation, A[B[f]] - B[A[f]] = [A, B] f , and using commutator notation gives,

[∂, X]f = ∂[X]f . (5.7)

Since f is an arbitrary function it can be set to unity leaving

[∂, X] = ∂[X] = (∂t /c, -∇)[(ct, r)] = (∂t /c, -∂x, -∂y, -∂z)[(ct, x, y, z)]{Cartesian} = Diag[+1,-1,-1,-1] = ημν (5.8)

or, in explicit tensor notation

[∂, X] = [∂μ, Xν] = ∂μ[Xν] = ημν . (5.9)

Thus, there is a SR non-zero commutation relation between the SR 4-gradient and 4-position which leads to the Minkowski 
Metric. Note also that X[f] = Xf doesn't necessarily imply that X is an operator (it could be an operator or just a number). 
However the 4-gradient, ∂, is an operator, because it is already an operator function in pure SR.

Now, from complex plane-waves used in classical EM, K = i∂, Eq (4.1), and (3.5) gives:

 [∂, X] = [∂μ, Xν] = ημν , (5.10)

[i∂, X] = [i∂μ, Xν] = iημν , (5.11)

[K, X] = [Kμ, Xν] = iημν , (5.12)

[ћK, X] = [ћKμ, Xν] = iћημν , (5.13)

[P, X] = [Pμ, Xν] = iћημν , (5.14)

[X, P] = [Xμ, Pν] = -iћημν . (5.15) 

Eq (5.15) is the major result that SR 4-position X and 4-momentum P do not commute. The temporal part [x0, p0] = [ct, E/c] =
[t, E] = -iћη00 = -iћ is the “oft misunderstood” time-energy commutation. The spatial part [xj, pk] = -iћηjk = iћδ jk is the standard
canonical commutation relation of QM. For the mixed parts [x0, pk] = [xj, p0] = η0k = ηj0 = 0, meaning these parts commute 
normally. Similar 4-vector arguments lead to the standard angular-momentum quantum commutation relations via the anti-
symmetric 4-angular momentum M μν = X μ ^ Pν. In fact, the entire Poincaré Algebra can be generated in this fashion. 
Likewise, the general mathematical uncertainty relations, σA

2σB
2 ≥ 1/2 |[Â,B̂]|, based on commutation relations, lead to the 

standard physical quantum Heisenberg uncertainty relations. Also note that the commutator order of operations is in accord 
with SR causality conditions. While space-like separated events |here and |there may occur in any temporal order depending
on observer reference frames, all observers will see the same temporal order of time-like separated events. Thus, if 
measurement Â occurs temporally before measurement B̂ then this would be written in operator notation as |Ψ’ = Â|Ψ then
|Ψ’’ = B̂|Ψ’ = B̂Â|Ψ. Due to non-zero commutation relations, ÂB̂|Ψ would likely give a different result.

6. Existence of a Conserved Current Jprob 

Special relativity supports a conserved current. Consider the vector identity, 

∂·(f ∂[g] - ∂[f] g) = f ∂·∂[g] - ∂·∂[f] g , (6.1)

where f and g are Lorentz scalar functions. The 4-divergence relation follows,
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∂·(f ∂[g] - ∂[f] g) = ∂·(f ∂[g]) - ∂·(∂[f] g)
= (f ∂·∂[g] + ∂[f]·∂[g]) - (∂[f]·∂[g] + ∂·∂[f] g)
= f ∂·∂[g] - ∂·∂[f] g . (6.2)

Multiplying by a constant Lorentz invariant scalar constant, s, for dimensional units gives

s(f ∂·∂[g] - ∂·∂[f] g) = s ∂·(f ∂[g] - ∂[f] g) = ∂·[s(f ∂[g] - ∂[f] g)] = ∂·J . (6.3)

Thus, from the d’Alembertian 4-wave equation, Eq (2.13), there exists a 4-current 

J = [s(f ∂[g] - ∂[f] g)] (6.4)

for any arbitrary scalar invariant s. 
Let the K-G relation, Eq (4.4), written in the form ∂·∂ + (moc/ћ)2 = 0 act on Lorentz invariant functions f and g giving 

∂·∂[f] + (moc/ћ)2 [f] = 0 [f] and ∂·∂[g] + (moc/ћ)2 [g] = 0 [g] . (6.5)

Post-multiplying the first by g and pre-multiplying the second by f gives

∂·∂[f] g+ (moc/ћ)2[f] g = 0 [f]g and f ∂·∂[g] + f (moc/ћ)2[g] = f 0 [g] , (6.6)

so

f ∂·∂[g] + (moc/ћ)2fg = 0 and ∂·∂[f]g + (moc/ћ)2 fg = 0 . (6.7)

Subtracting one from the other gives
 

f ∂·∂[g] - ∂·∂[f] g = 0 . (6.8)

As noted from the mathematical vector identity Eq (6.1), this can be written as a 4-divergence with the additional 
constraint that it now equates to 0, meaning that it is conserved 4-current J,

∂·[s(f ∂[g] - ∂[f] g)] = ∂·J = 0 . (6.9)

Thus, there exists a conserved 4-vector current, 

Jprob = (ρprobc, jprob) = s(f ∂[g] - ∂[f] g) , (6.10)

for which ∂·Jprob = 0 and which also solves the K-G relation. 
Using Eq (4.1) and a complex plane-wave function g = ae-i(K·X) = ψ choose f = g* = ae+i(K·X) = ψ* as its complex conjugate.

Let s = iћ/(2mo) = ic2/(2ωo) which is Lorentz scalar invariant, in order to make the probability have dimensionless units and 
be normalized to unity in the invariant case. Then a probability current can be written as

Jprob = (ρprobc, jprob) = iћ/(2mo) (ψ*∂[ψ] - ∂[ψ*] ψ) = s (ψ*∂[ψ] - ∂[ψ*] ψ) . (6.11)

Examining the temporal component, the relativistic probability density is

ρprobc = iћ/(2mo) (ψ* (∂t /c)[ψ] - (∂t /c)[ψ*]) (6.12)

so 

ρprob = iћ/(2moc2) (ψ* ∂t[ψ] - ∂t[ψ*] ψ) = i/(2ωo) (ψ* ∂t[ψ] - ∂t[ψ*] ψ) . (6.13)

Assume a wave solution in following general form

ψ = A f [k] e-iωt and ψ* = A* f [k]* e+iωt (6.14)

then
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∂t[ψ] = -iω A f [k] e-iωt = -iω ψ and ∂t[ψ*] = iω A* f [k]* e+iωt = iω ψ* , (6.15)

so 
ρprob = i/(2ωo) (ψ* ∂t[ψ] - ∂t[ψ*] ψ) = i/(2ωo) (-iω ψ*ψ - iω ψ*ψ)
       = i/(2ωo) (-2iω ψ*ψ) = ω/ωo ψ*ψ = γωo/ωo ψ*ψ = γψ*ψ 
       = γ(ρprob o) . (6.16)

Ivancevic and Ivancevic show the EM 4-current is formally analogous to a 4-probability current.19 Multiplying Jprob, Eqs 
(6.10) and (6.11), by charge q gives the standard SR EM

4-current density = 4-charge flux = qJprob = q(cρprob, jprob) = J = (ρc, j) (6.17)

and the generalized 4-current within a 4-vector potential A

4-probability current density Jprob = (cρprob, jprob) = iћ/(2mo) (ψ*∂[ψ] - ∂[ψ*]ψ) + q/mo (ψ*ψ)A . (6.18)

The temporal component is

ρprob = iћ/(2moc2) (ψ* ∂t[ψ] - ∂t[ψ*] ψ) + q/mo (ψ*ψ)(φ/c2) , (6.19)

so

ρprob → γ(ψ*ψ) + γ(qφo/moc2)(ψ*ψ) = γ[1 + qφo/Eo](ψ*ψ) . (6.20)

7. Born Probability Interpretation

Examine the low-potential-energy limit. Take qφo << Eo which gives the EM factor qφo/Eo ~ 0. Now, taking the low-
velocity limit γ → 1 of ρprob = γ[1 + ~0](ψ*ψ), ρprob → ψ*ψ = ρprob o for |u| << c. The standard Born probability interpretation, 
ψ*ψ = ρprob, emerges in the low-potential-energy and low-velocity limit. This is why the non-positive-definite probabilities 
and |probabilities| > 1in the RQM Klein-Gordon equation puzzled physicists and is the reason why one must regard the 
probabilities as charge density conservation ∂∙J instead.

The original definition from SR is continuity of worldlines ∂∙Jprob = 0 for which all is good and well in the RQM version.
The definition says there are no external sources or sinks of probability implying conservation of probability. The Born idea 
that total probability ρprob → Σ (ψ*ψ) = 1 is just the low-velocity QM limit. It is not a fundamental axiom.  Multiplying by 
charge q gives the

4-charge current density J = (cρ, j) = qJprob = q(cρprob, jprob) (7.1)

which is the standard SR EM 4-current density. 
Note from Eq 2.6, the 4-vector N has dimensional units of [number-flux] and the 4-scalar invariant number-density (no) has

dimensional units of [number/volume]. This is the same as the dimensional units of an invariant probability-density (ρo), also 
[number/volume]. This leads to the idea that the QM 4-probability current Jprob is equivalent to the SR 4-(dust) number flux 
N. The concepts are actually quite similar if one considers the fluid approximation of individual particles. The fluid allows 
densities that are less than unity, much as probabilities of expected positions of particles are less than unity and only sum to 
unity over the entire volume. This argument is further strengthened by noting that in QM one also has J = qJprob, Eq (7.1).

The Koopman-von Neuman (KvN) formalism shows that classical mechanics can be formulated as an operational theory 
on a Hilbert space of complex L2 wavefunctions analogous to QM. To accomplish this the Liouville equation is extended by 
introducing a phase space function of debatable physical interpretation. Klein 20 developed an alternative function S(t, q, p) 
that expresses the classical action while retaining a mathematical analogy to QM. The idea that Hilbert Space requires a 
quantum axiom is disproved by the KvN formulation of classical mechanics in which Hilbert Space mathematical 
formulation is successfully applied and results in the classical Liouville equation. The Hilbert Space framework is purely 
mathematical and can be applied to both classical and quantum systems which is one of the more powerful connections 
between classical mechanics and QM. 

The main difference between which system emerges is the commutation relation between position and momentum. In the 
classical case, one assumes a zero-valued commutation relation. In the quantum case, there is a non-zero commutation 
relation. SR contains a non-zero commutation relation, thus leading to the QM case.
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8. Schrödinger QM relations

The Schrödinger QM relations are now easily derived from SR as follows. Using the positive form of Eq (4.3) for complex 
plane-waves used in classical EM, K = i∂, and the empirical Eq (5.3), P = ћK,

P = iћ∂ = (E/c, p) = iћ(∂t /c, -∇). (8.1)

The temporal part E = iћ∂t = iћ ∂/∂t gives the unitary QM time evolution operator and the spatial part p = -iћ∇ gives the QM 
momentum operator.

9. CPT Symmetry

Additionally, SR contains the essence of CPT Symmetry. The Lorentz transformations, Λμ
ν, play a fundamental role in SR 

of describing the inherent symmetries of spacetime. The main ones usually mentioned are the continuous transforms which 
include the temporal-spatial velocity boost Λμ

ν → Bμ
ν with parameter β = u/c and the spatial-spatial rotation Λμ

ν → Rμ
ν with 

parameter θ. However, there also exist discrete Lorentz transformations. One is the 4-identity Λμ
ν → δμ

ν , which leaves a 
system completely unchanged. It is a special case of both the boost and rotation transforms when their parameters are |β| = θ 
= 0 which then gives Bμ

ν = Rμ
ν = δμ

ν.
Most well known of the discrete Lorentz transformations are the Parity Λμ

ν → Pμ
ν which reverses the three spatial 

coordinates x → -x, and the Time Reversal Λμ
ν → Tμ

ν which reverses the single temporal coordinate t → -t. Less well known 
are the other Lorentz transformations which include rotations of a fixed amount and spatial flips which reverse only two of 
the spatial coordinates. It turns out that one can individually reverse any combination of the coordinates and still have a valid 
Lorentz transformation, (i.e., having a determinant = ±1). Reversal of all the coordinates, t → -t and x → -x, gives the 
Combo(PT) transformation

 Λμ
ν → (PT)μ

ν = Cμ
ν . (9.1)

Examination of all possible combinations of discrete Lorentz transformations leads to CPT symmetry. In other words, one 
can go from the identity transformation (all +1) to the negative identity transformation (all -1) by doing a charge reversal 
Lorentz transformation here called the Combo(PT). This negative identity has the interpretation of antimatter without any 
need of Dirac’s formulation using RQM. The Feynman-Stueckelberg CPT interpretation, that antimatter moving temporally 
backward in spacetime is equivalent to normal matter moving temporally forward in spacetime, aligns with this.21, 22 Let Aμ

ν 

be an arbitrary (1,1)-tensor, of which the Lorentz transformation is an example. Two interesting properties are,

Tr(Aμ
ν) = Σj aj (9.2)

and

Det(Aμ
ν) = Πj aj , (9.3)

where aj are the eigenvalues of Aμ
ν , j = 1,2,3,… . As 4D tensors, each Lorentz transformation has 4 eigenvalues. Now, create 

an anti-transformation which has all eigenvalue tensor invariants negated,

Σj=1
4 -aj = -Σj=1

4 aj . (9.4)

The anti-transform has negative trace of the transformation. The transformation and anti-transformation have equal 
determinants, meaning that a proper transform has a proper anti-transform,

Πj=1
4 -aj = Πj=1

4 aj . (9.5)

Thus, the trace invariant identifies a “dual” negative-side for all Lorentz transformations. This (NM = normal matter, AM = 
antimatter) interpretation can be analyzed using tensor determinant and trace operations:

 Tr[NM-identity] = +4 ,    +4 ≤ Tr[NM-boost] < +∞ ,    0 ≤ Tr[NM-rotation] ≤ +4 , (9.6a, b, c)
 Tr[AM-identity] = -4 ,     -∞ < Tr[AM-boost] ≤ -4  ,      -4 ≤ Tr[AM-rotation] ≤ 0. (9.7a, b, c)

Table 3. shows the complete (+/-) symmetry between the two, which agrees with all known experiments with normal 
matter and antimatter to-date.23



Introduction to Quantum Mechanics Emergence from Special Relativity, SRQM 8

Table 3. The complete symmetry of discrete Lorentz transformations.
t x y z Discrete Normal Matter (NM) Lorentz Transform Type Trace Determinant

+1 +1 +1 +1 NM-Minkowksi Identity: AM-Flip-txyz=AM-Combo(PT) Tr = +4 Det = +1 Proper

+1 +1 +1 –1 NM-Flip-z Tr = +2 Det = –1 Improper

+1 +1 –1 +1 NM-Flip-y Tr = +2 Det = –1 Improper

+1 +1 –1 –1 NM-Flip-yz=NM-Rotate-yz(π) Tr =   0 Det = +1 Proper

+1 –1 +1 +1 NM-Flip-x Tr = +2 Det = –1 Improper

+1 –1 +1 –1 NM-Flip-xz=NM-Rotate-xz(π) Tr =   0 Det = +1 Proper

+1 –1 –1 +1 NM-Flip-xy=NM-Rotate-xy(π) Tr =   0 Det = +1 Proper

+1 –1 –1 –1 NM-Flip-xyz=NM-ParityInverse: AM-Flip-t=AM-TimeReversal Tr = –2 Det = –1 Improper

–1 +1 +1 +1 AM-Flip-xyz = AM-ParityInverse: NM-Flip-t=NM-TimeReversal Tr = +2 Det = –1 Improper

–1 +1 +1 –1 AM-Flip-xy = AM-Rotate-xy(π) Tr =   0 Det = +1 Proper

–1 +1 –1 +1 AM-Flip-xz =AM-Rotate-xz(π) Tr =   0 Det = +1 Proper

–1 +1 –1 –1 AM-Flip-x Tr = –2 Det = –1 Improper

–1 –1 +1 +1 AM-Flip-yz = AM-Rotate-yz(π) Tr =   0 Det = +1 Proper

–1 –1 +1 –1 AM-Flip-y Tr = –2 Det = –1 Improper

–1 –1 –1 +1 AM-Flip-z Tr = –2 Det = –1 Improper

–1 –1 –1 –1 AM-Minkowksi Identity: NM-Flip-txyz = NM-Combo(PT) Tr = –4 Det = +1 Proper

t x y z Discrete AntiMatter (AM) Lorentz Transform Type Trace Determinant

Table 4. shows the transformation grouped by the trace values. It very clearly shows that Combo(PT) transformation is 
equivalent to a charge transformation, which flips matter ↔ antimatter. Also this charge transform is proper, with a 
determinant of +1, the same as the boost and rotation transformations.

Table 4. Symmetries sorted by Trace.
Discrete Normal Matter (NM) Lorentz Transform Type Trace Determinant

NM-Minkowksi Identity
AM-Flip-txyz = AM-Combo(PT) = AM-NegateIdentity ~ AM-NegateCharge

Tr = +4 Det = +1 Proper

NM-Flip-t ,NM-Flip-x, NM-Flip-y, NM-Flip-z
AM-Flip-xyz = AM-ParityInverse

Tr = +2 Det = –1 Improper

NM-Flip-xy=NM-Rotate-xy(π), NM-Flip-xz=NM-Rotate-xz(π), NM-Flip-yz = NM-Rotate-yz(π)
AM-Flip-xy = AM-Rotate-xy(π), AM-Flip-xz = AM-Rotate-xz(π), AM-Flip-yz = AM-Rotate-yz(π)

Tr =   0 Det = +1 Proper

NM-Flip-xyz=NM-ParityInverse
AM-Flip-t, AM-Flip-x, AM-Flip-y, AM-Flip-z

Tr = –2 Det = –1 Improper

NM-Flip-txyz = NM-Combo(PT) = NM-NegateIdentity ~ NM-NegateCharge
AM-Minkowksi Identity

Tr = –4 Det = +1 Proper

Discrete AntiMatter (AM) Lorentz Transform Type Trace Determinant

10. Relativity - Quantum - Classical Correspondence Principle

In SR one finds the Newtonian classical limiting-case approximation by using |v| << c. In QM, there have been a variety of 
approaches to the Newtonian classical limiting-case approximation, including the idea of number of particles >> 1 and the 
idea of the action S >> ћ. In the standard view of the theories of relativity and quantum mechanics, it is interesting to 
speculate on how the two “different” theories “conspire” to end up at the same classical mechanics approximation. However, 
in the SRQM view, this difficulty disappears. SR leads to RQM via the approach that has been shown. RQM then goes to QM
as a limiting-case approximation by using |v| << c. QM then goes to CM as a limiting-case in its own manner. There is a 
single chain of relationships, rather than two different theories “amazingly” approaching the same classical limit-case.

11. Conclusion

Using the 4-vector calculus of Einstein-Minkowski spacetime it is shown that foundational features of spacetime common 
to both special relativity and quantum mechanics exist. ћ is shown to be an empirically measurable constant and a Lorentz 
scalar, just like c. The 4-vector relations P = ћK, the wave view, and P = moU, the particle view, are shown to be isomorphic 
in the sense that both are derivable from SR. The mathematical relation K = i∂ and existence of complex wavefunction ψ is 
shown applicable to all types of waves: classical, quantum, and relativistic. The waves are all described by tensor amplitudes 
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and the Lorentz scalar product function e±i(K∙X) propagator. The combination of these relations lead to a K-G relativistic 
quantum wave relation (∂∙∂) = (imoc/ћ)2 = -(moc/ћ)2 and to the 4-vector form of the standard Schrödinger relations P = iћ∂. 
There exists a non-zero commutation relation in SR, [Xμ, Pν] = -iћημν. There exists a conserved current Jprob based on a simple 
vector identity. The standard Born probability interpretation, ψ*ψ = ρprob o, emerges in the low-potential-energy and low-
velocity limit. CPT Symmetry emerges from an analysis of the Lorentz Transformations. The correspondence principle of 
both SR and QM to Newtonian classical physics is discussed.

A few of the more useful 4-vectors and invariants showing connections from SR to QR are collected here in Table 5. for 
convenience.

Table 5. Useful SRQM 4-vectors and invariants.

Standard SR 4-Vectors Empirical
Relation

Lorentz scalar product Notes

4-position R = (ct, r) R∙R = (cτ)2 (τ) is the invariant proper time

4-velocity U = γ(c, u) U = dR/dτ U∙U = c2 (c) is the invariant light speed

4-momentum P = (E/c, p) P = moU P∙P = (moc)2 (mo) is the invariant mass

4-wave vector K = (ω/c, k) K = 1/ћ P K∙K = (moc/ћ)2 (ћ) is the reduced Planck constant invariant
Relation derived in Section 3.
ћ/(moc) = λ = reduced Compton wavelength

4-gradient ∂ = (∂t /c, -∇) ∂ = -iK ∂∙∂ = (-imoc/ћ)2 = -(moc/ћ)2 (i) is the imaginary constant invariant
Relation derived in Section 4.
A Klein-Gordon relation

The results shown here suggest that using only the principles of SR plus a few empirical facts, i.e., the measurable 
invariant relations between 4-vectors, one can derive what are normally considered the axioms of QM. Hence, SR→QM. The
rigorous derivation of various QM axioms from SR will be discussed in future works.
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